智能控制理论及应用 PPT

合集下载

智能控制理论及应用

智能控制理论及应用
Albus在1975年提出的CMAC神经网络模型,利用人脑记 忆模型提出了一种分布式的联想查表系统;
Grossberg在1976年提出的自谐振理论(ART)解决了无 导师指导下的模式分类;
到了80年代,人工神经网络进入了发展期:
1982年,Hopfield提出了HNN模型,解决了回归网络的学 习问题;
1.1.2 智能控制的定义 由于智能控制是一门新兴学科且正处于发展阶段,所以至
今尚无统一的定义,故有多种描述形式。
从三元交集论的角度定义智能控制:它是一种应用人工智 能的理论和技术以及运筹学的优化方法,并和控制理论中的方 法与技术相结合,在不确定的环境中,仿效人的智能(学习、 推理等),实现对系统控制的理论与方法。
信息论 IT
图1.3 智能控制的四元论结构
以上关于智能控制结构理论的不同见解中,存在着以下几 点共识:
(1)智能控制是由多种学科相互交叉而形成的一门新兴 学科;
(2)智能控制是自动控制发展到新阶段的产物,它以人 工智能和自动控制的相互结合为主要标志;
(3)智能控制在发展过程中不断地吸收着控制论、信息 论、系统论、运筹学、计算机科学、模糊数学、心理学、生理 学、仿生学等学科的思想、方法以及新的研究成果,目前仍在 发展和完善之中。
1.3 智能控制的应用场合和研究内容 1.3.1 智能控制的应用场合
智能控制是自动控制的最新发展阶段,主要用于解决传统 控制技术与方法难以解决的控制问题。主要应用场合有:
(1)具有高度非线性、时变性、不确定性和不完全性等 特征,一般无法获得精确数学模型的复杂系统的控制问题;
(2)需要对环境和任务的变化具有快速应变能力并需要 运用知识进行控制的复杂系统的控制问题;
1986年PDP小组的研究人员提出了多层前向神经网络的 BP学习算法,实现了有导师指导下的网络学习,从而为神经 网络的应用开辟了广阔的前景。

智能控制技术

智能控制技术

遗传算法在优化问题中应用
遗传算法原理
遗传算法是一种模拟生物进化过程的智能优化算法,通过选择、交叉、变异等操作,寻找问题的最优解或近似最 优解。
应用案例
遗传算法在函数优化、生产调度、路径规划等领域有广泛应用,如路径规划问题中,通过遗传算法寻找最短路径 或最优路径,提高运输效率。
04
智能控制器设计与实现
THANKS
感谢观看
强化学习在自适应控制中应用
1 2
探索与利用
强化学习通过试错的方式探索最优控制策略,同 时利用已有经验进行优化,实现自适应控制。
延迟奖励处理
强化学习算法能够处理具有延迟奖励的控制问题 ,通过长期规划实现目标的最优控制。
3
稳定性与收敛性
强化学习算法在自适应控制中能够保证系统的稳 定性和收敛性,为实际应用提供可靠保障。
智能控制系统的基本结构
01
介绍智能控制系统的基本组成,包括传感器、执行器、控制器
以及被控对象等。
智能控制系统的设计原则
02
阐述设计智能控制系统时应遵循的原则,如可靠性、实时性、
可扩展性等。
智能控制系统的实现方法
03
探讨实现智能控制系统的具体方法,包括硬件选型、软件编程
、系统调试等,并介绍一些典型的智能控制系统案例。
02
智能控制基础理论
自动控制原理简介
01
自动控制的基本概念
介绍自动控制的定义、目的以及实现方式等。
02
系统建模与分析
阐述如何对控制系统进行建模,包括传递函数、状态空间等,并分析系
统的稳定性、频率响应等特性。
03
控制策略与设计
介绍经典控制理论和现代控制理论中的常用控制策略,如PID控制、最

