利润问题:一元二次方程含标准答案

合集下载

一元二次方程解利润问题

一元二次方程解利润问题

一元二次方程解利润问题举例:某百货大楼服装柜在销售者发现:“某”牌童装平均每天可售出20件,每件利润40元为了迎接国庆节市场决定采取适当的降价措施,扩大销售量,增加利润。

条件:如果每件降价4元,那么平均每天多售出8件。

求:要想平均每天销售这种童装盈利1200元那么每件童装应降价多少?解:设每件童装应降价x元,则每件的利润为(40-x)元,平均每天多售出8×x/4=2x件,实际平均每天售出(2x+20)件,平均每天利润为(40-x)(2x+20)元;根据题意,可列方程:(40-x)(2x+20)=1200(40-x)(x+10)=60040x+400-x²-10x=600x²-30x+200=0(x-10)(x-20)=0x-10=0 或x-20=0x1=10 , x2=20答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或降价20元。

一元二次方程的应用:一、百分率变化问题增长率的问题在实际生活普遍存在,有一定的模式,若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b。

在解题过程需要注意总量和增长后达到的量的区别,需要注意“增长了”和“增长到”的区别。

二、传播问题“传播问题”的基本特征是:以相同速度逐轮传播。

解决此类问题的关键步骤是明确每轮传播中的传染源个数,以及这一轮被传染的总数。

需要注意的是疾病传播问题和某种植物分支的区别和联系,疾病传播问题中传染源将参与下一轮传播,而树分支则是树干不参与下一次分支。

三、互送礼物和单循环比赛问题n(n≥2) 个人之间互送礼物,礼物总数=n(n-1);n(n≥2)支球队进行单循环比赛,共需要进行1/2n(n-1)场比赛。

四、商品销售利润与定价问题用一元二次方程解决的营销问题中,常用的关系式有:利润=售价-进价,单件利润×销售量=总利润。

一元二次方程应用 利润问题

一元二次方程应用  利润问题

一元二次方程应用利润问题(1)姓名____________ 班级___________【例1】:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存。

商场决定采取适当的降价措施:如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?【变式1】:某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元。

6月份该商品搞“减价促销”活动。

市场调查发现,售价每降低1元,每天销售量增加2件。

若某一天销售该商品共获利2590元,求该商品降价多少元?【例2】:今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。

已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元。

请解答以下问题:(1)填空:每天可售出书_______本(用含x的代数式表示)(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【变式1】:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。

调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。

为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?一元二次方程--利润问题(2)姓名____________ 班级____________【例1】:为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100 个。

若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?【变式1】:因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次。

一元二次方程与利润问题

一元二次方程与利润问题

一元二次方程的应用(利润问题)一、知识储备一、知识储备(1)利润=实际售价-成本;(2)总利润=单件利润×销售量.二、新授1. (1)某商品的进价是100元,售价是150元,则该商品的单件利润为50元.(2)某件商品的利润为5元/件,销售量为100件,则该商品总利润为500元.知识点1:直接给出单件(每斤)利润1、例:老板发现:如果每斤高档苹果盈利10元,每天可售出500斤;若每斤涨价1元,日销售量将减少20斤.若每天盈利6 000元,则每斤应涨价多少元?分析:设每斤涨价x元涨价后的单件利润涨价后的销售量涨价后的总利润列式:2、某商店热卖“好孩子”童装,平均每天可售20件,每件盈利40元.市场反馈每件童装每降价1元,平均每天就可多售出2件,要想每天在销售这种童装上盈利1 200元,同时又要使顾客得到实惠,那么每件童装应降价多少元?知识点2:间接给出单件利润或变化关系3、某商店经销一种商品,若按每件盈利2元销售,每天可售出200件,如果每件商品的售价涨价0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能使每天利润为640元?4.某商店将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,这种冰箱的售价每降低25元,平均每天就能多售出2台,商场要想在这种冰箱的销售中每天盈利4 800元,设每台冰箱降价x元,由题意列方程得课堂总结:(1)关系式:(售价-成本)×销售量=总利润;(2)一般都是设涨价(或降价)x元,然后间接求定价或进货量.三、过关检测A组1、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就减少10个,要实现每月10 000元的销售利润目标,且售价不能低于60元/个.(1)求这种台灯的定价;(2)商场应进货多少个?B组2、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,服装店希望一个月内销售该种T恤能获得利润3 360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?C组3.某单位组织职工到“万绿湖”观光旅游,下面是领队与旅行社就收费标准的一段对话:领队:“组团去‘万绿湖’旅行每人收费是多少?”旅行社:“如果人数不超过25人,人均费用为100元.”领队:“超过25人呢?”旅行社:“如果超过25人,每增加1人,人均费用降低2元,但人均旅行费用不得低于70元.”该单位组团旅游结束后,共支付2 700元,求该单位参加旅游的人数。

