SDH系统误码性能检测方法
SDH误码测试

SDH误码测试一、误码特性1、基本概念:差错(Error误码):在数字通信中,发送和接收序列的任何不一致都叫差错,在我国习惯上把差错称为误码。
比特差错(Bit Error):发送和接收序列中对应的单个数字不一致就是比特差错,G.821建议中所用的术语"误码"就是指比特差错。
块差错(Block Error):将一组码看成是一个整体,在其中有一个或多个比特差错,则称块差错。
G.826建议中所用的术语"误块"就是指块差错。
误码秒(ES):在一秒时间周期有一个或多个比特差错,称为误码秒。
误块秒(ES):在一秒时间周期有一个或多个误块,称为误块秒。
差错秒(ES):误码秒和误块秒的统称。
严重误码秒、严重误块秒或严重差错秒(SES):在误码秒、误块秒或差错秒中,有一部分差错量特别多,定义为SES。
2、误码机理:(1)造成误码的主要内部机理有:*各种内部噪声源*色散引起的码间干扰*定位抖动产生的误码(2)外部机理:主要是由一些具有突发性质的外部脉冲干扰源所引起,诸如外部电磁干扰、静电放电、设备故障、电源瞬态干扰和人为活动等。
这些脉冲干扰有可能超过系统固有的高信噪比门限造成突发误码。
二、误码性能指标:1、低于基群速率的数字连接的误码性能ITU-T G.821建议规范了用于语音业务或用作数据型业务载体信道的N′64kbit/s电路交换数字连接(1£N£24或32)的误码性能事件、参数和指标。
G.821定义以下事件:*误码秒(ES):在一秒时间周期有1个或更多差错比特。
*严重误码秒(SES):在一秒时间周期的差错比特比3 10-3。
G.821定义的误码性能参数有:*误码秒比(ESR):在一个固定测试时间间隔上的可用时间内,ES与总秒数之比。
*严重误码秒比(SESR):在一个固定测试时间间隔上的可用时间内,SES与总秒数之比。
G.821对64kbit/s全程27500km假设参考通道(HRP)端到端连接的性能指标见表1。
SDH传输系统误码的分析与定位

SDH传输系统误码的分析与定位摘要误码是SDH传输系统维护中常见的故障现象,不及时处理很有可能会发展成导致业务中断的大事故,同时误码分析定位也是传输故障处理中非常重要的环节。
误码处理要理清思路,全盘考虑,不放过每一个细节。
本文从分析误码监测原理入手,根据日常维护经验提出了一些误码故障的分析定位方法。
关键词误码;分析;定位1 误码故障定位的重要性和难度误码是传输系统中常见的故障,针对误码的处理则是传输维护工作中非常重要的内容,及时定位并处理误码故障,是保障传输系统稳定运行的基础。
误码故障处理一般包含4个环节。
误码监测:判断是否存在误码;故障定位:判断导致误码的原因和所在位置;业务恢复:采用其他路由迂回、纤芯调度等恢复业务;故障修复:修复或更换发生故障的光纤、器件或者单板。
SDH网络出现故障时,为有效的利用备用资源,应先定位发生故障的段落或具体的位置,然后再调度资源恢复业务。
因此,故障定位往往是恢复业务的前提,是故障管理的一个关键环节。
日常维护中,故障定位会受到以下几个因素的影响:1)传输网结构复杂,出现误码时,较难定位是网络中哪个部分或节点的故障;2)单一故障也会引发网络中多个节点出现误码,有些告警会混淆我们的判断,不利于故障定位;3)由于光传输设备中的光监控器件灵敏度和响应速度不够或设备本身存在缺陷,在系统性能下降时,网管可能出线多个告警甚至会上报假告警,影响故障的定位。
2 误码性能监测的原理在SDH传输系统中,对信号的监控管理是由开销监控完成的。
开销监控分段层监控和通道监控,段层监控又分再生段层和复用段层监控,通道层监控又分高阶通道层和低阶通道层监控。
在SDH帧结构中,B1、B2、M1、B3、G1、V5是用于误码监测的字节,分别用于监视再生段、复用段、高阶通道和低阶通道的误码。
误码监测采用比特间插奇偶校验方式的偶校验,通过校验码保证发送内容中“1”的个数为偶数,发送端通过对前一帧的监视内容进行偶校验并将计算结果填入帧中发送,接收端通过比较自身对前一帧的计算结果和接收的字节,判断是否发生误码。
《电信传输原理》SDH环形组网业务配置及2Mbit-s业务误码测试实验

