弹性敏感元件(精选)
传感器中的弹性敏感元件(特性)
引言
变形:物体在外力作用下,形状或尺寸的改变。 弹性变形 弹性元件:具有弹性变形特性的物体。 弹性敏感元件作用:把力、力矩或压力变换成相应的应变 或位移; 然后由各种转换元件,将被测力、力矩或压力转换成电量 。
1
h
弹性特性
作用在弹性敏感元件上的外力与其引起的相应 变形〔应
2.应变
物体受外力作用时产生的相对变形
纵向应变εl
横向应变εr 切应变:切应力所产生的变形。
8
h
式中, x为力F使角点产生位移, L为固定端至力作用点之间的距离
3.虎克定律与弹性模量
σ=Eε τ=Gγ
式中,E为弹性模量或称杨氏模量,单位为N/m2; G为剪切模量或称刚性模量; τ为切应力。
9
h
11
h
弹性敏感元件的类型 1.变换力的弹性敏感元件
图3-1 变换力的弹性敏感元件 a)实心轴 b)空心轴 c、d)等截面圆环 e)变形的圆环
12 f)等截面悬梁 g)等强度悬臂梁 h)变形的悬臂梁 i)扭h转轴
2.变换压力的弹性元件
图3-2 变换压力的弹性敏感元件
1a3)弹簧管
b)波纹管
c)等截面薄板
5.0 9.5~10.5
2.用于一般传感器
2.7
h
21
d)膜盒
e)薄壁圆简
f)薄壁半球
h
1、根本拉压 :材料受力变形的最根本形式是拉压变形, 由下式计算: E
式中:ε为应变,即单位长度的变形,
l l
因此它是一个
无量纲,习惯上将10-6称为一个微应变;Δl 是受力后发
生的变形,l为受载变形长度;E为材料的弹性模量,单位
弹性敏感元件
敏感元件的输 出就是它的输 入,它把输入 转换成电路参 数量
上述电路 参数接入 转换电路, 便可转换 成电量输 出
1.4.2传感器的分类
根据传感器工作原理分类 其中传感器的工作可靠性、静 态精度和动态性能是最基本的 要求
分 类 方 法
分类根据传感器能量转换情况 根据传感器转换原理分类 按照传感器的使用分类
1.2
传感器及其基本特性
1.2.1传感器的定义及组成
传感器是一种以测量为目的,以一定的精确度把被测量转换为与之有确 定对应关系,以便于处理和应用的某种物理量的测量装置。
它是直接感受被测量,并输出与 被测量构成有确定关系、更易于 转换的某一物理量的元件。
转换 元件
被测量 电量 敏感元件 转换元件 转换电路 敏感 元件
1、刚度 、 刚度是弹性元件受外 力作用下变形大小的量度
刚度也可以从弹性特性曲线上 求得。如图1-11所示曲线1上A 点的刚度,可过A点作曲线1的 切线,该切线与水平夹角的正 切代表该弹性元件在A点处的 刚度, 即 k=tanθ =dF/dx
2 灵敏度
通常用刚度的倒数表示弹性元件的特性,称为弹 性元件的灵敏度
1.4.3传感器的基本特性
1.线性度 所谓的线性度也称非线 性误差,是指传感器实 际特性曲线与拟合直线 (也称理论直线)之间 的最大偏差与传感器满 量程输出的百分比
2.迟滞 迟滞 传感器在正(输入量增大)反(输入量减 小)行程中输出输入曲线不重合称为迟滞 必须指出,正反行程的特性曲线是不重合 的,且反行程特性曲线的终点与正行程特 性曲线的起点也不重合。迟滞会引起分辨 力变差,或造成测量盲区,故一般希望迟 滞越小越好。 3.重复性 重复性 重复性是指传感器在输入按同一方 向作全量程连续多次变动时所得特 性曲线不一致的程度
传感器中的弹性敏感元件汇总
R4 Eh3
P
16