一元二次方程利润问题

一元二次方程利润问题

一元二次方程利润问题1、商场每天要赚1200元利润,每件衬衫降价x元,每天能多售出2x件衬衫。

设降价后每件衬衫的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件衬衫应降价2元。

2、商场每天要赚2100元利润,每件衬衫降价x元,每天能多售出2x件衬衫。

设降价后每件衬衫的售价为y元,则有:30(y-x) = 210030(y-x+2x) = 2100解得:x=3,每件衬衫应降价3元。

3、商店要赚8000元利润,每卖出一个商品的利润为y-40元,每涨价1元销售量减少10个。

设售价为y元,则有:y-40)×500 = 8000y-40-x)×(500-10x) = 8000解得:x=2,售价为46元。

4、商场每天要赚1600元利润,每件衣服降价x元,每天能多售出5件衣服。

设降价后每件衣服的售价为y元,则有:20(y-x) = 160020(y-x+5x) = 1600解得:x=2,每件衣服应降价2元。

5、商场每天要赚6000元利润,每卖出一个商品的利润为y-10元,每涨价1元销售量减少20千克。

设售价为y元,则有:500(y-10) = 6000500-20x)(y-9+x) = 6000解得:x=1,每千克应涨价1元。

6、商场每月要赚元销售利润,每台灯售价上涨x元,销售量减少10个。

设售价为y元,则有:600(y-30) =600-10x)(y-x) =解得:x=1,售价为35元,应进货600个。

7、商场每天要赚1200元利润,每件童装降价x元,每天能多售出2件童装。

设降价后每件童装的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件童装应降价2元。

可多售出50千克。

如果经营户希望每天仍能获利400元,每千克应该降价多少元?8、某种服装每天能够销售20件,每件盈利44元。

如果每件降价1元,每天可以多售出5件。

一元二次方程-利润问题

一元二次方程-利润问题

一元二次方程—销售问题◆营销中的利润问题:利润=售价-;利润率=%100进价利润;总利润=-总进价=(售价-进价)×例1.进价30元的衣服,以50元出售,平均每月能售出300件。

经试销发现每件衣服涨价1元,其月销售量就减少1件,物价部门规定,每件衣服售价不得高于80元,为实现每月利润8700元,应涨价多少元?变式1.某天猫店销售某种规格学生软式排球,成本为每个30元.以往销售大数据分析表明:当每只售价为40元时,平均每月售出600个;若售价每上涨1元,其月销售量就减少20个,若售价每下降1元,其月销售量就增加200个.(1)若售价上涨m元,每月能售出个排球(用m的代数式表示).(2)为迎接“双十一”,该天猫店在10月底备货1300个该规格的排球,并决定整个11月份进行降价促销,问售价定为多少元时,能使11月份这种规格排球获利恰好为8400元.2、某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件.为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量,增加利润.据测算,每件童装每降价1元,平均每天可多售出2件.设每件童装降价x元.(1)每天可销售件,每件盈利元?(用含x的代数式表示)(2)每件童装降价多少元时,平均每天盈利1200元.(3)平均每天盈利能否达到2000元,请说明理由.3、某店只销售某种进价为40元/kg的特产.已知该店按60元/kg出售时,平均每天可售出100kg,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10kg.若该店销售这种特产计划平均每天获利2240元.(1)每千克该特产应降价多少元?(2)为尽可能让利于顾客,则该店应按原售价的几折出售?4、某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?5、“绿化校园,书香开州”,今年三月份,开州区某校计划购买梧桐树苗和杉树苗共100棵,其中梧桐树苗每棵40元,杉树苗每棵35元,经预算,此次购买两种树苗一共至少需要3800元.(1)计划购买梧桐树苗最少是多少棵?(2)在实际购买中,因受树苗积压以及市场影响,为此商家降低了两种树苗的售价,且降价相同,但降价金额不得高于10元/棵,经统计发现,两种树苗的售价每降低1元,梧桐树苗的销售量会增加2棵,杉树苗的销售量会增加3棵.若该校实际购进这两种树苗一共所需费用比计划购买的最低费用多了300元,则两种树苗都降低多少元?。

