负载敏感系统
负载敏感系统特点
负载敏感系统特点负载敏感系统是一种感受系统压力-流量需求,且仅提供所需求的流量和压力的液压回路。
负载敏感控制系统的功率损耗较低,效率远高于常规液压系统。
高效率、功率损失小意味着燃料的节省以及液压系统较低的发热量。
负载敏感控制技术本应用于构造一种未来的传动及控制系统,其高效的特点使负载敏感控制成为所有传动及控制系统的理想设计方案。
通过负载反馈信号,控制系统的工作与泄荷。
简而言之,负载敏感系统是一种感受系统压力-流量需求,且仅提供所需求的流量和压力的液压回路。
实现负载敏感控制的完整装置由如下元件组成:首先需要一个变量柱塞泵,该泵具有一个压力补偿器,系统不工作时,补偿器使其能够在较低的压(200PSI)下保持待机状态。
当系统转入工作状态时,补偿器感受系统的流量需求并在系统工况变化时根据流量需求提供可调的流量。
同时,液压泵也要感受并响应液压系统的压力需求。
多数液压系统并非在恒定的压力下工作,当外部载荷变化时,液压系统的工作压力是不同的。
然后需要一个具有特殊感应油路和阀口的控制阀,以实现负载敏感系统的完整控制特性。
当液压系统未工作,处于待机状态时,控制阀必须切断作动油缸(或马达)与液压泵之间的压力信号。
这将在系统未工作时导致液压泵自动转入低压等待状态。
当控制阀工作时,先从作动油缸(或马达)得到压力需求,并将压力信号传递给液压泵,使泵开始对系统压力做出响应。
系统所需的流量是由滑阀的开度控制的。
系统的流量需求通过信号道、控制阀反馈给液压泵。
这种负载感应式柱塞泵与负载敏感控制阀的组合使整个液压系统具有根据载荷情况提供作需压力-流量的特性,此即负载敏感系统的基本功能。
负载敏感控制系统的功率损耗较低,效率远高于常规液压系统。
高效率、功率损失小意味着燃料的节省以及液压系统较低的发热量。
单一的液压泵可满足多个回路的压力-流量需求。
传统的中位开方式定量泵液压系统为满足同一系统中不同支路的工作要求,必须采用多联泵或流量分配器。
负载敏感(LS)控制系统工作原理与操作
Eaton®中等负载柱塞泵(斜盘-轴向)负载敏感(LS)控制系统工作原理与操作——Load Sensing Sytem-Principle and Operation王清岩[译]CCE(JLU,CHINA)15-09-2005Load Sensing Principle of OperationPage序言 (3)何谓负载敏感? (4)负载敏感系统是如何工作的 (5)采用负载敏感控制的优点 (14)开发与调试 (25)系统比较 (26)应用 (27)负载敏感控制技术的前景 (27)Load Sensing Principle of Operation序言早在二十世纪六十年代后期,一些年轻的工程师对液压传动技术的优缺点进行了仔细的分析。
中位开放式液压系统,采用了一个定排量的齿轮泵,提供恒定的流量,系统压力是由作用于工作介质上的载荷决定的。
为限制系统的最高工作压力,必须设置一个高压溢流阀。
当系统工作压力达到设定值,液压泵近乎全部流量将通过溢流阀流回油箱,因而导致极高的功率损失,并在系统中产生大量的热损耗致使系统效率极低。
相比之下中位封闭的液压系统具有排量可调的优点,排量调节的范围可从最小排量至最大排量,甚至正向最大排量至反向最大排量;并且无需在系统中设置溢流阀。
其最大工作压力的控制是通过液压泵内部的补偿器实现的。
此类补偿器可在系统因负载超出额定范围导致系统受到阻滞的状态下通过限压变量活塞使泵卸荷即液压泵处于高压运转状态、但排量近乎为零。
此时液压泵将进入等待状态,并保持较高的工作压力,直至负载被克服或恢复操作阀的控制状态。
中位闭式系统的缺点是液压泵试图在所有的工况下均实现所限定的最高工作压力附近的排量调节。
但是液压系统还有这样一类工况,即期望获得较大的流量而所要求的工作压力却很低。
中位闭式的系统在此种工况下导致了较高的压力降并在能量损失过程中产生大量的热。
工程师们于是设想,若能将两种系统的优点进行合并将得到最佳的性能。
负载敏感和压力流量补偿有什么区别
负载敏感和压力流量补偿有什么区别
负载敏感和压力流量补偿有什么区别?