3(1 2 )
3(1 2 )16 NhomakorabeaR4 Eh3
P
3. 波纹膜片的选型依据 :
(1)膜片所受的力;(2)允许的迟滞误差;(3)所需要的特 性;(4)非线性度等。
4. 膜片有效面积的计算 :
对于平膜片(经验公式):
Ax
4
(R
r)2
对于波纹膜片(近似公式):Ax
3
(R2
Rr
r2)
最大应力;②所用材料的金相组织结构与化学成分;③弹性元件
的加工及热处理等。(分子间存在内摩擦)
解决弹性元件滞后和后效的方法主要有:①选取较大的安全
系数;②合理地选定机构和元件的连接方式,以减少应力集中;
③采用特殊合金,满足测量的要求等。
4. 有效面积Ax:
弹性元件把作用于其上的压力(压差)转化为集中力的能 力 5. 温。度Δ特P性(kg--/-c-m---2T)-越---大-F(,弹kg性) 模量降Ax低E=FPE0[1力 +B面 力t(t-积t0)] 面积
式中:R—膜片的工作半径;r —膜片的硬芯半径。
(二)波纹管 结构:波纹管是一种具有环形波纹的圆柱形薄壁管。
2. 工作原理及特点:
(1)工作原理:在轴向力的作用下波纹管将伸长或缩短;在横 向力的作用下波纹管将在轴向平面内弯曲。
(2)特点:波纹管在很大的变形范围内与压力具有线性关系, 有效面积比较稳定。波纹管的滞后误差较大,刚度较小。
量的比值在变形增量趋近于零时的极限称为弹性元件的刚度。
F
'
lim
0
F
dF
d
M
'
lim
0
第三章 传感器中的弹性敏感元件
金属波纹膜片
锡青铜、铍青铜、不锈 钢金属波纹膜片:感受 压力从几百帕到几十兆 帕,材料厚度可从 0.03mm到1.6mm,直 径从十余毫米到250毫 米,其压力位移特性可 以是线性的、渐增的或 渐减的,精度可达千分 之五。
压力膜盒
铍青铜、锡青铜, 不锈钢压力膜盒: 其压力位移特性 可以是线性的, 渐增的或渐减的, 精度可达千分之 三。
灵敏度结构系数β
F
AE
应变大小决定于: •圆柱的灵敏结构系数 •横截面积 •材料性质 •圆柱所承受的力 与圆柱的长度无关。
弹性圆柱(实心、空心)
固有频率
EA
f0 0.159 2l ml
f0
0.249 l
E
结论:
为了提高应变量,应当选择弹性模量小的材料,此时 虽然相应的固有频率降低了,但固有频率降低的程度 比应变量的提高来得小,总的衡量还是有利的。
从弹性特性曲线求得 刚度的方法
做切线 找夹角 求正切
k tan dF
dx
如果弹性元件的弹性 特性是线性的,则其刚 度为常数
第二节 弹性敏感元件的基本特性
灵敏度
灵敏度就是单位力产生变形的大小。 灵敏度是刚度的倒数,一般用Sn表示。
Sn
dx dF
弹性元件并联时
1
Sn n 1
圆形膜片和膜盒(圆形平膜片)
中心扰度与压力关系
PR4
Eh4
16 y
31 2
h
2 23 9 21 1
y
3
h
非线性
小扰度:
ymax
3 1 2
16 E
0207.压力表的敏感弹性元件有哪些
压力表的敏感弹性元件有哪些机械压力表中的敏感弹性元件随着压力的变化而产生弹性变形。
机械压力表采用弹簧管(波登管)、膜片、膜盒及波纹管等敏感元件并按此分类。
敏感元件一般是由铜合金、不锈钢或由特殊材料制成。
弹簧管(波登管)分为C型管、盘簧管、螺旋管等型式。
一般采用冷作硬化型材料坯管,在退火态具有很高的塑性,经压力加工冷作硬化及定性处理后获得很高的弹性和强度。