智能控制理论及其应用-第一章概述

智能控制理论及其应用-第一章概述

1.2 智能控制的产生及其发展
(3)智能控制的发展
国际智能自动化学会(International Society Of Intelligent Automation,简称ISIA) 筹委会主席是模糊数学与模糊系统 的创始人L.A.Zadeh教授。筹委会第一次会议已于1995 年10月在加拿大温哥华召开。她的成立将在世界范围内对于 推动智能自动化的研究起到促进作用。 我国也十分重视智能控制理论和应用的研究。1993年在 北京召开了“全球华人智能控制与智能自动化大会”,1994年 在北京和沈阳召开了智能控制两个学术会议,1995年中国智 能自动化学术会议暨智能自动化专业委员会成立大会在天津 召开。
1.2 智能控制的产生及其发展
(1)智能控制的孕育
1966年,Mendel进一步在空间飞行器的学习控制系统 中应用了人工智能技术,并提出了“人工智能控制”的概 念。 1967年,Leondes和Mendel首先正式使用“智能控制” 一词,并把记忆、目标分解等一些简单的人工智能技术用 于学习控制系统,提高了系统处理不确定性问题的能力。 这就标志着智能控制的思想已经萌芽。
1.3 传统控制与智能控制
智能控制的产生来源于被控系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能,可以概括为,智能 控制是“三高三性”的产物,它的创立和发展需要对当代多种 前沿学科、多种先进技术和多种科学方法,加以高度综合和 利用。 因此,智能控制无疑是控制理论发展的高级阶段。
1.4 智能控制理论的主要特征
1.2 智能控制的产生及其发展
(3)智能控制的发展
美国《IEEE控制系统》杂志1991、1993~1995年多次发 表《智能控制专辑》,英国《国际控制》杂志1992年也发表了 《智能控制专辑》,日文《计测与控制》杂志1994年发表了 《智能系统特集》,德文《电子学》杂志自1991年以来连续发 表多篇模糊逻辑控制和神经网络方面的论文;俄文《自动化与 遥控技术》杂志1994年也发表了自适应控制的人工智能基础及 神经网络方面的研究论文。 如果说智能控制在80年代的应用和研究主要是面向工业过 程控制,那么90年代,智能控制的应用已经扩大到面向军事、 高技术领域和日用家电产品等领域。今天,“智能性”已经成为 衡量“产品”和“技术”高低的标准。

智能控制理论及应用 PPT

智能控制理论及应用 PPT

智能控制理论及应用 PPT智能控制是控制理论发展的高级阶段,它综合了人工智能、自动控制、运筹学等多学科的知识,旨在解决那些传统控制方法难以处理的复杂系统控制问题。