1. 当我们说定量泵配负载敏感系统是指溢流阀的开敌启压力是受负载影响,一般高于负载
1.5Mpa到3Mpa;
2. 当我们说变量泵带负载敏感(LS)功能,即指变量泵的变量压力会随着负载变化而变,一般高于负载2Mpa左右;
3. 而带负载敏感的多路阀是指多路阀带梭阀系统,会把最高负载引出到油泵的LS口,从而控制油泵的变量压力,达至节能效果;
4. 压力流量补偿一般是和阀门相关。
当我们说阀门带压力流量补偿是指阀芯带压力补偿器,当负载压力远低于油泵压力时,补偿器会减少开口度,从而把欠缺的压力补上,以保证阀芯的节流口的压差不变。
通过稳定压差,阀芯的流量便可保持。
压力补偿器可放在节流口前或节流口後。
放在节流口後的便是LUDV阀。
游大侠,您好!您说的第4条中“当负载压力远低于油泵压力时”我有些不理解,泵的压力不是由负载决定的么,怎么会有负载压力远低于油泵压力的情况呢?请指教,非常感谢!
在多路阀应用中,时有复合动作的需要。
例如动臂和旋转一起工作以省工时,由于每个执行器的负载不相同,通过梭阀系统,只能把负载最高的压力传给油泵,负载低的,便需要通过压力保偿器增加压差以保证阀芯节流口的压差稳定,从而保证流量不变。
负载敏感系统
卷扬起落、回转同时动作
连续工作时间长:可连续作业。 故障少:70%故障由于液压油脏引起,液压油温不要超过80度。
节能:能否少耗点油,使用成本低。柴油贵啊!
二、负载敏感技术能解决什么问题:
1. 节能:与传统的节流调速系统的比较。 节能了就减少液压系统发热、延长连续作业时间。 2. 复合动作:不同负载可同时动作。
二、负载敏感系统:以略高于负载压力工作。
节流系统
液压系统关注的速度
速度调速回路:节流调速回路
容积调速回路 节流调速回路: 进油节流调速回路 回油节流调速回路
A1 A2
旁路节流调速回路
具体内容结合一本教材自学
Q = f (Dp, A) Dp1 = Dp2
进油节流调速回路(定压式)
A P q
1 1 1
图8.5 出口节流调速回路
负载敏感工作压力
定量泵(三通压力补偿器)
变量泵系统
变量泵的工作压力=负载压力 +变量泵的Δ p
定量泵工作压力=负载压力+ 三通压力补偿器弹簧压力 (10bar左右)
二、负载敏感:压力补偿方式
阀前补偿
阀后补偿
Q A
Q=f(A, Dp ),
Q
A
Q K A Dp
m
Dp
如果Dp =恒定,则: Q=f (A),流量(即速度)只 与节流口(即阀的开口)面 积有关,而与负载的变化无
流量(即速度)不仅仅与节 流口(即阀的开口)面积 有关,而且,与负载的变 化有关。
关(负荷敏感)。
先导控制阀DQKZF
过载插装单向阀 制动器控制 测压口
过放保护
单向阀的开启压力虽然 只有0.15bar但阻力仍 很大,影响了泄荷
负载敏感和压力补偿的定义讲解
解决办法:一
是回转单独使用 单泵供油, 二是回转压力补 偿阀采用K<1的 压力补偿结构。
A2=A3=A1, K=A/A1 压力平衡式 Pin×A1=PL×A3=PLS ×A2 Pin=K×( PL +PLS )
多路阀主阀芯压降: ΔP=Pin-PL=K*PLS-(1-K)* PL 上式中,除回转K<1外,其余K=1,即ΔP=PLS
负载敏感和压力 补偿的定义
广西玉柴工程机械有限责任公司 易友南
一、负载敏感
通过感应检测出负载压力、流量和功率变化信号,向 液压系统进行反馈,实现节能控制、流量和调速控制、 恒力矩控制、力矩限制、恒功率控制、功率限制,转速 限制,同时动作和原动机动力匹配等控制的总称。