弹簧管在内腔压力作用下,利用其所具有的弹性特性,可以方便地将压力转变为弹簧管自由端的弹性位移。
弹簧管的测量范围一般在0.1MPa ~ 250MPa。
膜片敏感元件是带有波浪的圆形膜片,膜片本身位于两个法兰之间,或焊接在法兰盘上或其边缘夹在两个法兰盘之间。
膜片一侧受到测量介质的压力。
这样膜片所产生的微小弯曲变形可用来间接测量介质的压力。
压力的大小由指针显示。
膜片与波登管相比其传递力较大。
由于膜片本身周围边缘固定,所以其防振性较好。
膜片压力表可达到很高的过压保护(比如膜片贴附在上法兰盘上)。
膜片还可以加上保护镀层以提高防腐性。
利用开口法兰、冲洗、开口等措施可用膜片压力表测量粘度很大、不清洁的及结晶的介质。
膜片压力表的压力测量范围在1600Pa ~ 2.5 MPa。
膜盒敏感元件由两块对扣在一起的呈圆形波浪截面的膜片组成。
测量介质的压力作用在膜盒腔内侧,由此所产生的变形可用来间接测量介质的压力。
压力值的大小由指针显示。
膜盒压力表一般用来测量气体的微压,并具有一定程度的过压保护能力。
几个膜盒敏感元件叠在一起后会产生较大的传递力来测量极微小的压力。
膜盒压力表的压力测量范围在250Pa ~ 60000Pa。
实验仪器的保养和维修守则实验仪器的保养和维修六大要领:1.仪器设备管理人员必须熟悉所管仪器设备的性能及使用操作规程,健全大型设备技术档案,妥善保管一般设备的技术资料及使用说明书。
2.保证仪器设备及附件配套的完整,认真做好仪器的过往记录,做到帐、卡、物相符。
3.定期维护保养仪器,及时排除仪器故障,做好维修记录,大型设备每学期清洁、保养2-4次。
什么是弹性敏感元件,什么是应力,及例题
起的电阻相对变化。 ⅆR ⅆl
ks = R ∕ l 大量实验证明,在应变极限内,金属材料电阻的相对变化与应变成正比。 ΔR R = ksε
什么是材料的弹性模量?
σ = Eε
σ是应力,E 是材料的弹性模量,ε 是应变。可以看出,应力 σ 正比于应变ε。也就是说,应力 σ 正 比于电阻的相对变化 ΔR/R,通过测量 ΔR/R 可以正比于应变ε。得到应力σ,这就是电阻应变片 的工作原理。
=
������������−������
������������ = ������ × ������������−������
(2) ������ = ������������������������ = ������. ������������������������������ × ������ × ������������������������ × ������������−������ = ������. ������������ × ������������������������
热应变系数小且稳定)。 (4) 具有良好的化学性能(抗氧化性和抗腐蚀性好)。
写出 5 种弹性敏见元件ቤተ መጻሕፍቲ ባይዱ料的名称。
常用的精密合金材料包括 3J53 铁镍恒弹合金、65Mn 锰弹簧钢、35CrMnSiA 合金结构钢、 1Cr18Ni9Ti 不锈钢和 QBe2 铍青铜等;常用的非金属材料包括半导体硅材料、石英晶体材料 和精密陶瓷材料等。
3.1 什么是弹性敏感元件?对弹性敏感元件材料的一般要求是什么?写
出 5 种弹性敏见元件材料的名称。
什么是弹性敏感元件?
具有弹性变形特性的物体称为弹性元件。
对弹性敏感元件材料的一般要求是什么?