本 PPT 将带您深入了解智能控制理论及其广泛的应用领域。

一、智能控制的概念智能控制是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。

与传统控制相比,智能控制具有以下显著特点:1、不确定性:能够处理系统中的不确定性,如模型不确定性、参数变化和外部干扰等。

2、复杂性:适用于复杂的、非线性的和时变的系统。

3、自适应性:可以根据系统的运行情况和环境变化自动调整控制策略。

4、学习能力:能够从数据和经验中学习,不断优化控制性能。

二、智能控制的主要理论1、模糊控制模糊控制是基于模糊集合理论和模糊逻辑推理的一种智能控制方法。

它通过将精确的输入量模糊化,利用模糊规则进行推理,最后将模糊输出解模糊化为精确的控制量。

模糊控制适用于那些难以建立精确数学模型的系统,例如温度控制、速度控制等。

2、神经网络控制神经网络控制是利用人工神经网络的学习和自适应能力来实现控制的方法。

神经网络可以通过对大量数据的学习,提取系统的特征和规律,从而实现对系统的有效控制。

在机器人控制、模式识别等领域有着广泛的应用。

3、专家控制专家控制是将专家系统的知识和经验与控制理论相结合的一种智能控制方法。

专家系统包含了大量的领域知识和控制策略,能够根据系统的状态和需求提供准确的控制决策。

4、遗传算法遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传变异的过程来寻找最优的控制参数或策略。

它在控制器的参数优化、系统的建模和优化等方面发挥着重要作用。

三、智能控制的应用领域1、工业生产在工业生产过程中,智能控制可以提高生产效率、产品质量和设备的可靠性。

例如,在化工生产中,通过智能控制可以实现对反应过程的精确控制,优化生产工艺;在机器人制造中,利用神经网络控制可以实现机器人的精确动作和轨迹规划。

智能控制理论及应用

智能控制理论及应用

智能控制理论及应用在当今科技飞速发展的时代,智能控制理论作为一门新兴的交叉学科,正逐渐改变着我们的生活和生产方式。

它融合了控制理论、计算机科学、人工智能等多个领域的知识,为解决复杂系统的控制问题提供了新的思路和方法。

智能控制理论的核心在于模拟人类的智能行为,使控制系统能够在不确定、复杂的环境中自主地进行决策和控制。

与传统控制理论相比,智能控制具有更强的适应性和自学习能力。

传统控制理论通常基于精确的数学模型,然而在实际应用中,很多系统难以建立精确的数学模型,或者模型会随着环境和工作条件的变化而发生改变。

智能控制则能够在模型不精确或不确定的情况下,通过学习和优化来实现有效的控制。

模糊控制是智能控制的一个重要分支。

它利用模糊集合和模糊逻辑来描述和处理系统中的不确定性和模糊性。

例如,在温度控制中,“高温”“低温”“适中”等概念往往没有明确的界限,模糊控制可以很好地处理这种模糊性,根据经验和规则来调整控制策略。

模糊控制的优点在于它不需要精确的数学模型,只需要根据专家经验或操作人员的知识来制定模糊规则,就能够实现对系统的有效控制。

神经网络控制也是智能控制中的热门领域。

神经网络类似于人类大脑的神经元网络,具有强大的学习和泛化能力。

通过对大量数据的学习,神经网络可以自动提取特征和规律,并用于控制系统的优化和决策。

在机器人控制、图像处理等领域,神经网络控制都取得了显著的成果。

智能控制在众多领域都有着广泛的应用。

在工业生产中,智能控制可以提高生产效率和产品质量。

例如,在自动化生产线中,智能控制系统可以根据实时的生产数据和环境变化,自动调整生产参数,实现生产过程的优化。

在机器人领域,智能控制使机器人能够更加灵活地适应不同的任务和环境,完成复杂的操作,如无人驾驶汽车、工业机器人的精密操作等。

在智能家居方面,智能控制让我们的生活更加便捷和舒适。

通过传感器和智能算法,智能家居系统可以自动调节室内温度、照明、安防等,实现家居设备的智能化管理。

智能控制理论及应用

智能控制理论及应用

摘要:介绍了智能控制理论的发展概况、研究对象与工具、功能特点,简要列举了智能控制的集中应用。

关键词:智能控制;神经网络;应用0前言自从美国数学家维纳在20世纪49年代创立控制论以来,智能控制理论与智能化系统发展十分迅速。

智能控制理论被誉为最新一代的控制理论,代表性的理论有模糊控制、神经网络控制、基因控制即遗传算法、混沌控制、小波理论、分层递阶控制、拟人化智能控制、博弈论等。

应用智能控制理论解决工程控制系统问题,这样一类系统称为智能化系统。

他广泛应用于复杂的工业过程控制、机器人与机械手控制、航天航空控制、交通运输控制等。

他尤其适用于被控对象模型包含有不确定性、时变、非线性、时滞、耦合等难以控制的因素。

采用其它控制理论难以设计出合适与符合要求的系统时,都有可能期望应用智能化理论获得满意的解决。

科学技术高度发展导致了被控对象在结构上的复杂化和大型化。

在许多系统中,复杂性不仅仅表现在高维性上,更多则是表现在系统信息的模糊性、不确定性、偶然性和不完全性上。

此时,人工智能得益于计算机技术的飞速发展,已逐渐成为一门学科,并在实际应用中显示出很强的生命力。

同时,国际学术界对智能控制的研究也十分活跃,到了20世纪90年代,各种智能控制的国际学术会议日益频繁。

国内也在20世纪80年代初开始进行智能控制研究。

1智能控制理论的发展阶段虽然智能控制理论只有几十年的历史,尚未形成较完整的理论体系,蛋其已有的应用成果和理论发展表明它已成为自动控制的前沿学科之一。

智能控制主要经历了以下几个发展阶段:1.1 自动控制的发展与挫折上世纪40~50年代,以频率法为代表的单变量系统控制理论逐步发展起来,并且成功地用在雷达及火力控制系统上,形成了“古典控制理论”。