20.利润问题与一元二次方程

20.利润问题与一元二次方程

150
其等量关系是:总利润=单件利润×销售量.
解:(1)32-(x-24) ×2=80-2x; (2)由题意可得(x-20)(80-2x)=150. 解得 x1=25, x2=35. 由题意x≤28, ∴x=25.
答:售价应当为25元.
总结归纳
知识点
利润问题与一元二次方程
考点
运用一元二次方程解决利润问题
此时售价为:40+40=80(元)
答:为获得10000元的利润,且尽量减少库存,售价应为80元.
知识梳理

利润问题与一元二次方程
售价=进价×(1+利润率)
总利润=单个利润×销量.
典例解析
运用一元二次方程解决利润问题
例.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当 销售价为24元,平均每天能售出32件,而当销售价每上涨2元,平均每天就少
解:设每件商品涨价x元. 根据题意,得 (40+ x - 30)(600 - 10x)= 10000. 即 解得 x2 - 50x +400 = 0. x1 = 10,x2 = 40.
经检验, x1=10,x2=40都是原方程的解. 当x=10时,销售量为600-10×10=500(件); 当x=40时,销售量为600-10×40=100(件); 所以,当x=40时可以尽量达到减少库存。
利润问题与一元二次方程
问题探究
问题.某超市将进价为30元的商品按定价40元出售时,能卖600件。 已知该商品每涨价1元,销售量就会减少10件,为获得10000元的 利润,且尽量减少库存,售价应为多少? 解析:销售利润=(每件售价-每件进价)×销售件数. 若设每件涨 价x元,则售价为(40+x)元,销售量为(600-10x)件,根据等量 关系列方程即可.

一元二次方程的应用利润问题

一元二次方程的应用利润问题
总利润= 每台利润 ×销售量
x
每台利润
40 x 30
思考: 涨价改 销售量 变了什么?
600 10 x
总利润
(40 x 30)(600 10x)
例1: 某商场将进货价为30元的台灯以40元售出, 平均每月能售出600个.市场调研表明:当销售价 为每上涨1元时,其销售量就将减少10个.商场要 想销售利润平均每月达到10000元,每个台灯的 定价应为多少元?这时应进台灯多少个?
解 : 设每台冰箱降价x元, 根据题意, 得 x (2900 x 2500)(8 4 ) 5000. 50 2 整理得 : x 300 x 22500 0. 解这个方程, 得 x1 x2 150.
2900 x 2900 150 2750. 答 : 每台冰箱的定价应为2750元.
每台利润
x 2500
总利润
( x 2500 )(8 4
2900 x ) 50
练习1、 某种服装,平均每天可销售20件,每件盈 利44元.若每件降价1元,则每天可多售5件.如 果每天盈利1600元,应降价多少元?
等量关系是:每件服装的利润 每天售出的数量=1600 x) 元,每天 分析:若设每件服装降价x元,每件盈利(44 ______
解 : 设每件商品的售价应为 x元, 根据题意 ,得
( x 21)(350 10x) 400.
整理得: x 2 56x 775 0. 解这个方程 ,得 x1 25, x2 31.
x 31 21 1 20% 25.2, x 31 不合题意 ,平均每天能售出20 件,每件盈利40元.为了尽快减少库存,商场决定采取 降价措施.经调查发现:如果这种衬衫的售价每降低1 元时,平均每天能多售出2件.商场要想平均每天盈利 1200元,每件衬衫应降价多少元?