《电信传输原理》SDH环形组网业务配置及2Mbit-s业务误码测试实验一、实验名称:环形组网业务配置及2SDHMbit/s业务误码测试二、实验目的:通过本实验掌握SDH设备环网概念、网络连接关系、机板与业务配置关系、2Mb/s业务(端到端)在SDH环网中的业务配置及验证其配置。
三、实验器材:155/622H(Metro1000)SDH传输设备3套实验用维护终端若干SDH网管T20001套2Mbit/s数字传输性能分析仪1台四、实验原理:2M数字传输性能分析仪,适用于数字传输系统的工程施工、工程验收及日常维护测试。
其性能可靠稳定、功能齐全、体积小巧,采用大屏幕中文显示,操作简洁容易。
可对2Mbit/s接口数字通道、同向64k、RS232、RS485、RS449、V.35、V.36、EIA530、EIA530A、X.21接口数字通道进行测试等。
采用环形组网方式时,需要3套SDH设备。
要求配置成PP环(单向通道保护环)实际连接图如下:具体登陆方法:登陆网元在终端上双击“T2000client”快捷键,输入用户名、口令、服务器IP按“确定”,进入如下界面(用户名与密码一致:admin0001-admin0007,7个用户;服务器IP地址:129.9.0.10):2.创建网元然后用鼠标单击右键,进入“新建/拓扑对象”图标。
然后选择“OPTIX METRO 1000V3”输入要创建第一个网元的ID、名称、是否网关、IP地址、密码等参数。
本实验中NE1为网关网元,设置如下:ID:1名称:NE1网关类型:IP网关IP地址:129.9.0.1密码:password以此类推,建立三个。
3.配置网元硬件在导航界面中分别双击NE1、NE2网元图标。
选择“手工配置”,然后点击“下一步”选择“查询物理板位”,然后点击“下一步”选择“校验开工”,按“完成”,NE2也同样配置, T2000软件自动完成2台Metro 1000硬件的配置。
SDH设备误码分析及维护定位

.
法 立该 定位 出故 障点 时 , 我们 可 以进 行逐 段环 回法 定位 出故 障具体 位置 。 值 得 注 意的 是 , 环 回法 可能 会对E c C 产 生影 响 , 导 致其 不通 。 E C C 不通后在 网管上 无 法 通 软件恢 复 , 必 须得维 护人员 去现场 才能够恢 复这 样会给 维护人 员带来 不 必 要 的麻 烦增 加故 障处理 时限 , 因些要 认真 分析E C C 确认 环 回后 不 会影响E C C 中断再 进行 环 回测试 。 除此之 外 , 替 换 法也是 维护 测试 中常用 也是 很有 效 的方 法, 例如 替换 尾纤 , 电路 板等 能够 定位设 备器件 性 能不 良或 是性能 劣化 的问题 。
避免 。
2 、由于 设备 的 问题 而] d  ̄ S D H系统 产生 误码 的情 况发生 的频 率较 高 , 我们 日常 维护  ̄ j S D H设 备包括 线路单 元 、 支 路单元 、 风 扇单元 、 时钟 单元 以及交叉 单 元。 这几个 部分 无论哪一 部分 出现 问题 都可 能导致 s D H系 统出现误 码 。 例如, 线 路板 或 其它 单板 出 现故 障也 可能 会使 线路 上 的B 2 、 B 3 产 生 误码 。 3 、除 了S DH 设 备 问题和 数据 配置 本身 的 问题 外 , 外 部原 因也是 产生误 码 的一 个重 要原 因 。 它包 括外 部干 扰 、 设备 接地 、 由于 温度 而产 生 的环境原 因、 或 因电缆 问题 而产生 信号 劣化 、 以及接 收光 功率不 正常 等原 因 。 倒如 当设备 安 装 时未 做好 接地 工作 、 或是设 备 附近产 生 了大 的干 扰源 、 再 或者 由于设 备 的风扇 单元 不经 常清理 而 导致灰 尘 过多使 得设 备的 工作 温度过 离 引起支 路误码 都 会 使支 路上 产 生开 销字 节V5 误码 。 当光 功率 过高 或过 低 、 或 色散 过 大、 光 缆及 尾 纤不 清 洁也 会导 致 线路上 的开销 字节 B l 产 生误 码 。 三. 误码 定位 与 处理 的方 法 : 1 、 常 用方 法 : 在S D H设备 日常维护 中, 最常 用的方 法是环 回法 , 但 是一 般来说 环 回法会 使 正常 的业务 产 生 中断 。 所 以一般 产生误 码 的时候 , 应 该先 通过告 警分 析等 性 能事件 对其误 码 产生 的原 因进行 认真 的分析 后 , 努 力找 出故 障点 。 如果 还是 无
浅谈SDH光纤传输系统误码问题