传感器中的弹性敏感元
灵敏度结构系数 悬臂梁自由端的挠度(位移)
等截面悬臂梁的固有振动频率 J ——梁的横截面的惯性矩, ——梁的单位长度的质量。
4、结论
等截面梁的厚度的减小可以使灵敏度提高,固有振动频率降低。材料的特性参数(E,)对灵敏度和固有频率都有影响。
二、变截面梁(等强度粱)
薄壁圆筒的灵敏度结构系数 薄壁圆筒的固有振动频率为
——力矩; ——扭转棒圆半径; ——横截面对圆心的极惯性矩; ——扭转棒直径。 在力矩测量中常常用到扭转棒,当棒端承受力矩 时,在棒表面产生的最大剪切应力为 最大剪应力与作用的力矩成正比,而与其横截面的极惯性矩和半径之比成反比。
单位长度的扭转角
G为扭转棒材料的剪切弹性系数。
表明单位长度扭转角与扭矩 成正比,而与 抗扭刚度成反比。
——轴向集中作用力; ——工作的波纹数; ——波纹管内半径处的壁厚,即毛坏的厚度。 ——波纹管的外半径; ——波纹管的内半径; ——波纹管的圆弧半径。 ——波纹平面部分的斜角(又叫紧密角) ——相邻波纹的间隙。
波纹管的轴向位移与轴向作用力之间关系可表示为
——取决于K参数和m的系数。 计算K和m出后,可由图表查得 。
——抗扭刚度
扭转棒长度为l时的扭转角为
在与轴线成45o度角的方向上出现最大垂直应力 ,其数值与最大剪切应力 相等,即 这时最大应变为
3.4.4 圆形膜片和膜盒
圆形膜片分平面膜片和波纹膜片两种。在相同压力情况下,波纹膜片可产生较大的挠度。 一、圆形平膜片 圆形平膜片在均布载荷情况下应力分布如图所示。在压力F作用下,中心最大挠度为: ——压力; ——膜片的半径; ——膜片的厚度; ——膜片中心的最大挠度(位移)。
引言
传感器的弹性敏感元件-第三章.
EA
f0 0.159 2l ml
l — 柱体元件的长度 ml — 柱体元件单位长度的质量
(3.7)
ml A
f0
0.249 l
E
(3.8)
ρ — 柱体元件的材料密度
圆柱形弹性敏感元件主要用于电阻应变式拉力 或压力传感器中。
§3 弹性敏感元件的特性参数计算
2、悬臂梁 结构简单,灵敏度高,多用于较小力的测
5、固有振动频率 固有频率决定其动态特性,一般来说,固
有频率越高,其动态特性越好。
1k
f
(Hz )
2 me
(3.5)
k — 弹性敏感元件的刚度
与灵敏度相矛盾
me — 弹性敏感元件的等效振动质量
§3 弹性敏感元件的特性参数计算
1、弹性圆柱(实心和空心) 结构简单,可承受很大载荷;但产生的位移
很小,所以往往以应变作为输出量。
§3 弹性敏感元件的特性参数计算
6、波纹管
图3.12 波纹管
压力(或轴向力)的变化与伸缩量成比例, 所以波纹管可以把压力(或轴向力)变成位移。
§3 弹性敏感元件的特性参数计算
轴向作用力下,与波纹管的轴向位移的关系:
1 2
n
yF
Eh0
A0
A1
2 A2
B0
h0 2 RH 2
(3.24)
F — 轴向集中作用力 n — 工作的波纹数
具有弹性变形特性的物体。
§1 概述
弹性敏感元件: 利用弹性变形实现将被测量由一种物
理状态变换为另一种相应物理状态的元件。
作用:直接测量被测量
常用的弹性敏感元件有波纹管、弹性梁、 柱及筒、膜片、膜盒、弹簧管等。
1-4传感器中的弹性敏感元件资料
等截面轴(实心、空心)
特点:
结构简单 能承受很大载荷
用途:
电阻应变式拉力 或压力传感器
图 弹性圆柱
悬臂梁
一端固定一端自由的弹性敏 感元件,以应变或自由端的 位移作为输出量
特点
结构简单,
灵敏度高,
适于较小力的测量
根据梁的截面形状不同又可分为 等截面梁和变截面梁
压力膜盒
铍青铜、锡青铜, 不锈钢压力膜盒。
薄壁圆筒
弹性元件的壁厚一般都小于圆筒直径的1/20, 内腔与被测压力相通时,内壁均匀受压,薄 壁无弯曲变形,只是均匀的向外扩张。所以, 筒壁的每一单元将在轴线方向和圆周方向产 生拉伸应力。
电子秤