一元二次方程的应用(利润类)

一元二次方程的应用(利润类)

一元二次方程的应用(利润类)1.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?2.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?4.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加一株,平均单株盈利就减少0.5元.(1)如果每盆花苗(假设原来花盆中有3株)增加a株,则每盆花苗有_____株,平均单株盈利为_____元;(2)要使每盆的盈利达到10元,每盆应该植多少株?5..某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?8.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?9..果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小刘选择哪种方案更优惠,请说明理由.10.满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?11.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?12.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?13.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?14.某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?15.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?16..每件商品的成本是120元,在试销阶段,发现每件售价与商品的日销量始终存在下表中的数量关系,但每天的盈利却不一样。

利润问题一元二次方程含答案

利润问题一元二次方程含答案

利润问题_一元二次方程含答案利润问题是一个常见的经济问题,指的是企业在销售产品或提供服务后所获得的净利润。

利润问题可以通过一元二次方程来进行求解。

下面我将详细介绍利润问题及如何用一元二次方程求解。

假设某企业销售某种产品,每个产品的售价为x元,每个产品的成本为y元,该企业预计销售量为z个产品。

那么该企业的总收入R、总成本C和总利润P可以表示为以下方程:
R = xz (总收入等于售价乘以销售量) C = yz (总成本等于成本乘以销售量) P = R - C (总利润等于总收入减去总成本)
现在我们来具体解决一个利润问题。

假设某企业销售某种产品,每个产品的售价为20元,每个产品的成本为10元,该企业预计销售量为50个产品。

我们来计算该企业的总收入、总成本和总利润。

总收入R = 20 * 50 = 1000元总成本C = 10 * 50 = 500元总利润P = 1000 - 500 = 500元
通过上述计算可得,该企业的总收入为1000元,总成本为500元,总利润为500元。

利润问题在实际生活中非常常见,企业通常会根据产品的售价和成本来计算预期的利润。

利润问题的求解可以帮助企业了解其经营状况,并根据情况做出相应的调整。

同时,利润问题也可以帮助个人了解自己的收入和支出情况,从而做出理性的消费决策。

利润问题公式初中一元二次方程

利润问题公式初中一元二次方程

利润问题公式初中一元二次方程
在初中数学中,利润问题是一种常见的应用题,涉及到成本、售价、利润、折扣等方面的概念和公式。

一般情况下,利润问题可以通过列一元二次方程来解决。

以下是一些常见的利润问题公式:
1. 利润=售出价 - 成本
2. 利润率=利润÷成本×100%
3. 折扣=实际售价÷原售价×100%
4. 涨跌金额=本金×涨跌百分比
5. 利息=本金×利率×时间
6. 税后利息=本金×利率×时间 (1-20%)
7. 营业利润=主营业务利润 + 其他业务利润 - 期间费用
对于利润问题,可以通过将成本设为未知数,列一元二次方程来解决。

例如,设应降价 x 元,此时可以多售出 2x 件衣服,售价为40-x 元,衣服数量为 202x 件。

可以列出方程:
(202x)(40-x)-1200=0
解方程可得,x 的值为 20 或 10,即应降价 20 元或 10 元。

一元二次方程应用题(利润问题)

一元二次方程应用题(利润问题)

一元二次方程应用题(利润问题)1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价。

6、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元?7、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

一元二次方程应用--利润问题

一元二次方程应用--利润问题

【畅谈收获】:
1.解决一元二次方程应用题的 关键: 找等量关系。
2.
每件售价-每件进价 每件利润x件数
3.解:使实际问题有意义 符合题目条件
作业:
课本P65 7.14