H - E PR I
I — E JRI P
3处理步骤 、
() 2脉冲干扰 产生的误码 : 由突发脉 冲 , 诸如 电磁干扰设备 , 障电 故 源瞬态干扰 等原 因产生 的误码 。 此类误码 具有 突发性 和大量性 , 往往系 统在 突然 间出现大量误码 , 可通过 系统的短期误 码性能反映出来。 2 误 码性能 的度 量 : 、 目前 高 比特率通 道的误码性 能是 以块 为单 位 进行度量的 ( 、 2 B B1B 、 3监测的均是误码块 ) 由此 产生出一组 以块 为基 ,
二 、 码性能分析 误
都是协助故障定位 和检验 故障定位准确性 的很 好方法 ,其内容包括替 换光纤 、 法兰盘和光器件单板等 。 误码越限告警及性能事件检测位置与作用
性 能事件 项 目 告警事件
本端站检 测 对端站检测 本端站检测 对端 站检测
到有 误 码 到有误码 到有误码
科技信息
计 算机 与网络
浅谈 S H光纤 传输系统误码 问题 D
济 南铁路 局 济 南通 信段 王夏 青
[ 摘 要] 本文重点分析 了影响 S DH光纤传输误码 的 因素 , 阐述 S DH 光传输设备 误码 问题 处理方 法和思路 , 并结合济南铁路局 主 干传输 网济 南至青 岛 2 G光设备 , . 5 处理 因误码产生故 障的方 法, 高光 纤通信技术人 员在 S H 光纤传输误码 维护方面的效率和质 提 D
BB ER。
第一步 , 分析线路板误码性 能事 件排除线路误码 , 首先排 除外部的 故障 因素, 如接地 不好 、 工作 温度过高 、 路板接 收光 功率过低或过 高 线 等问题。接着观察线路板误码情况 若某站所有线路板都有误码 则可能 是该站时钟板问题 , 时钟板 ; 只是 某块线路板报误码则 可能是 本 更换 若 站线路 板问题 , 也可能是对端站或光纤 的问题 , 定位 出故 障单板后 可通 过更换单 板解 决; 允许可使用环 回法定位 故障 , 若 在故障站点选择业务 有误码 的通道挂 表监 测业务的误码情况 ,沿业 务方向对各站线路板逐 段环 回, 观察测试仪 表上业 务的误码情况 。 若环 回后仪 表显示业务正常 则说明该段线路没有 问题 ,若环回后仪表仍显示 业务有误码则说明该 段线路有 问题 。 根据前后两次环 回的情况定位 出误码 问题 的范 围。 通过 环 回法定位 出误码站点或 两站间的线路板误码后 ,即可通过更换单板 的方法排 除误码 故障恢 复业务 。线路环 回应注 意其对 E C通道 的影 C 响 , 要因为环 回业 务而 导致 E C中断 , 不 C 否则将 不得不 到中断站点 通 过本地 登录的方式取消环回 , 这会大大延长排除故障所需的时间。 第 二步, 分析支路误码性能事件排 除支路 误码 , 只有支路误码则 若 可能是本站交 叉板和支路板配合有问题更换 支路板和线路板。
SDH光纤传输中的误码问题

水利电力 !"#!$%&$'(') *+&,-./&$01$21(3$&)%$4()$3%
QDO 光 纤 传 输 中 的 误 码 问 题
郑莉莉5 石5娟
国网河南省电力公司信阳供电公司%河南信阳%#&#$$$
摘5要本文对于 7!f光纤传输过程中的误码问题进行了详细的分析#对于引起误码问题的具体因素进行了详细的探讨#提 出了解决光纤传输误码问题的有效策略#为提高误码问题处理的效率和质量提供相关的参考建议*
一-GF光纤传输过程中误码问题分析 误码的具体涵义主要是指#经接收判决后再生成数字码流 中某些比特出现了问题和差错#从而导致传输过程中信息的质 量遭到了一定程度上的损坏* 再光纤系统传输过程中#误码问 题所带来的危害程度和损失程度是不容小觑的* 根据误码问 题的严重程度不同带来的危害程度也是不相同的* 程度较轻 的#可能仅仅只是对于系统传输的稳定性和可靠性带来系统存在着出现衰变的概率#这将会对信号的电 压造成一定的影响#从而导致信号在传输过程中可能会出现误 码的问题* 但是#由于光纤存在着一定的区别#所以导致信号 误码的原因也存在着较大的差异性* 同时#光纤设备系统是一 个非常复杂.庞大的系统#包括各种型号的仪表.光电元件以及 光纤等#各个元件之间并不是独立存在着#而是相互关联的统 一整体* 任何一个部位出现差错#均会导致光纤传输过程中出 现故障* 因此#针对光纤传输过程中存在的不同误码问题#必 须仔细分析引起误码的原因#采取有效的措施加以纠正和解 决#促进 7!f光纤传输的质量的有效提升*
的问题* 例如对于尾纤的的捆绑过紧.传输散热器的性能达不 到标准以及周围环境干扰因素过强等一系列问题#均会导致光 纤传输系统出现误码的可能性*
SDH光端机的误码与信号品质监测技术研究

SDH光端机的误码与信号品质监测技术研究随着信息技术的迅猛发展,光通信作为一种高速、宽带、可靠的通信传输方式,受到了广泛的应用和推广。
而SDH(同步数字层次)技术作为一种重要的光传输技术,被广泛应用于电信和数据通信领域。
而在SDH光通信系统中,光端机是起到连接通信网和用户终端的重要作用,因此对光端机的误码与信号品质监测技术的研究显得尤为重要。
误码是指在信号传输过程中,由于干扰、噪声以及各种失真等因素,导致接收端收到的信号与发送端发送的信号不完全一致。
误码率是衡量信号传输质量的重要指标,对于保证通信质量至关重要。
因此,对SDH光端机误码的检测与监测成为了自动化运维的关键技术之一。
光端机的误码与信号品质监测可以通过以下技术来实现。
首先,SDH光端机可以通过使用冗余码的方式来进行误码检测与校正,如CRC(循环冗余校验)技术。
CRC技术能够通过对传输数据进行校验,检测并纠正误码,提高传输可靠性。
其次,SDH光端机还可以通过使用前向纠错码的方式来提高信号的容错能力。
前向纠错码技术可以在传输过程中对信号进行编码与解码,通过冗余编码将原始信号分为多个子码片段,从而提高信号的可靠性。
此外,还可以利用反馈控制技术,根据接收到的信号质量反馈信息进行实时调整和优化,以提高光端机的误码性能和信号品质。
针对SDH光端机误码与信号品质监测技术的研究,可以从以下几个方面展开:首先,可以通过理论分析和仿真模拟等方法,研究SDH光端机在不同环境条件下的误码率和信号品质表现。
通过分析不同的误码模型和信号传输路径因素,可以对系统的性能进行预测和优化。
其次,可以设计实验平台,对SDH光端机在实际应用场景下的误码与信号品质进行测试与监测。
可以通过模拟各种噪声、干扰因素以及传输路径衰减等环境条件,对光端机的性能进行测试,并对其误码特性与信号品质进行分析。
此外,可以对SDH光端机中用于误码与信号品质监测的关键技术,如CRC校验技术、前向纠错码技术等进行深入研究。
光网络SDH设备误码问题处理