上世纪60~70年代,数学家们在控制理论发展中占据了主导地位,形成了以状态空间法为代表的“现代控制理论”。

他们引入了能控、能观、满秩等概念,使得控制理论建立在严密精确的数学模型之上,从而造成了理论与实践之间巨大的分歧。

智能控制基础总结-PPT

智能控制基础总结-PPT

0.09 0.6 0.4 0.84 0.49
1.0
NS
ZE
3.3231
0.7
0.3
u
0
2
4
6
u=3.32
27
人工神经网络
❖ 人工神经网络就是模拟人脑细胞的分布式工作特 点和自组织功能,且能实现并行处理、自学习和 非线性映射等能力的一种系统模型。
❖ 神经网络系统研究主要有三个方面的内容,即神 经元模型、神经网络结构和神经网络学习方法。
相等:对于所有的u∈U ,均有μA(u)=μB(u)。记作A=B。 包含:对于所有的u∈U ,均有μA (u) ≤μB(u)。记作AB。 空集:对于所有的u∈U ,均有μA(u) =0 。记作:A= 。 全集:对于所有的u∈U ,均有μA(u) =1。
14
交、并、补
交集:对于所有的u∈U ,均有
μC(u)=μA∧μB=min{μA(u),μB(u)} 则称C为A与B的 交集,记为 C=A∩B 。
28
人工神经元模型
❖ 神经元模型是生物神经元的抽象和模拟。可看 作多输入/单输出的非线性器件 。
xi 输入信号,j=1,2,…,n;
wij 表示从单元uj 到单元ui 的
连接权值;
i
si 外部输入信号;
ui 神经元的内部状态;
θi 阀值;
yi 神经元的输出信号;
Neti wij x j si i , ui f(Neti ), yi g(ui ) j ❖ 通常假设yi=f(Neti),而f为激励函数。
8
智能控制的三元结构
❖ AC:动态反馈控制。
❖ AI:一个知识处理系 统,具有记忆、学习、 信息处理、形式语言、 启发式推理等功能。