控制方式包括液压控制和电子控制。 负载敏感系统的液压元件: 负载敏感阀-----将压力、流量和功率变化信号向阀进行 反馈,实现控制功能的阀; 负载敏感泵-----将压力、流量和功率变化信号向泵进行 反馈,实现控制功能的泵和马达;
复合动作时,各阀的负载压力PL不同,但由于压 力相同补的偿,阀而都经受各相压同力的补P偿LS作阀用的,压因差此Pin-PL=ΔP是
Δ差P,’=起P-P到in了=负P-载PL均S-衡PL器此的压。差正好补偿了负载压力
PL+ΔP+ΔP’= PL+ PLS+P- PL-PLS=P
四、NACHI(不二越)负载敏感系统
发动机转速感受阀门F: P成r=正P2比H1,-P2帮L0P等r大式小右随边转即速节而流改件变S。的P压r作降用,于其H与阀通,过P的r↑,流量则
Qp↑。Pr=0.25~1.96Mpa
由于油泵调节阀H的目标压差随发动机转速而变, 使系统与发动机工况相匹配,在发动机转速范围
负载敏感系统测试及特性分析
基金项目:国家“八六三”高技术发展计划资助项目(!""#$$%#"!"")作者简介:郝鹏(&’(’)),男,宁夏中宁人,博士生*负载敏感系统测试及特性分析郝鹏,何清华,张大庆(中南大学机电工程学院,湖南长沙%&""+#)摘要:负载敏感系统是液压系统节能控制的主要环节之一*对一具有负载敏感系统的挖掘机在不同工况、不同负载压差,以及不同操作动作下泵的出口压力、流量进行了测试,分析了负载敏感系统工作特性,提出了压差的设定值应随负载的大小按正比例调节,以提高系统对负载的跟随性并减少波动*在标准负载工况下,压差设定为&*(,-.时,系统工作比较理想*关键词:负载敏感系统;节能;挖掘机;系统测试中图分类号:/0&#(!"#$%&’(&)*+(,(*$",%#$%*(&(-.#%#/0-/()1#"&#%&’#.#$"2!"#$%&’,!()*&’+,-.,/!"012.+3*&’(123345426,478.9:7.3;<347=>:7.3<95:944>:95,149=>.3?2@=8A 9:B 4>C :=D ,18.95C 8.%&""+#,18:9.)34#$,(*$:$32.E F C 49C :=:B 4C D C =4G :C .7>@7:.3494>5D F C .B :9572G H 2949=:9.8D E >.@3:7C D C =4G *$772>E :953D,=84H @G H H >4C C @>4.9E 632I26.94J 7.B .=2>I .C =4C =4E .9E .9.3D K 4E 29=84L .C :C 26E :664>49=I 2>M :95729E :=:29C,H >4C C @>4E :664>4974C .9E2H 4>.=:29H >274C C 4C */2498.974=8432.E >4C H29C :B 494C C.9E>4E @74=84H >4C C @>463@7=@.=:29,=84H >4C C @>4E :664>4974C 82@3E L 4C 4=:9H >2H 2>=:29=2=8432.E :95H>4C C @>4*N @>=84>43.L 2>.=4E ,.H >4C C @>4E :664>497426&*(,-.:C 7>:=:7.3=2=84C =.9E .>E 32.E :95729E :=:29*5".6/,)#:32.E C 49C :=:B 4C D C =4G ;494>5D C .B :9572G H 2949=;4J 7.B .