电子秤系统基本原理
悬臂梁称重传感器
扭转轴
常用于力矩测量
自由端收到转矩的作用时,扭转轴表面会 产生拉伸或压缩应变
弹簧管
又称波登管,它是弯曲成各种形状的空心管 子,大多数是C型弹簧管。
一端固定,另一端自由。在压力作用下,自 由端将产生位移。
弹簧管
弹簧管的一端连在管接头上,压力通过 管接头导入弹簧管的内腔,管的另一端 (自由端)封闭,并与传感器的其他部 分相连。在压力作用下,管子的截面改 变了形状,截面的短轴伸长,长轴缩短, 截面形状的变化导致弹簧管趋向伸直, 一直伸到与压力的作用相平衡为止(虚 线所示 )
当膜片的两面受到不同的压力(或力) 的作用时,膜片向压力低的一面应变 移动,使其中心产生与压力差成一定 关系的位移。膜片的 形式主要有平膜 片、垂链式膜片和波纹膜片三种。平 膜片又可按周边是否固定支撑、中心 是否开孔以及膜片区域受力分布状况 的不同等分为多种形式,其中最常用 的 是由周边固定的等截面圆形薄板构 成的平膜片。垂链式膜片由靠近边缘 处开槽的圆板构成,其弹性应变主要 发生在边缘环形槽处,常用这种膜片 压缩应变管或柱来达 到测压目的。垂 链式膜片的硬中心部分在受压移动时 接近平移,因此用于电容式传感器或 压电式传感器效果较好。波纹膜片压 有环状同心波纹。为了增加膜片中心 的 位移可把两个膜片焊在一起制成膜 盒或进一步把数个膜盒串接成膜盒组。
03弹性敏感元件
1、什么叫传感器?有哪些作用?传感器的组 成有哪几部分?
2、传感器的分类?
3、传感器的基本特性有哪些?
4、误差按性质分有哪些?哪些是可以避免的?
第二讲 弹性敏感元件
要点: 应力与应变的概念
弹性敏感元件的特性
弹性敏感元件的类型 问题: 1、弹性敏感元件的作用是什么? 2、常用的弹性敏感元件的类型有哪些?
dx k dF
x 2
3)、弹性滞后 弹性元件在加、卸载的正反行 程中变形曲线是不重合的,这种现 象称为弹性滞后现象,如图所示。 曲线1和2所包围的范围称为滞环。 弹性滞后现象会给测量带来误差。 O
1 F
4)、弹性后效
当载荷从某一数值变化到另一数值时, 弹性元件不是立即完成相应的变形,而是在 一定的时间间隔中逐渐完成变形,这一现象 称为弹性后效。如图所示,当作用在弹性敏 感元件上的力由零增加至F0时,弹性敏感元 x2 件先变形至x1,然后在载荷未改变的情况下 O F0 F 继续变形到x0为止。反之,如果力由减至零, 弹性后效现象 弹性敏感元件变形至x2,然后继续减小变形, 直到恢复原状为止。
2.1电阻式传感器
电阻式传感器是把被测的物理量转换成电阻 值的变化,再通过电阻分压电路或电阻电桥 电路转换成电压输出。 应变电阻、磁敏电阻、光敏电阻、热敏电阻、 热电阻、气敏电阻、湿敏电阻和电位器
1、应变式传感器
应变式传感器是根据应变原理,通过应变片和弹性元
件将机械构件的应变或应力转换为电阻的微小变化再进行
传感器弹性元件的结构形式多种多样,根据被测量 大小不同,常见的有柱式、悬臂梁式、环式等等。以下 仅介绍几种变换力和变换压力的弹性敏感元件。
变换力的弹性敏感元件
6、弹性敏感元件的类型:
弹性敏感元件
k tan dF dx
• 如果弹性元件的弹性 特性是线性的,则其 刚度为常数
第二节 弹性敏感元件的基本特性
• 灵敏度
– 灵敏度就是单位力产生变形的大小。 – 灵敏度是刚度的倒数,一般用Sn表示。
Sn dx dF
弹性元件并联时 Sn 1
i 1 n
• 不锈钢波纹管柔性 连轴器:是以弹性元件 波纹管为核心的联轴器, 用在精密仪器和自动控 制装置中,在传递扭矩 的同时,消除横向、角 向位移或安装误差带来 的不利影响,结构精巧, 安装简便,在精密传动 方面,有着不可替代的 作用。
环行金属波纹管
• 材质:黄铜、 锡青铜、铍青铜、 弹性合金、不锈 钢、高温合金。 其中黄铜系列和 不锈钢系列广泛 用于阀门阀芯配 套等.