B 1 计算 B 2 i ' t  ̄ l t I  ̄- k t 算 W- A - I " 算
图 1 误 码 检 测 ቤተ መጻሕፍቲ ባይዱ 系 及 检 测 位 置
由 图 1可 以看 出 , 如果 只是 低 阶通 道 有误 码 , 则 高 阶通 道 、 复 用段 和再 生 段将 监测 不 到该 误码 ; 如果
误码 是 指在 传输 过 程 中码元 发 生 了错误 。确 切
地讲 , 误码是接收与发送数字信号之 间单个数字 的
差错 。充分 理解 和 掌 握误 码 性 能 事 件 , 是做好 S D H
系统 维 护 的基础 。
1 . 1 SD H误 码性 能检 测 字节 在S T M —N帧 结 构 中 , 用 于 误 码 监 测 的字 节 是 B 1 、 B 2 、 M1 、 B 3 、 G1 、 V 5 。开销 字节 的用 途 见 表 1 , 开 销 字节 B 1 、 B 2 、 B 3 、 V 5分 别 用 于 监 视 再 生 段 、 复 用 段、 高 阶通 道 和低 阶通道 的误 码 。
3 误码 问题故 障定位 方法与思路
3 . 1 常用 方法
对于误码 的处理 , 常用 的方 法是先分 析、 后 环 回、 再替换 。
3 . 1 . 1 告警、 性 能分析 法
由于环 回法 对 正 常 业务 有 影 响 , 因此处 理 误 码
2 误码常见故 障原 因
产 生误 码 的常见 原 因见表 3 。
第2 9卷 第 2 0期 2 0 1 3年 1 0月
甘肃科 技
Ga n s u S c i e n c e a n d T e c h n o
2 9 0 .
Ⅳ0 . 2 O 2 0 l 3
传输通道误码问题处理

传输通道误码问题处理【摘要】本文首先对同步传输系统(SDH)中误码的度量、误码检测机理以及误码对传输设备所承载业务的影响进行了阐述。
然后对误码产生的原因进行了详细解析,并详细介绍了实际工作中传输设备误码问题处理的一般方法和步骤。
【关键字】误码;误码率;性能事件引言随着通信网络的不断发展,作为各种通信网络的承载网的传输系统容量在不断提高,传输设备也在不断的更新,但影响传输网络传送质量的误码问题,一直是传输设备维护工作中的一个重要问题。
所以,在日常工作中遇到设备误码时,能迅速判断并处理显得尤为重要。
1 误码的度量在数字通信中,发送和接收的数字序列中的任何不一致都叫差错(Error)即误码,用仪表测试时一般用误码率(BER)来衡量信息传输质量[2]。
目前,SDH系统误码性能度量参数主要有“误码秒ES”、“严重误码秒SES”、“背景块差错BBE”、“不可用时间UAS”等,都是以“块”为基础定义的。
对应有3个SDH通道误码性能参数:ESR(误码秒比),SESR(严重误码秒比),BBER (背景块差错比)。
在传输网管上数据采集粒度可以是15分钟和24小时两种,而且保存有历史记录,通过对历史记录的分析对比,可以确定误码在时间上的分布情况,然后再进一步分析误码产生原因。
在实际应用中,应当结合具体情况,综合这两种方法来判断误码。
2 误码产生机理引起误码的主要内部原因:各种内部噪声源、色散、定位抖动产生的误码。
对SDH传输系统来说,设备原因造成的误码可归为内部原因:1)线路板接收灵敏度不够、对端发送电路的故障、本端接收电路的故障。
2)时钟同步性能不良。
3)交叉板与线路板、支路板配合得不好。
4)支路板的故障。
5)风扇故障,导致设备散热不良,设备温度升高[2]。
引起误码的外部原因:主要是由突发性的外部脉冲干扰源所引起,诸如外部的静电放电、电磁干扰、设备故障、电源瞬间干扰和人为活动等。
这些脉冲干扰有可能超过系统固有的高信噪比门限而造成突发误码,实际应用中有下列情况:1)光纤性能劣化、造成光信号衰耗超出预定值。
SDH光传输设备误码分析