智能控制理论及其在机器人上的应用

智能控制理论及其在机器人上的应用

智能控制理论及其在机器人上的应用第一章:智能控制理论概述智能控制是一种利用人工智能技术实现对系统控制的技术,其目的在于给机器进行指令,控制其运动。

智能控制技术综合了智能计算、模糊逻辑、神经网络等计算机科学中的前沿技术,使得机器可以像人一样对环境做出反应,完成人们的工作任务。

智能控制理论研究了机器在复杂的环境下做出决策的方法,通过对数据的收集、处理以及算法的设计和调整,让机器具有感知、理解和适应环境的能力。

智能控制理论的研究对于机器人、无人飞行器、自动驾驶汽车等自主化系统至关重要。

第二章:智能控制在机器人上的应用机器人是智能控制技术的典型应用之一。

智能控制可以使机器人从一个简单的动作执行者提升为一个拥有自主决策能力、可以接受人类指令、智能感知环境、适应环境的智能机器人。

1. 机器人的感知机器人的感知是指让机器人具有感知环境、收集信息的功能。

机器人的感知技术可以通过传感器实现。

智能控制可以让机器人利用传感器把环境信息收集到机器人的电脑里,对它进行分析,在这个基础上进行相应的决策。

传感器的种类非常多,例如红外线传感器、激光雷达传感器、声波传感器、视觉传感器等,不同的传感器通过不同的方式来感知环境,并生成不同的数据。

智能控制可以帮助机器人对从传感器中收集到的信息进行处理并指导其展开相应的行动。

2. 机器人的决策机器人的决策能力是指让机器人像人类一样生成合理的决策,并根据情况调整自己的决策。

基于智能控制的机器人可以利用数据和算法来进行计算、分析和预测。

例如,基于智能控制的机器人在执行一项任务时,可以根据所处的环境变化、任务目标的变化以及其他因素来生成相应的决策。

如果需要调整,机器人就可以根据新的数据情况重新生成新的决策。

3. 机器人的执行机器人的执行能力是指让机器人能够按照预设计划或者生成的决策来执行任务。

机器人的控制系统可以根据信息反馈不断的调整机器人的动作,使机器人能够适应不同环境、不同任务目标的要求。

《智能控制》PPT课件

《智能控制》PPT课件
(3)组织功能:对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有 主动性和灵活性。智能控制器可以在任务要求范围内进行自行决策,主动采取行动,当 出现多目标冲突时,在一定限制下,各控制器可以在一定范围内自行解决。
1.1.4 智能控制的研究对象 (1)不确定性的模型
7
模型的不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可 能在很大范围内变化。
可以概括为:智能控制是“三高三性”的产物。即“控制系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能”
8
1.1.5 智能控制系统的结构 1.智能控制系统的基本结构
数据库
感知信息 与处理
认知学习 智能控制器
评价机构
传感器
环境 广义对象
还包括外部各种干 扰等不确定制、神经网络控制、专家控制、 学习控制及仿人控制等。
3
第一章
第一节 智能控制的基本概念 1.1.1 智能控制的由来
绪论
传统控制理论(包括经典控制理论和现代控制理论)是建立在被控对象精确数学模
型基础上的控制理论。实际上,许多工业被控对象或过程常常具有非线性、时变性、变 结构、多层次、多因素以及各种不确定性等,难于建立精确的数学模型。即使对一些复 杂对象能够建立起数学模型,模型也往往过于复杂,既不利于设计也难于实现有效控制。 虽然对缺乏数学模型的被控对象可以进行在线辨识,但是由于算法复杂、实时性差,使 得应用范围受到一定限制。
IC:智能控制(intelligent control) AI:人工智能(artificial intelligent) AC:自动控制(automatic control)
9
2. 分层递阶智能控制结构
1977年Saridis以机器人控制为背景提出了三级递阶控制结构。

智能控制-刘金琨编著PPT..

智能控制-刘金琨编著PPT..

一界智能控制学术讨论会,随后成立了
IEEE智能控制专业委员会;1987年1月,
在美国举行第一次国际智能控制大会,标
志智能控制领域的形成。
近年来,神经网络、模糊数学、专家 系统、进化论等各门学科的发展给智能 控制注入了巨大的活力,由此产生了各 种智能控制方法。 智能控制的几个重要分支为专家控制、 模糊控制、神经网络控制和遗传算法。
( 3 )针对实际系统往往需要进行一些比 较苛刻的线性化假设,而这些假设往往与 实际系统不符合。 ( 4 )实际控制任务复杂,而传统的控制 任务要求低,对复杂的控制任务,如机器 人控制、 CIMS 、社会经济管理系统等复 杂任务无能为力。
在生产实践中,复杂控制问题可通过
熟练操作人员的经验和控制理论相结合
自组织、自学习控制的基础上,
为了提高控制系统的自学习能力,
开始注意将人工智能技术与方法
应用于控制中。
1966年,J.M.Mendal首先提出将人工 智能技术应用于飞船控制系统的设计;
1971年,傅京逊首次提出智能控制这 一概念,并归纳了三种类型的智能控制 系统:
(1)人作为控制器的控制系统:人作为 控制器的控制系统具有自学习、自适应 和自组织的功能;
( 3 )自组织功能:智能控制器对复杂的 分布式信息具有自组织和协调的功能,当 出现多目标冲突时,它可以在任务要求的 范围内自行决策,主动采取行动。
( 4 )优化能力:智能控制能够通过不断 优化控制参数和寻找控制器的最佳结构形 式,获得整体最优的控制性能。
3.2、智能控制的研究工具
(1)符号推理与数值计算的结合 例如专家控制,它的上层是专家系统, 采用人工智能中的符号推理方法;下层是 传统意义下的控制系统,采用数值计算方 法。