=2>;C DC =4G=4C =随着社会的发展和人类的进步,人类和环境对机械产品的要求也越发苛刻,已经从功能的要求过渡到了高效、舒适性、绿色环保等性能要求*对于那些负载交替变化较明显的机械,人们更是希望所设计的动力系统既能恰如其分地满足负载的需求,又能操作舒服,动作平滑*现阶段,绝大多数的工程机械是通过液压系统来实现能量有效传输和性能的提高,而负载敏感系统恰恰是一个能够按照负载的需求来控制泵的输出功率的调节系统之一[&,!]*负载敏感系统因其节能、效率高和寿命长、控制准确、便于实现微机控制等显著优点在现代工程机械中获得了广泛的应用*日本小松公司的O P ??系统、美国卡特彼勒公司的$<1系统、韩国大宇公司的<-O ?系统及现代公司的1$-O 系统、德国奥加凯公司的-,?系统都有负载敏感功能[#,%]*负载敏感系统应该满足:不能有太大的超调量;调节时间不能太长;尽可能减少振荡*对于负载敏感系统的应用与特性分析已经有一些国内外的专家和学者进行了研究,如参考文献[#!Q ]*而对于液压挖掘机这种多机构、负载变化范围大的机械来说,负载敏感系统的分析相对较少,因此,本文针对液压挖掘机这种特种机械,工作在不同参数、不同工况以及不同操作动作下的电液负载敏感系统泵的出口压力、流量随负载及操作员的动作变化情况进行了测试并对其特性进行分析*第%卷第#期!""R 年(月中国工程机械学报10S T <?<U O A V T $P O N 1O T ?/V A 1/S O T,$10S T <V W X 23*%T 2*#U @3*!""R图!"!卸性能曲线#$%&!’()*+),-./(/0)1(+*"!图2负荷敏感泵结构简图#$%&234)0/40)(*)-,(+*5+-"67(.7$.%80,8!电液负载敏感系统的结构及工作原理电液负载敏感泵的原理图如图!所示,负载敏感阀块如图!中!"#所指虚线部分,该负载敏感系统是由泵的出口压力"$,负载最大压力""以及比例电磁铁电流#"#来控制阀芯动作,然后通过控制阀芯出口压力""#来调节泵的排量%图!中,预调弹簧$"#决定了系统泵与负载的最大压差&",通过控制比例电磁铁的电流#"#驱动比例电磁铁动作,从而达到改变&"值的目的,控制电流的大小与&"的变化成反比,即控制电流增大压差减小%由式(!),(’)可知,在同一系统中,当负载流量不超过泵的最大流量时,多路阀的&"减小意味着同样的阀芯开口面积下,通过该阀芯油路的流量将减小,同时由于&"的减小,使得在相同负载情况下泵的输出流量也相应减小,分配给每一路的流量也相应减小%从图’可以看出,当主阀的开口不变时,都处于%的位置,压差增大,泵的排量也增大,即&’!&!%在某些施工场合需要提供低速大扭矩时,可以通过减小压差来提高控制精度[(]%’(!)*!%!’&"/"!(!)’(’)*’%’’&"/"!(’)式中:*!,*’为流量系数;%!,%’为过流面积;!为油液的密度;&"为压差%通常情况下,根据泵的状态和负载的情况负载敏感系统的调节机理是不同的:当操作阀处于中位,负载压力很小,负载敏感("#)阀使泵的排量处在最小;当主泵压"$与""#压差小于设定压差时,"#阀使泵的排量增大;当主泵压"$与""#压差大于设定压差时,"#阀使泵的排量减小;当"#阀的主泵压"$、"#阀压""#与弹簧的合力平衡时,滑阀处于平衡位置[),*]%"电液负载敏感系统的测试为了能够获得更加详细的负载敏感系统的压力+流量控制特性,本文通过现场实测,获得与负载敏感系统有关的特征数据%测试对象及方法:针对某一具有负载特性的挖掘机,发动机转速设定在!,--./01+!,在空载和挖掘两种工况下,通过调节比例电磁铁的驱动电流来改变负载敏感阀两端的压差,然后测量泵的出口压力和流量%测试条件:空载时,将斗杆和铲斗伸展,然后让动臂上升和下降;在挖掘时进行复合动作%调节负载敏感系统两端压差从-%2!’