11 产 生机 理 .
1 误码的产生机理和检测机理
阶通道和低阶通道 的校验矩阵进行奇偶校验。 的关 系:一般 来 说 , 高阶 误码一 般会 有低 阶误码 。 之 , 有 反 B1 字节用于再生段层误码监测, 使用偶校验的比特间 有 低 阶误码 则 不一 定有 高阶误 码 。 由于高 阶误码 会 导致 低 插奇偶校验码 。B 字节的工作机理:发送端对本帧 ( N 1 第 阶误码 ,因此 我们在 处 理误码 问题 时 ,应 按照 先高 阶后 低
一
一
测 的 ,而 B 2字 节 是对 S M. 帧 中 的每 一个 S M. 帧 的 的 出现 。 T N T 1 传 输误 码情 况进 行监 测 ,S M- 帧 中有 N 3 B 字 节 。 T N *个 2 22 误码 问题 处理 常用 方法 .
检测机理是发端 B 字节对前一个待扰的 S M. 帧中除了 2 T 1 误码 问题 处理 应 该遵 循 “ 外部 ,后 内部 ,先线 路 , 先 R O 的全 部 比特 进 行 B P2 计算 ,结果放 于本 帧 待扰 后支 路 ,先高 阶 ,后 低阶 ”的原则 。 SH I.4 S M一 帧的 B 字节位置。收端对当前解扰后 S M 的除 T 1 2 T 1 221 利 用 网管准确 定位 误码 . . 了 R O 的全 部 比特 进 行 B P2 校 验 ,其 结 果与 下 一 SH I.4 误码 的定 位 需要有 网络 长期 运行 的性 能 数据 ,我 们要 S M. 帧解 扰后 的 B T 1 2字 节相 异或 ,根据 异 或后 出现 1的 牢记 先 高阶 、后低 阶 的原 则 ,通 过 分析 告警 性 能或者 通过 个数来判断该 S M. 在 S M. T 1 T N帧中的传输过程中出现 了 逐段 环 回 ,找到最 高 阶误 码 的源 头 。对 于持 续性 的误 码 ,
SDH传输设备误码问题分析

光恢复到 一 6 b 1dm的正常值, 误码消失, 信令信号恢 复, 业务恢复。本次故障因为 2 M信号测试正常 , 很 容易被误认为是交换侧 出现问题 , 与传输无关 。但
网元 现象 相 同 。查 看 B网元 的 当前 时钟 状 态 , 捕 为 捉状态 。改变线 路抽 时钟 的方 向, 仍为捕捉状态。 通 常 情况 下 , 码 不会 引起 指 针调 整 , 误 而大 量 的指 针 调 整则 会 引起 误码 。因此 , 处理 指针 调整 的 问题 , 先
交换侧设备商咨询 , 得知交换侧信令对误码 比较敏 感 , 码 门限值 为 e一1 。判 断故 障原 因 为 收 光 过 误 0
3 故障处理 : ) 测试 主用业务 收光 光功 率为 一 3 dm, 2 b 查询该光板有复用段误码 , 但并未越限。向
图4 组网示惹
2 原因分析 : ) 查询 B网元设备光板 的性 能值 , 有 比较大的指针调整。然后查询其 E 1 T 板性能值 , 有较大的指针调整 及少量 的误码性 能值。查 询 E
4 支路板故障; )
5 风扇故障 , ) 导致设备散热不 良。
2 2 误 码定 位分 析 .
做过终结, 则问题可能是 D站 H T与 M T之间或 E P S
站 MS T与 H 之 间 。
2 2 4 E站 出现 低 阶 通 道 误 码 ..
以一个单 向业 务组 网模 型来 分 析 出现误 码 的几
低 阶信 号 复 用 传 输 过 程 经 过 P I—L A—L T P P P
—
SDH传输设备信号传输过程中误码问题的分析

SDH传输设备信号传输过程中误码问题的分析作者:徐峰来源:《西部论丛》2018年第12期误码问题一直是影响SDH设备信号传输质量的重要因素,本文从误码问题产生的原因和解决方案两个角度出发,力求减少SDH设备信号传输过程中误码问题的产生。
SDH信号传输;误码;分析所谓SDH是一种基于光纤通信系统的数字通信体系。
在SDH的信号传输过程中,会因为一些特殊的情况导致误码的出现。
误码信号流会导致传输数据的丢包,影响传输数据的完整性和准确性。
当网关对收到的数据包执行CRC校验时,将确定其是否发生了错误,从而决定是否将此数据包丢掉。
如果一个包中某个比特出现错误,那么接收终端接收的数据也会缺失此数据包所有数据,进而影响信号传输的质量。
所以对误码问题进行研究,能够有效地提升SDH 信号的传输质量。
误码是指信号在传输过程中,由于线路或环境的原因导致信息、传输信号和原始信号的位数发生了变化,即信息被破坏。
传输时应避免出现误码,否则会对传输系统造成一定的影响,降低网络传输的稳定性,甚至中断传输网络。
在SDH信号传输的过程中,以下几个因素会导致误码的产生:1.光器件性能降低光学设备性能的下降是产生误码问题的重要原因。
交叉板或时钟板的问题通常会导致许多线路板的高阶通道出现误码。
线路板问题可能会导致再生段或者复用段误码;支路板的问题会导致低阶通道的误码;光波长转换单元(OTU)处理芯片和电路性能、发端激光器波长不稳定、功率放大器和光模块故障也是产生误码的主要原因。
2.光纤线路由于传输的距离比较长,传输过程中所使用的光纤存在大量的尾纤跳接、可调衰耗连接以及法兰盘连接。
其中,如果存在尾纤连接的头没有连接完好、光缆线路出现中断、外界环境的干扰因素较多以及人为的不恰当操作等现象,都可能导致光纤和尾纤上的光功率出现极大地衰减、线路接收的光功率太高或者太低、光纤性能降低以及损耗太高等结果。
而光纤的接头没有得到及时彻底地清洁或者是连接出错等,也会导致再生段误码或者其他的低阶误码。
SDH光纤传输网络系统误码分析