排球进价30元/个, 卖价40元/个。
卖一个排球赚多少钱? 一箱排球60个,全部卖 完赚多少钱? (有时也叫成本价)
每件售价-每件进价
每件利润x件数
1、排球每个进价30元,售价40元,可得利润 10 元. • (1)若涨价2元,则售价 42 元,利润 12 元。 • (2)若涨价x元,则售价 (40+x) 元,利润(10+x) 元。 • (3)若降价x元,则售价 (40-x) 元,利 (10-x) 元
每件商品的利润= 售价

进价
.
2、排球原来每天可销售80个,后来进行价格调整。 (1)ቤተ መጻሕፍቲ ባይዱ场调查发现,该商品每降价3元,商场平均每天 可多销售2个。 ①如果降价3元,则多卖 2 个,每天销售量为 82 个
②如果降价9元,则多卖 6 个,每天销售量为 86 个。
③如果降价x元,则多卖
2 x) 每天销售量为 (80+ 3 个。
解:设涨价x元,由题意得 (40+x-30)(600-10x)=10000 x2-50x+400=0 x1=10 x2=40
答:应涨价10元或40元.
• 2、某商场礼品柜台春节期间购进大量贺 年卡,每张贺年卡进价0.5元,以0.8元 出售,平均每天可售出500张。为了尽 快减少库存,商场决定采取适当的降价 措施。调查发现,如果这种贺年卡的售 价每降价0.1元,那么商场平均每天可多 售出100张。商场要想平均每天盈利120 元,每张贺年卡应降价多少元?

一元二次方程应用专题--利润问题(含答案)

一元二次方程应用专题--利润问题(含答案)
7.某商店出传某种商品每件可获利 元,利润率为 ,若这种商品的进价提高 ,而商店将这种商品的售价提高到每件仍可获利 元,则提价后的利润率为________.
8.某商场以每件 元的价格购进一批商品,当每件商品售价为 元时,每月可售出 件,为了迎接“双 ”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价 元,那么商场每月就可以多售出 件.要使商场每月销售这种商品的利润达到 元,且更有利于减少库存,则每件商品应降价多少元?
每千克核桃应降价多少元?
在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
13.一商店销售某种商品,平均每天可售出 件,每件盈利 元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于 元的前提下,经过一段时间销售,发现销售单价每降低 元,平均每天可多售出 件.
且更有利于减少库存,则每件商品应降价 元.
9.
【答案】
解:设销售单价应定为 元,
由题意,得 ,
解得 , ,
∵尽可能让利消费者,
∴ .
答:销售单价应定为 元.
10.
【答案】
,
设该商品的销售单价为 元 ,则当天的销售量为 件,
依题意,得: ,
整理,得: ,
解得: , .
答:当该商品的销售单价为 元或 元时,该商品的当天销售利润是 元.
所以每千克核桃应降价 元,
此时,售价为: (元),
∴ .
答:该店应按原售价的 折出售.
13.
【答案】
设每件商品降价 元时,该商店每天销售利润为 元,
根据题意得 ,
整理,得 ,
解得: , .
∵要求每件盈利不少于 元,
∴ 应舍去,

一元二次方程 利润问题

一元二次方程 利润问题

一元二次方程利润问题引入:服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为______元。

解:标价:售价:折扣:利润:设这款服装每件的进价为x元。

等量关系:利润=若每天可卖出20件此商品,则可获利___________元。

等量关系:总利润=变式:服装店销售某款服装,一件服装的进价为180元,每件服装按240元销售时,每天可销售20件。

若销售单价每降低一元,每天可多售5件。

(1)如果降10元,利润=(2)如果降x元,利润=等量关系:总利润=例:某种服装,平均每天可销售20件,每件盈利44元.若每件降价1元,则每天可多售5件.如果每天盈利1600元,应降价多少元?解:每件利润:销量:设每件衣服应降价x元。

等量关系:总利润(1600元)=变式1:某种服装,平均每天可售出20件,每件盈利40元,若每件服装降价4元,那么平均每天就可多售出8件,如果平均每天在销售这种服装上盈利1200元,那么每件服装应降价多少元?解:每件利润:售价:销量:设每件玩具的销售单价为x元。