%’345之间变化%测试仪器采用德国6789:;<=6>?@公司生产的多功能液压手持式测试仪(/A B C 0D E D C F /G -G -)%测试对象及连接方式如图H 所示%在泵的主油路出口处安装了一个(-345的压力传感器和一个H --"/01+!的流量计分别测试泵的出口压力"$和输出流量’$;同时在多路阀通向泵"#油路上安装了一个(-345的压力传感器,测试负载压力""#%传感器的安装如图)所示%液压系统的压力和流量测量通过测试仪器经过9#’H ’+I #J 口与笔记本电脑连接进行传输和保存%采样周期为!-/D ,采集时间为!/01,可以随时停止%的处理和显示通过K E &.L M 01H ’+F 1N B 0D K 得到%,!H 中国工程机械学报第)卷图!测试现场连接图"#$%!&’(()*+#($,#$-.)’,+)/+,#)01图2传感器的安装图"#$%23(/+4004+#’(’,/)(/’./测试数据及分析:空载工况下,压差分别为!"!,#"$,#"%,#"&,#"#’()时的压力*流量波动如图&!+,挖掘工况下压力*流量如图#,所示"图&:调节比例电磁铁电流,使得设定压差为!"!’()"驾驶员相对柔和地操作动臂的先导手柄,首先让动臂升起,然后操作手柄回到中位,最后再使动臂下降,主阀芯开口缓慢变化,且在此过程中阀芯只有#/-开口"在低压区,也就是下降过程中!#—"#段,压差相对上升过程##—$#段略高些%高压区的波动比低压区的波动大些,在&点处压力刚好推动动臂动作,因此出现了压力峰值%图%:调节比例电磁铁电流,使得设定压差为#"$’()"驾驶员让动臂升起,操作速度比图&略快,主阀芯半开口"泵仅仅是小流量时,泵的压力已经紧跟最大负载压力快速上升,.,/0左右的时间泵和负载的压力几乎达到了整个工作过程的最大压力"泵的出口流量在#点也有波动,然后缓慢地增加%此时由于负载比较平稳,从$#点以后1’几乎维持不变"图5空载,压差为6%6784的压力9流量图"#$%5&-.:)’,;.)//-.)<,0’=,(’0’41,1#,,).)(+#40;.)//-.)#/6%6784图>空载,压差为?%@784的压力9流量图"#$%>&-.:)’,;.)//-.)<,0’=,(’0’41,1#,,).)(+#40;.)//-.)#/?%@784图$:调节比例电磁铁电流,使得设定压差为#"%’()"驾驶员操作动臂的先导手柄比较快,主阀芯开口变化比较快,阀芯最大只有!/-开口"系统刚开始压力上升很快,从#—$段,流量比较小,当压力平稳后,从"—&段,流量突然从&上升到(点,系统稳定%同样可以看出低压区的压差相对高压区高些%图2:调节比例电磁铁电流,使得设定压差为#"&’()"驾驶员相对柔和地操作动臂的先导手柄,当动臂缓慢上升时,将手柄打到头然后回位,动臂继续上升,然后操作手柄反向使动臂下降,主阀芯在位置切换处比较快,主阀芯全开口"在上升阶段,流量有明显波动,但压力依然很平稳"在中位切换时,流量突然切断,泵的出口压力突然憋起,压力有明显波动,从压差的$#—!#段可以看出这一点"同样低压区的波动比高压区的波动小"图+:调节比例电磁铁电流,使得设定压差为#"#’()"驾驶员让动臂升起,主阀芯首先处于小开口,泵仅仅提供小流量,泵的压力已经紧跟最大负载压力快速上升,从#点到$点只用了-&/0左右的时间,然后经过一段波动后到达稳定点!点"+#-第-期郝鹏,等:负载敏感系统测试及特性分析图!