字 节 开 销
功 能 在 中 继 段 级 别 上 , 误 码 性 能 监 测 提 供 8个 比 为
生 马赛 克 、 度 台 电话 误 振 铃 、 动 装 置 不 能 正 常 调 远 工 作和信 息 网络 数 据 丢 包 等 方 面 。引 起 误 码 的 因 素很多, 软故 障 有 时也 较 难 解 决 。 因此 , 各 个 环 从 节( 包括传 输信 道 、 设 备 基本 卡 、 模块 、 功 率 光 光 光 放大 器和 色散 补偿 器 件 等 ) 明产 生误 码 的根 源 , 查 找到 正确处 理 的方法 , 解决 误码 问题 的关键 。 是
0 引 言
电力 通 信 网 中光 传 输 设备 的误 码 现 象会 给 电 力 安全 生产 带来 极 大 的危 害 , 要 表 现 在 : 主 引起 继
电 保 护 误 动 作 、 措 装 置 误 动 作 、 议 电 视 图 像 产 稳 会
表 1 误码 字节 开销功 能
Ta e 1 Fu to r o bl nc nsofe r r byt v r a i e o e he d
平均 累积 结果 , 而实 际上 误码 的出现往 往 呈 突发 性 质, 且具 有极 大 的随 机性 , 常 用误 码 秒 ( S 与严 通 E )
1 —2比特 为 前 一 个 V —n作 比 特 间 插 奇 偶 校 C 验 ; 3比 特 为 通 道 远 端 错 误 指 示 ; 4比特 为 第 第 ~ 通 道远 端 失 败 指 示 ; 5~7 比 特 为 V —n提 供 C 信 号 卷 标 ; 8比特 为 通 道 远 端 故 障 指示 。 第
・41 ・
S H 光 纤 传 输 网络 系统 误 码 分 析 D
王 世 文 , 继 钊 陆
浅谈sdh系统中的误码测试及分析

灵敏度) :对于光功率正常,但光缆距离过长的,就要考虑色散问题,
因为色散受F髓巨离不同。 ( 三) 确定误码产生的段落 确定误码是由光板产生的,还是由光缆段产生的,大致可采用以
下 方法 :一 种方 法是 将有 误 码的 相邻 两个 站的 线 路板 进行 东西 向对 换,
观察误码是跟着光板走,还是固定在某个方向;另一种是,将一段光路
码。根据误码的特点,首先检查一下测试仪表是否处于正常状态,测试 连接是否正确,测试塞绳是否完好。然后检查SDH设备出现了什么告 警 信息。
㈡对光功率检测
光功 率是 个重 要的 因素 ,所 以对 出现 误码 的光 路需 要了 解这 几点 : 光板类型、发光功率、收光功率、光纤衰减值、光缆距离、过载点、灵 敏度;如果光功率有异常情况,要进行相应调整( 主要指接近过载点或
㈡对于线路E的B2、B3"i !鸫,常见的原因是
单板的故障;时钟同步性能不好等;机房条件,包括温度、电源
稳定 性以及接 地情况等 。
.
㈤如果只出现芄路t 的v5误码,则常见的原因是
交叉板与支路板之间配合有问题、支路板有问题等,应检查支路
板或交叉板:也有可能是外界干扰引起,如设备接地不好,设备附近有
大的 干扰源 ,EMC屏蔽不 好( 主要针 对34M/45M/1 55M高频信号)
日常 维护采 取在线 测试的 方法, 工程 测试则 采用中 断测试 的方法 。 1)SDH设备进 行24小时误码 测试时,根 据不同类型 的端口进行
抽测,要求如下:1) 对于2.5Gbi t /s系 统,每个25Gbi 怕系统测试2 个155Mbi t /s接口 :2) 对于2Mbi t /s数字通道,每 个155Mbi t /s 系 统,测 试1个 2Mbi t /s支 路;3) 凡两端 均不连接STM一1复用设 备和 一端连 接STM一1另 一端不连接 STM一1的复 用设备,均 只在 1 55Mbi t /s支路口测 试。
SDH误码问题分析