2024版智能控制技术ppt课件

2024版智能控制技术ppt课件

模糊逻辑在智能控制中应用
01
02
03
工业过程控制
应用于化工、冶金、电力 等工业过程控制中,实现 对温度、压力、流量等参 数的智能控制。
智能家居系统
应用于智能家居系统中, 实现对灯光、窗帘、空调 等设备的智能控制,提高 居住舒适度。
自动驾驶技术
应用于自动驾驶技术中, 实现对车辆行驶轨迹、速 度等参数的智能控制,提 高行驶安全性。
神经网络控制
利用神经网络强大的自 学习和自适应能力,实 现对复杂系统的有效控 制。特点:能够处理非 线性、不确定性和时变 系统,具有强大的逼近
能力和容错性。
专家系统控制
基于专家知识和经验, 构建专家系统实现对复 杂系统的有效控制。特 点:能够处理定性和定 量信息,具有较强的推
理和决策能力。
遗传算法控制
现代控制理论的发展背景
01
随着计算机技术的进步和复杂系统的出现,现代控制理论应运
而生。
现代控制理论的核心思想
02
基于状态空间法和最优化原理,实现对复杂系统的有效控制。
现代控制理论的主要方法
03
包括线性系统理论、最优控制、鲁棒控制等。
智能控制方法分类及特点
第一季度
第二季度
第三季度
第四季度
模糊控制
利用模糊数学理论,将 人的控制经验表示为模 糊规则,实现对复杂系 统的有效控制。特点: 不依赖于精确的数学模 型,具有较强的鲁棒性 和适应性。
模拟退火算法实现过程
包括初始化、设置温度参数、生成新解、计算目标函数差、接受准 则判断、降温过程等步骤。
模拟退火算法特点
具有全局搜索能力强、不易陷入局部最优解等特点,但计算时间较 长。
智能优化算法在智能控制中应用案例

智能控制理论及应用PPT课件

智能控制理论及应用PPT课件

•智能控制理论概述•智能控制基础理论•智能控制技术与方法•智能控制系统设计与实现•智能控制在工业领域应用案例•智能控制在非工业领域应用案例•智能控制发展趋势与挑战目录智能控制定义与发展定义发展历程智能控制与传统控制比较控制对象传统控制主要针对线性、时不变系统,而智能控制则面向复杂、非线性、时变系统。

控制方法传统控制主要采用基于数学模型的方法,而智能控制则运用神经网络、模糊逻辑、遗传算法等智能算法。

控制性能传统控制在稳定性和精确性方面表现较好,而智能控制则在适应性和鲁棒性方面更具优势。

航空航天智能控制可以提高飞行器的自主导航能力、实现复杂任务的自主决策和执行。

智能控制可以实现车辆的自主驾驶、交通拥堵预测、路径规划等功能。

智能家居智能控制可以实现家居设备的远程控制、语音控制、场景定制等功能。

机器人控制智能控制可以实现机器人的自主导航、路径规划、动态避障智能制造智能控制应用领域1 2 3模糊集合与隶属度函数模糊关系与模糊推理模糊控制器设计模糊数学基础神经网络基础神经元模型与神经网络结构01神经网络学习算法02神经网络在智能控制中的应用03遗传算法基础遗传算法基本原理遗传算法优化方法遗传算法在智能控制中的应用模糊控制技术模糊控制基本原理01模糊控制器设计02模糊控制应用实例03神经网络控制技术神经网络基本原理神经网络控制器设计神经网络控制应用实例遗传算法优化技术遗传算法基本原理遗传算法优化方法遗传算法优化应用实例系统需求分析明确系统控制目标和任务分析系统环境和约束确定系统性能指标系统架构设计选择合适的控制策略根据系统需求和性能指标,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。

设计控制器结构根据所选控制策略,设计相应的控制器结构,包括输入、输出、算法等部分。

构建系统框架将控制器与被控对象、传感器和执行器等连接起来,构建完整的智能控制系统框架。

传感器模块控制算法模块执行器模块通信模块关键模块实现自动化生产线优化调度基于遗传算法的调度优化模糊控制在生产调度中的应用基于神经网络的调度预测01基于A*算法的路径规划02模糊逻辑在机器人导航中的应用03强化学习在机器人路径规划中的应用机器人路径规划与导航神经网络在故障预测中的应用采用神经网络对历史故障数据进行学习,预测未来可能出现的故障及其发生时间,为预防性维护提供决策支持。

智能控制理论及应用(2023版)

智能控制理论及应用(2023版)