空载,压差为"#$%&’的压力(流量图)*+#!,-./0123.044-.052617,8161’9,9*220.08:*’63.04-.0*4"#$%&’图;空载,压差为"#<%&’的压力(流量图)*+#;,-./0123.044-.052617,8161’9,9*220.08:*’63.044-.0*4"#<%&’图!":现场进行软土挖掘作业#在挖掘过程中,操作手柄位置不变,缓慢地减小电流,使得压差逐渐增大,!$口和!%&口的压差逐渐增大,泵出口的流量也在增大#在"!—#!段,调节速度加快,压差和流量相应增大很快,从#!—$!段突然增大电流,泵的出口流量也突然降低,泵的出口压力降低,负载压差减小%在$!—&!段,快速动作手柄,泵的压力随流量的波动不是很明显%同样,在’!点和(!点突然增大减小电流,压差和流量都出现了明显的波动%图=空载,压差为"#"%&’的压力(流量图)*+#=,-./0123.044-.052617,8161’9,9*220.08:*’63.044-.0*4"#"%&’图">挖掘工况压力(流量图)*+#">,-./0123.044-.052617,*871.?*8+@189*:*18!结论虽然负载敏感系统已经有’"多年的历史,发展比较成熟,但是结合实际的挖掘机,能够为操作手操作提供指导的数据相对较少,本文通过调节弹簧的设定压力,改变电流来调节泵和负载的压差,同时将操作员的动作考虑进去,结合空载和实际挖掘两种典型作业工况,在不同的压差下,对泵的出口压力和流量、负载的压力进行了测试,得到以下结论:(!)从图(!!"可以看出,泵的出口压力随负载压力的跟随性比较好,几乎是同步的,压力波动也比较小,泵的压力波动比负载压力波动明显些,这主要与阀芯的开口形状和弹簧特性有关,同时可以看出压差值在高压区和低压区是不同的,压差的波动在低压区和高压区也是不同的,在高压区泵和负载压力占主导地位,低压区,弹簧压力占主导地位#(’)从图)和图!"可以看出,泵出口压力变化随流量变化不明显;但是在启动瞬间和中位切换时,由于流量特性发生变化,压力波动比较明显#从图(可以看出,当操作比较平滑时,压力波动比较平滑,这个问题主要与阀芯的中位机能有关#"’*中国工程机械学报第+卷(!)虽然在低压区压力波动比高压区的压力波动小,但低压区压力波动范围占最大压力的比重比高压区大;压差设定值较大时系统在高压区工作比较平稳,而压差设定值较小时系统在低压区工作比较平稳;压差设定值较小时泵的压力随流量的波动大,压差设定较大时泵的压力随流量的波动小,主要由于泵在"/#排量以下工作是不稳定的,所以导致这样的结果$(#)从图%可以看出,在"$&’()的设定压差的情况下,速度比率比较平缓,压力上升很快,比图&平滑,图&出现了较大的超调量$而当压差设定值比较小时,如图*所示,压力上升速度相对慢一些$计算机控制技术已经在液压系统控制和系统功率控制上发挥着越来越重要的作用,压差的电控调节只是功率控制和节能控制的一个小部分,电控调节策略的深入和细化有待进一步完善$参考文献:["]冯刚,江峰$负载感应系统原理发展与应用研究[+]$煤矿机械,,--!(*):,&.!-$[,]包海涛,严桃平$/011节能控制系统[+]$建筑机械,,--,(*):,".,,$[!]纪云锋$液压挖掘机动力系统的节能控制研究[2]$长沙:中南大学机电工程学院,,--#$[#]+345(’,26507(80$09):;<=;>=?@A :B )C D >E E 9=F B 9D ;A ;F <GH 9B I )B >)J D <:>;K D )E <G <=F K C G :61,%,"%#L %M "[(]$,--".