等量关系:总利润=迎接国庆节,决定釆取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

此时,每件服装应降价元。

变式2:某种服装,平均每天可售出20件,每件盈利40元,若每件服装涨价1元,那么平均每天就少售出2件,如果平均每天在销售这种服装上盈利720元,那么每件服装应涨价多少元?解:每件利润:销量:设每件服装应涨价x元。

等量关系:总利润(720元)=变式3:某种服装,平均每天可售出20件,每件盈利40元,若每件服装降价1元,那么平均每天就可多售出5件。

(1)试求出每天的销售量y(单位:件)与每件服装降价x(单位:元)之间的函数关系式(2)当每件服装降价定为多少元时,每天销售的利润w达到最大?最大利润为多少?习题练习:某种服装,购进时的单价为20元/件。

根据市场预测,在一段时间内,销售单价为40元时,销售量为200件;若每件服装降价1元,那么平均每天就可多售出20件。

(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。

该公司希望通过调整销售价格来最大化利润。

现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。

请求解这个问题。

解决方法:设销售价格为p元,销售商品的数量为q件。

由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。

设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。

由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。

根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。

方程的极值点对应的销售价格就是能够使利润最大化的价格。

因为a=0,所以只需要求二次项的系数b即可。

结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。

注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。

在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。

因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。

一元二次方程应用题3销售利润--非常不错

一元二次方程应用题3销售利润--非常不错

答:每X束1玫=1瑰不应符降合价题4元意。应舍去
列一元二次方程解应用题 的基本步骤:
数量关系
( 每束利润 )×(束数 ) = 利润

10-X
40+8X
432
解:设每束玫瑰应降价X元,

则每束获利(10-X)元,
平均每天可售出(40+8X) 束,
由题意,得 (10-X)(40+8X)= 432

X2-5X+4=0
• 分析:如果设衬衫的单价降ⅹ元,那么商场平均每天可 多售出_2_ⅹ___件。根据相等关系:
• 售_出__的__衬_衫__件_数_ x _每__件_衬__衫_的__盈_利_ =1200,
• 可以列出方程求解
解:设衬衫的单价降x元。 根据题意得 (20+2 x)(40- x)=1200
整理得
X2-30X+200=0
每株利润 × 株株数数 =利润利润
直接设:3设每盆应该3植X株 3×3 增加X1{株3-03.﹣5(0X.5-×3)1}=103+1间接设未知数
增加2株 3﹣0.5×2 3+2



增加x株 3﹣0.5x
3+x
10
回顾与思索
如果每束玫瑰盈利10元, 小新家的花圃用花盆培育 平均每天可售出40束.为扩 玫瑰花苗,经过试验发现, 大销售,经调查发现,若 每盆植入3株时,平均每株 每束降价1元,则平均每天 盈利3元;以同样的栽培条 可多售出8束.如果小新家每 件,每盆每增加1株,平均 天要盈利432元,那么每束 每株盈利就减少0.5元。要 玫 瑰 应 降 价 多 少 元 ? 使每盆的盈利达到10元,
a.设旅游的x人,比30人多了多少人? (x-30)人
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利润问题:一元二次方程含答案
————————————————————————————————作者:————————————————————————————————日期:
练习2:利润问题(一元二次方程应用)
1、某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个.根据销售经验,售价每提高1元.销售量相应减少10个.
(1)假设销售单价提高x 元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销售量是_________个.(用含x 的代数式表示)(4分)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大
利润,此时篮球的售价应定为多少元?(8分)
答案:(1)10x +,50010x -; (2)设月销售利润为y 元,
由题意()()1050010y x x =+-, 整理,得()2
10209000y x =--+. 当20x =时,y 的最大值为9000,
205070+=.
答:8000元不是最大利润,最大利润为9000元,此时篮球的售价为70元.
2.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角). ⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数; ⑵求y 与x 之间的函数关系式;
⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少? (1)每个面包的利润为(x-5)角,卖出的面包个数为160-20(x-7)=300-20x (2)y=(x-5)(300-20x ) 其中5≤x≤15 (3)y=-20x 2+400x-1500, 当x = 400
?2×(?20)
=10时,y 最大,此时最大利润y=500(角).
3、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每
件的销售价
(元/件)可看成是一次函数关系:
1.写出商场卖这种服装每天的销售利润
与每件的销售价
之间的函数关系式(每天的销售
利润是指所卖出服装的销售价与购进价的差);
2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?
分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。