智能控制理论及应用智能控制理论及应用⒈简介⑴研究背景⑵研究目的⑶研究内容⑷研究方法⑸研究意义⒉控制理论基础⑴控制系统分类⑵控制系统的基本组成⑶控制系统的数学模型⑷控制系统的性能指标⒊经典控制理论⑴比例控制⑵比例-积分控制⑶比例-积分-微分控制⑷标准PID控制⑸ PID控制器参数整定方法⑹ PID控制在工业领域的应用⒋高级控制理论⑴模糊控制⑵自适应控制⑶预测控制⑷智能控制⑸控制器的设计与实现⒌控制应用案例分析⑴温度控制系统案例分析⑵液位控制系统案例分析⑶速度控制系统案例分析⑷压力控制系统案例分析⑸其他应用案例分析⒍控制系统的优化与调试⑴控制系统的建模与仿真⑵控制系统优化方法⑶控制系统调试技巧⑷控制系统故障排除⒎未来发展趋势⑴智能控制技术的前景⑵控制理论与工程的融合⑶控制系统的自主学习与适应能力⑷控制技术在领域的应用附件:附件1:温度控制系统仿真模型代码附件2:液位控制系统设计方案附件3:PID控制器参数整定方法总结法律名词及注释:⒈控制系统:指用于实现对某个过程或系统变量的调节和稳定的一组设备和方法的总称。

⒉ PID控制:比例-积分-微分控制的简称,是一种常用的控制方法,通过调节比例、积分和微分部分的参数来实现系统的稳定和优化控制。

⒊比例控制:通过调节输出信号与误差信号之间的线性关系,来实现对系统过程的控制。

⒋积分控制:通过在控制过程中累积误差信号,并根据累积误差值进行调节,来实现对系统过程的控制。

⒌微分控制:通过监测误差变化速率,并根据变化速率进行调节,来实现对系统过程的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合自动化
进展方向
12
智能控制
自学习控制
自适应/ 鲁棒控制
随机控制
最优控制 确定性 反馈控制
开环控制
控制复杂性
图1.4 自动控制的发展过程
大家好
2020/3/24
人工智能产生于20世纪50年代,它是控制论、信息论、系 统论13、计算机科学、神经生理学、心理学、数学以及哲学等多 种学科相互渗透的结果,也是电子计算机出现并广泛应用的结 果。
(3)智能控制在发展过程中不断地吸收着控制论、信息 论、系统论、运筹学、计算机科学、模糊数学、心理学、生理 学、仿生学等学科的思想、方法以及新的研究成果,目前仍在 发展和完善之中。
大家好
2020/3/24
1.1.2 智能控制的定义
9
由于智能控制是一门新兴学科且正处于发展阶段,所以至 今尚无统一的定义,故有多种描述形式。
大家好
2020/3/24
3
(5)蔡自兴. 人工智能控制. 北京:化学工业出版 社,2005
(6)窦振中. 模糊逻辑控制技术及其应用. 北京: 北京航空航天大学出版社,1995
(7)沈清,胡德文,时春. 神经网络应用技术. 长 沙:国防科技大学出版社,1993
(8)方崇智,萧德云. 过程辨识. 北京:清华大学 出版社,1988
自动控制 AC
图1.2 智能控制的三元结构
三元交集除“智能”与控制之外,还强调了在更高层次控 制中调度、规划、管理和优化的作用。
大家好
2020/3/24
Info7r我m国ati学on者T蔡he自or兴y)教包授括于进19智89能年控提制出结把构信理息论论的(四IT元:论结构 (如图1.3所示),即
大家好
2020/3/24
第1章 概论
1.1 智5 能控制的基本概念 1.1.1 智能控制的结构理论
智能控制(IC:Intelligent Control)是一门新兴的交叉学 科,具有非常广泛的应用领域。智能控制这一术语于1967年由 Leondes和Mendel首先使用,1971年著名美籍华人科学家傅京 孙(K.S.Fu)教授从发展学习控制的角度首次正式提出智能控 制概念与建立智能控制学科的构思。
大家好
2020/3/24
从认知过程出发:智能控制是一种推理计算,它能在非完 整的10性能指标下,通过一些基本的操作,如归纳(Generalization) 和组合搜索(Combinatorial Search)等,把表达不完善、不确定 的复杂系统引向规定的目标。
K.J.Astrom认为:把人类具有的直觉推理和试凑法等智能 加以形式化或用机器模拟,并用于控制系统的分析与设计中, 以期在一定程度上实现控制系统的智能化,这就是智能控制。
(9)舒迪前. 预测控制系统及其应用. 北京:机械 工业出版社,1996
大家好
2020/3/24
课程4 内容: 第1章 概论 第2章 分级递阶智能控制 第3章 基于模糊推理的智能控制系统 第4章 基于神经网络的智能控制技术 第5章 模糊神经网络 第6章 遗传算法及其应用 第7章 基于规则的仿人智能控制
IC = A IIA C IO R IIT
自动控制 AC
人工 智能 AI
IC 运筹学 OR
信息论 IT
图1.3 智能控制的四元论结构
大家好
2020/3/24
以上关于智能控制结构理论的不同见解中,存在着以下几
8
点共识:
(1)智能控制是由多种学科相互交叉而形成的一门新兴 学科;
(2)智能控制是自动控制发展到新阶段的产物,它以人 工智能和自动控制的相互结合为主要标志;
傅京孙把智能控制概括为自动控制(AC:Automatic
Control)和人工智能(AI:Artificial Intelligence)的交集,