n
1 Sn
i
弹性元件串联时 Sn
S
i 1
ni
第二节 弹性敏感元件的基本特性
• 关于刚度和灵敏度的理解
– 刚度和灵敏度都是描述弹性特性的指标,两者 互为倒数 – 刚度与灵敏度是从不同的侧面对同一特性的描 述
• 刚度描述的是抵抗变形的能力 • 灵敏度描述的是变形的能力
– 在传感器应用中,弹性元件的不同联结方法对 总的灵敏度影响不同
第二节 弹性敏感元件的基本特性 • 2.2 弹性滞后
• 弹性元件在弹性变形范 围内,弹性特性的加载 曲线与卸载曲线不重合 的现象 • 弹性变形之差Δx叫做弹 性敏感元件的滞后误差 • 曲线1和曲线2所包围的 范围称为滞环
第二节 弹性敏感元件的基本特性
• 关于弹性滞后的理解
– 弹性滞后与传感器的迟滞特性有关 – 弹性敏感元件的滞后误差体现的是在加载与卸 载过程中同一个作用力下不同的弹性变形的情 况 – 作为敏感元件的变形的不同将导致转换元件转 换结果的不同,最终将体现在传感器的迟滞特 性上 – 引起弹性滞后的原因,主要是由于弹性敏感元 件在工作时其材料分子间存在内摩擦
2.1--弹性敏感元件PPT课件
2.1 弹性敏感元件
(3)波纹膜片和膜盒
图2.6 波纹膜片波纹的形状
-
平膜片在压力 或力作用下位移量 小,因而常把平膜 片加工制成具有环 状同心波纹的圆形 薄膜,这就是波纹 膜片。其波纹形状 有正弦形、梯形和 锯齿形。
15
2.1 弹性敏感元件
(4)薄壁圆筒
圆筒的壁厚一般小于圆 筒直径的1/20,当筒内腔受 流体压力时,筒壁均匀受力, 并均匀地向外扩张,所以在 筒壁的轴线方向产生拉伸力 和应变。
-
12
2.1 弹性敏感元件
2. 变换压力的弹性敏 感元件
这类弹性敏感元件 常见的有弹簧管、波 纹管、波纹膜片、膜 盒和薄壁圆筒等。它 可以把流体产生的压 力变换成位移量输出。
-
图2.4 弹簧管的结构
13
2.1 弹性敏感元件
(2)波纹管
图2..5波纹管的外形
-
波纹管的轴向在流体 压力作用下极易变形,有 较高的灵敏度。在形变允 许范围内,管内压力与波 纹管的伸缩力成正比,利 用这一特性,可以将压力 转换成位移量。
2.1.2 弹性敏感元件的结构形式 弹性敏感元件在形式上可分为两大类 (1)将力转换为应变或位移的变换力
的弹性敏感元件; (2)将压力转换为应变或位移的变换
压力的弹性敏感元件。
-
8
2.1 弹性敏感元件
1. 变换力的弹性敏感元件
图2.3一些变换力的弹性敏感元件形状
(a)实心柱形 (b)空心圆柱形 (c)等截面圆环形 (d)变截面圆环形
量度,一般用k表示
k dF dx
F——作用在弹性元件上的外力; X——弹性元件产生的变形。
-
3
K dx dF
2.1 弹性敏感元件
传感器中的弹性元件(共7张PPT)
在横向( α =90°)产生的应力、应变为:
σ =-μ F/A ; ε= -μ F/AE
柱形弹性元件的固有频率f0为:
f0 =(0.249/l) √E/ρ 3.4.2悬臂梁
(3-6)
一、等截面梁
x
F
x处的应变为:
εx=6F (l-x)/EAh (3-7)
悬臂梁自由端的挠度(位移)为:
l
h
y=4l³F/E bh³ (3-8)
第三章 传感器中的弹性敏感元件
3.1引言
弹性敏感元件:把被测参数由一种物理状态(如:力、力矩、 压力)变换为另一种所需要的相应物理状态(如::应变、 位移)
3.2弹性敏感元件的基本特性 3.2.1弹性特性
指作用在弹性敏感元件上的外力与其引起的相应变形之间的关系, 可由刚度或灵敏度表示
一、刚度 弹性敏感元件在外力作用下抵抗变形的能力,即:
F h
l
在压力P的作用下,中心最大挠度为:
ymax=3(1-μ²)R²P/16Eh³ (3-12)
在半径为r处膜片的应变值:
εr=3(1-μ²) (R²-3r³)P/8Eh (3-13)
2F圆弹0 性形敏感平元件的膜基本片特性的固有振动频率:
εr=3(1-μ²) (R²-3r³)P/8Eh (3-13)
第一页,共7页。
k = dF /dx (3-1)
式中:F—作用在弹性元件上的外力;
x—弹性元件产生的变形;
二、灵敏度
F
Sn= dx / dF (3-2) 3.2.2弹性滞后
F
x
F
Δx
x
第二页,共7页。
3.2.3弹性后效
F
F0 3.2.4固有振动频率
弹性敏感元件 标准
1、根据构成方法分类:基本型敏感元件、组合型敏感元件
2、根据测量对象分类:光敏元件、射线敏元件、机械量敏感元件、电磁敏感元件、声波、超声波敏感元件、温度敏感元件、湿度敏感元件、成分敏感元件
3.用途:小力测量。
扭转棒
1.结构:一端固定、一端自由的圆棒。
2.特性:当自由端承受力矩时,棒表面前产生沿圆周方向的剪切应力。
3.用途:测量力矩
圆形膜片和膜盒
1.结构:圆形平面或波汶膜片、圆形膜片盒。
2.特性:以挠度或应变为输出量。中心处挠度最大。(应力图)
3.用途:测量压力、压差。
波汶管
1.结构:一端封闭、筒壁有皱折的薄壁圆管。
弹性敏感元件存在线膨胀系数,而且其弹性模量也会随温度而变化。因此当环境温度变化超过常温范围或要求较高时必须认真对待温度变化带来的误差。
2.3固有频率
弹性元件的固有频率是指在无阻尼情况下元件的自由振动频率,弹性敏感元件的线性度、灵敏度、固有频率之间始终是相互矛盾的。提高灵敏度则线性度、固有频率变差,所以必须根据需要来衡量。
当等截面轴受到轴向力作用(拉力或压力)时,在轴向会产生变形(伸长或缩短),所其横向尺寸也会相应的变形(减小或增大),如图3-5示。
二、空心圆柱
空心圆柱(空心管)是一种变换压力的弹性敏感元件。描述空心圆柱的结构尺寸的物理量有内壁直径d0,外币直径d2,平均直径d1,壁厚h,管长l,顶端厚度h1等,其结构如图3-6所示。
2.3.常用材料
2.3.1材料选择的基本要求
简述大原则就是根据传感器的工作环境、被测量的情况、各项技术指标要求等等来选择。