SDH误码问题分析---中国电信嘉兴分公司–叶茂华误码问题是传输设备维护中经常碰到的问题。
虽然有时小误码问题不会对业务造成明显影响,但当误码出现时,说明传输系统中局部已经出现了性能劣化,需要及时处理否则会发展成为业务中断等重大故障。
下面先讲解一下误码的基本概念和产生的基本原理,再结合本人日常的维护经验阐述误码问题的处理思路和方法。
一、误码的定义:误码是指在传输过程中码元发生了错误,而对SDH光传输设备来说,指的是经光接收机的接收与判决再生之后,码流中的某些比特发生了差错。
二、常用概念网管对于误码的性能监视事件包括:BBE:背景块误码 SES:严重误块秒 UAS:不可用秒 FEBBE:远端背景块误码 FEES:远端误块秒下面就性能事件的定义作简要说明1、通用参数:BER(平均误码率)传统上常用平均误码率BER来衡量系统的误码性能。
BER即:在某一规定的观测时间内(如24小时)发生差错的比特数和传输比特总数之比。
如1×10E-10。
但平均误码率是一个长期效应,它只给出一个平均累积结果。
而实际上误码的出现往往呈突发性质,且具有极大的随机性。
因此除了平均误码率之外还应该有一些短期度量误码的参数,即误码秒与严重误码秒。
2、G.821规定的64k bps数字连接的误码性能参数ES(误码秒)和SES(严重误码秒)误码秒ES的含义是:当某1秒钟时间内出现1个或1个以上的误码块时,就叫做一个误码秒。
严重误码秒SES的含义是:误码率大于10E-3的秒。
注意:无论是ES还是SES,皆针对系统的可用时间。
CCITT规定,不可用时间是在出现10个连续SES事件的开始时刻算起;而连续出现10个非SES事件时算作不可用时间的结束,此刻算作可用时间的开始(包括这10秒钟时间)。
3、G.826规定的高比特率通道误码性能参数,以“块”为基础。
EB(误码块):SDH通道开销中的BIP-X属于单个监视块,其中X中的每个比特与监视的信息比特构成监视码组,只要X个分离的奇偶校验组中的任意一个不符合校验要求就认为整个块是误码块EB。
02 第二节 SDH(PDH)产品的常见指标测试

表2-2 PDH输出的数字信号抖动指标
网络接口容限值ຫໍສະໝຸດ 测量滤波器参数B1(UIp-p)
1.5 1.5 1.5
B2(UIp-p)
0.2 0.15 0.075
f1(Hz)
20 100 200
f3(Hz)
18k 10k 10k
f4(Hz)
100k 800k 3500k
3. 仪表设置 基本设置与2.1.1同,不同地方在于: 1) Jitter设置中将Jitter TX设置为OFF;将.RX设置如下: Range (2UI) Filter选(Hp1+LP)为B1,(HP2+LP)为B2,其他不动。 2) 在Result菜单中,按Set键选Jitter/wander,即可测出PDH的输出抖动值。
19
课程 SS 0515 Issue 2.0
SBS设备测试
5)按Result键至绿灯亮,并利用Set键将Result模式设为Performance即可进行 误码观测。
2.1.2 PDH频偏容限测试
1. 目标
为了检测PDH输入口的抗频偏能力,ITU-G.703建议中对PDH输入频偏有如 下规定:
表2-1 PDH输入频偏表
A2
A1
f0(kHz)
f1(kHz)
1.5
0.15
6.5
65
1.5
0.15
25
250
1.5
0.15
1.2
12
1.5
0.15
1.2
12
2. 连接方式
SDH SDH
OUT IN
STM-1 STM-1
设设
图2-4 光接口输入抗抖动测试接线图
3. 仪表设置 1)按Setup键,选mapping,再选TX&RX,measuring mode选out of service, Bit 选156M。 2)按Setup键,在屏幕顶部设置映射关系,将映射关系调到本站上下的2M上, 并用网管将此2M作软件远端环回或用一个2M电缆自环回。 3)按Setup,按Testmenu至绿,选jitter tolerance按start/stop即可进行测试。 4)按Result键至绿,选jitter tolerance显示测试进程和结果。 5)按Analyze至绿,选jitter tolerance显示测试进程和图形。
关于SDH系统误码门限设置探讨

4 相 关 I U- T T标 准定 义
IU T标 准 G 8 6对 E C D 的 门 限 范 围 作 T. .0 X 、S 了相 关 定 义 :E C 的可 选 门 限 范 围 为 1 / 0I X 0 1 4 / 1 一;S 的 可 选 门 限 范 围 为 1 / 0 1 / 0 D 0 1 / 0
统 查看 网络状 况 ,发现 网络上存 在大 量再 生段 和复
用 段 异 常 性 能 项 ( 块 秒 E 、背 景 误 块 B E、 误 S B
U S等 ,如 图 1所示 ) A ,但该 S H复用段 保护 环并 D
没 有发 生倒换 。为 此 ,立 即采 取应 急措施 ,通 过 网 管 对某 站点 的光板 进行强 制倒 换 ,在 复用 段环倒 换
图 3 各 项 性 能 产 生 流 程 示 意 图
前一 帧 的监 视 内容进 行偶 校 验 ,并
将 计算 结果填 人 帧 中发送 ,接 收 端
有很 多其 他命 令 ,如强制 倒换 、手 动倒换 、等 待恢 复 等 。这 1 方式按 从上 到下依 次排 列优 先级 别 , 6种 先执 行优 先级别 高 的请求 。 复用 段倒换 条件 如下 。 1 自动倒换 条件 :信 号丢失 ( O ) . L S 、帧丢 失 (O ) L F 、复用段 告 警指示 信 号 ( .I) MSA S 、复 用 段 误码 率 越 限 ( SE C 、复 用 段 信 号 降 级 ( — M .X ) MS s 。其 中 ,L S O 、MSAS均作 为 信 号 失效 D) O 、L F .I (F 的倒 换 条 件 ,MSE C、MSS 作 为 信 号 降 S) .X .D 级 ( D) 的倒 换条 件 ( S 默认 门限设 置为 1 ) 0 。
实验十一SDH传输系统的误码特测试