IC=ACI AI
这种交叉关系可用图1.1形象地 表示,它主要强调人工智能中“智
自动控制 智能 人工智能 AC 控制 AI IC
能”的概念与自动控制的结合。
从三元交集论的角度定义智能控制:它是一种应用人工智 能的理论和技术以及运筹学的优化方法,并和控制理论中的方 法与技术相结合,在不确定的环境中,仿效人的智能(学习、 推理等),实现对系统控制的理论与方法。
从系统一般行为特性出发,J.S.Albus认为:智能控制是有 知识的“行为舵手”,它把知识和反馈结合起来,形成感知 – 交互式、以目标为导向的控制系统。该系统可以进行规划,产 生有效的、有目的的行为,并能在不确定的环境中,达到预期 的目标。
大家好
图1.1 智能控制的二元结2构020/3/24
萨里迪斯(Saridis)等从机器智能的角度出发,对傅京孙 的二6元交集结构理论进行了扩展,引入了运筹学(OR: Operations Research)并提出了三元交集结构,即
IC=AIIACIOR
人工 智能 AI
运筹学 智能 OR 控制 IC
1
智能控制理论及应用
大家好
2020/3/24
参2 考书目:
(1)周德俭,吴斌. 智能控制. 重庆:重庆大学出 版社,2005
(2)李少远,王景成. 智能控制. 北京:机械工业 出版社,2005
(3)李人厚. 智能控制理论和方法. 西安:西安电 子科技大学出版社,1999 (4)王万森. 人工智能原理及其应用. 北京:电子 工业出版社,2000
理论基础
经典控制理论
现代控制理论
智能控制理论
研究对象 单输入、单输出系统 多输入、多输出系统 多层次、多变量系统
分析方法 研究重点 核心装置
传递函数、频域法 反馈控制 模拟调节器
状态方程、时域法 智能算子、多级控制
最优、随机、自适应 控制
大系统、智能控制
电子计算机
智能机器系统
应用
大家单好 机自动化
机组自动化
从控制论的角度出发:智能控制是驱动智能机器自主地实 现其目标的过程。或者说,智能控制是一类无需人的干预就能 独立地驱动智能机器实现其目标的自动控制方法。
以上各种描述说明:智能控制具有认知和仿人的功能;能 适应不确定性的环境;能自主处理信息以减少不确定性;能可 靠地进行规划,产生和执行有目的的行为,以获取最优的控制
1.2 智能控制的发展概况
1.2.1 智能控制的产生 人们将智能控制的产生归结为二大主因,一是自动控制理
论发展之必然;二是人工智能的发展为其提供了机遇。
表1.1 自动控制理论发展阶段特征
阶段
第一阶段
第二阶段
第三阶段
时期
20世纪40~50年代
20世纪60~70年代 20世纪80年代至今
相关文档
最新文档