在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与之间的函数关系,这个函数是二次函数.
要求销售的最大利润,就是要求这个二次函数的最大值.
解:(1)由题意,销售利润与每件的销售价之间的函数关系为
=(-42)(-3+204),即=-3 2+ 8568
(2)配方,得=-3(-55)2+507
∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.
4、(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元)的函数
表达式是.(3分)
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销
售价格x(元)之间的函数表达式;(4分)
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销
售价格的提高而增加?(3分)
(1)设出一次函数的一般表达式m=kx+b,将(0,100)(100,0)代入得:
100=b
0=100k+b

解得:k=-1,b=100,
即m=-x+100(0≤x≤100),
故答案为:m=-x+100(0≤x≤100);
(2)解:每件商品的利润为x-50,所以每天的利润为:
y=(x-50)(-x+100)
∴函数解析式为y=-x2+150x-5000=-(x-75)2+625;
(3)∵x=-b
2a
=-
150
2×(?1)
=75,
∴在50<x<75元时,每天的销售利润随着x的增大而增大
5、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.
(1)试求y 与x 之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
解:(1)依题意设y=kx +b ,则有
所以y=-30x+960(16≤x ≤32).
(2)每月获得利润P=(-30x+960)(x-16) =30(-x+32)(x-16) =30(+48x-512)
=-30
+1920.
所以当x=24时,P 有最大值,最大值为1920.
6、每件商品的成本是120元,在试销阶段发现每件售价(m 元)与产品的日销售量(x 件)始终存
在下表中的数量关系,但每天的盈利(元)却不一样。

每件售价m 元 130 140 150 165 170 每日销售x 件 70 60 50 35 30
⑴用含m 的代数式分别表示出每个产品的利润: , 产品的日销售量: ; (2) 为找到每件产品的最佳定价,商场经理请一位营销策划员通过计算,在不改变每件售价(m 元)与日销售量(x 件)之间的数量关系的情况下,每件定价为m 元时,每日盈利可以达到最佳值1600元。

请你做营销策划员,m 的值应为多少?
.解:若定价为m 元时,售出的商品为 [70-(m -130)]件
列方程得
[]1600)120()130(70=-⋅--m m
整理得025*******
=+-m m
0)160(2=-m
∴m 1=m 2=160 答:m 的值是160
练习题
1、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量(件)与每件的
销售价
(元)满足一次函数:
(1)写出商场卖这种商品每天的销售利润
与每
件的销售价间的函数数关系式.
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为
多少?
2.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.
(1)当每吨售价为240元时,计算此时的月销售量;
(2)求y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
(1)由题意得:45+
260?240
10
×7.5=60(吨);
(2)由题意:
y=(x-100)(45+
260-x
10
×7.5),
化简得:y=-
3
4
x2+315x-24000;
(3)y=-
3
4
x2+315x-24000=-
3
4
(x-210)2+9075.
∵x≥220,
∴当x=220时,y最大=9000
答:该经销店要获得最大月利润,售价应定为每千克220元?此时最大利润是9000元.
6、某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可买出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。

目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:转让数量(套)120011001000900800700600500400300200100
价格(元/套)240250260 270 280290 300310 320330 340350 方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;
方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。

问:①经销商甲选择方案1与方案2一年内分别获得利润各多少元?
②经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?
解:经销商甲的进货成本是==480000(元)
①若选方案1,则获利1200600-480000=240000(元)
若选方案2,得转让款1200 240=288000元,可进购B品牌服装套,一年内刚好卖空可获利1440500-480000=240000(元)。

②设转让A品牌服装x套,则转让价格是每套元,可进购B品牌服装
套,全部售出B品牌服装后得款元,此时还剩A品牌服装(1200-x)套,全部售出A品牌服装后得款600(1200-x)元,共获利
,故当x=600套时,可的最大利润330000元。

相关文档
最新文档