1.用跳线将SDH分析仪与SDH设备的 电接口。
2.将本端和对端的SDH设备分别与光 纤相连。
3.将对端SDH设备的电接口用跳线回 环。
4.记录误码数值。
四、实验仪器
SDH分析仪
五、预习内容与思考
1.预习有关误码以误码性能参数 的知识。
2.了解产生误码的原因。
六、实验内容
1.掌握测试误码的一般方法。 2.记录传输系统的误码性能参数 。
3.系统误码测试原理
将SDH传输系统中的本端设备的 电路支口接于SDH分析仪,对端 将设备的电路接口回环,观察误 码数,其原理框图如下:
(图)
SDH 分析仪
本端 SDH 电口 光口
Tx 收
Rx 发对端 SDH收 Nhomakorabea回环发
首先由SDH分析仪向本端SDH设备 发送测试码,然后经对端设备将信号 回环后送入本端有SDH分析仪记录传 输系统中信号的误码值。
实验十一 : SDH传输系统的误 码特性测试
一、实验目的
1.了解SDH传输系统产生误码 的原因
2.掌握对SDH传输系统误码测 试的方法
二、实习原理
1.误码的定义:当承载信息的光 脉冲信号被光接收机接收后
(4)背景块差错比BBSR:背景块 差错BBE是指扣除不可用时间和 SES期间所有块数后与总块数之 比称BBER。
七、实验报告
1.造成内部误码的原因有哪些。 2.造成外部产生误码的原因有哪 些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SDH系统帧结构中,开销字节B1、B2、B3、V5分别用于监视再生段、复用段、高阶通道和低阶通道的误码。
误码监视采用比特间插奇偶校验方式(BIP)的偶校验,即通过校验码保证发送内容中“1”的个数为偶数个。
发送端通过对前一帧的监视内容进行偶校验并将计算结果填入帧中发送,接收端通过比较自身对前一帧的计算结果和接收的B1
字节,判断是否发生误码。
B1误码的检测
STM-N帧结构中,B1字节(8比特)用于再生段误码的监视。
其实现方法是:把监视内容DD再生段以8比特为单位进行分组,然后,B1字节中的每个比特用于对应各组中相应比特的偶校验,每个比特负责一块数据的校验。
一个STM-N帧中,1秒钟可以检测的
误码块为:
8000×8=64000块。
一块校验出错,认为此块中一个比特发生错误,即产生一个误码。
所以,一般情况下,每秒钟可以检测出误码块的个数最大为64000块。
这种检测方法存在的问题是当一块中误码数较多时,只能检测出一个误码,还有如果一块中产生偶数个误码,此种检测机制不能准确判断检测。
理论上说,一块中出现一个误码是准确检测的极限。
对于STM-1等级信号,能够准确检测出的B1最大误码率为:
64000/155520000=4.12×10e-4
对于STM-4信号能够检测出的最大误码率为1.03×10e-4
而对于STM-16,能够准确检测出的最大误码率为0.256×10e-4
综上所述,不同速率等级的STM-N信号,每帧能够检测出的最大B1误码数是固定的,因而随着信号速率的提高,最大误码率的检测结果越来越准确;对于误码的检测,一般是误码比较小且分布比较离散(分布在不同的块中)的情况下检测的相对准确,对于误码比较大的情况,多是根据经验值拟合出来的,误差比较大。
B2误码的检测
STM-N帧结构中,B2字节(N×24bit)用于校验复用段的误码。
其方法是把STM-N帧分为N×24块,每个Bit校验其中的一块。
所以,一个STM-N帧中,1秒钟可以检测的误
码块为:
8000×N×24=1.92×10e5×N。
对于155M速率,能够检测到的最大误码率为:
1.92×10e5/15520000=1.23×10-3
对于622M速率,能够检测到的最大误码率为
1.92×N×10e5/622M=1.23×10-3
同理,对于STM-16的信号,系统能够检测到的最大误码率仍然为
1.23×10e-3
综上分析,不同速率的信号,能够检测出的复用段误码率是相同的,此与再生段的误码检测方式不同;同再生段误码的检测特点相同,B2误码检测也是数量比较少时比较准确,
数量多时就不准了,多是通过拟合的办法统计的。
B3误码和低阶通道误码的检测
同理,根据误码块的检测方法,高阶通道和低阶通道分别通过B3(8bit)和V5(2bit)
来进行检验,本文不再详细描述。
总之,SDH系统提供了丰富的开销来监视传送性能,SDH系统的误码检测有如下特点:
1、通过奇偶校验的方式来判断块中是否发生误码。
2、 SDH只能提供误码检出功能,但不能进行纠错。
3、对于比较少的、离散分布的误码,具有比较高的检测率,检测准确度高。
对于大量
误码或在一个块中出线多个误码的情况,不能正确检测。