-#."&$[L ]米智楠,易孟林,皱占江,等$挖掘机中的负荷传感液压系统操作性分析[+]$矿山机械,"**&(",):,".,,$[%]方旭东$液压挖掘机中负荷传感系统的分析与计算[+]$同济大学学报:自然科学版,,--",,*(*):"-*&.""--$[&]N 62C O >)=?$’9:<D >=?)=:<P K <B >G <=F )D <I )D C )F >9=9H )D 9):Q ;<=;>=?)=:K B <;;C B <E 9G K <=;)F <:@A :B )C D >E ;A;F <G [2]$[;$D $]:1);R )F E @<S )=6=>I <B ;>F A,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""",--!$下期文章摘要预报逆向工程中密集数据采样以及网格化技术何炳蔚以激光.机器视觉测量方式得到的曲面数据云为基础,探讨了基于给定精度的曲面密集散乱数据点群的数据压缩以及几何建模方法$其中根据激光测量方式和三维点群分布的特点,提出一种在给定采样精度基于曲率的曲面自适应采样的方法;通过激光扫描曲线间的采样点匹配为进一步数据压缩提供依据;并由度量曲面的初步网格点阵对测量点逼近程度好坏来进一步完成对曲面模型的修正$通过实例验证了这种方法的可行性$履带式工程车训练模拟器作业手柄的设计与实现张琦,周祖安,孙邵文履带式工程车训练模拟器是一种集模拟驾驶训练、推土作业训练、驾驶考核于一体的多功能训练模拟系统$介绍了基于’1(#!-单片机和开关式功率放大集成电路7!*%%10M 芯片设计的该型模拟器推土作业手柄的原理、硬件组成和软件设计,成功实现控制铲刀提升、下降和操纵力反馈功能$",!第!期郝鹏,等:负载敏感系统测试及特性分析。
负载敏感和压力补偿的定义
P P2 P Ls P 1
Q1 ca A1
Q1 A1 Q 2 A2
2 P
, Q2 ca A2
2 P
Hale Waihona Puke 四、NACHI(不二越)负载敏感系统
四、NACHI(不二越)负载敏感系统
A:主安全阀 B:中位卸荷阀:当间P > PLmax + Pr + F’/A’ 时卸荷 C:溢流阀:P’Lmax + Pr = F/A F/A为主安全阀调定压力(24.5Mpa) 不溢流时:P’Lmax =PLmax 溢流时:P’Lmax < PLmax ,PLs↑ QP↓ D:减压阀:输出PLs,同时作用于压力补偿阀G和泵排量调节阀H,PLs =P -PLmax H:泵排量调节阀:Pr = PLs 当PLs> Pr时,QP↓,反之(即转速↓ P↓,反之) G:压力补偿阀:PLs= Pin-PL=ΔP (换向阀进出口压差)
四、NACHI(不二越)负载敏感系统
关于G阀:压力补偿阀是保持多路阀进出口压差在目标压 差值来进行控制,当遇到惯性负载较大时,如回转启动时,负 载压力变化比回转速度变化来得快,负载压力Pl迅速升高, 而流量增加跟不上,使压力补偿阀不能按补偿压力正确调整, 产生过度或不足调整,来回摆动,伴随着产生大的流量变 动,使马达振摆波动。
四、NACHI(不二越)负载敏感系统
关于D阀:为等差减压阀,PLs
=P-PLmax,该压差不是由主泵产生,而是 由先导泵PP产生。通常负载敏感压力补偿系统,因泵与多路阀间连接管道较 长,引起压力传递滞后,使控制不稳定,泵的出口压力P与多路阀进口压力Pv 有差异,P>Pv低温时更加明显,造成泵的流量控制与负载敏感阀的流量控制 不一致,即泵的流量按P-Plmax目标压差进行控制,而负载敏感阀按Pv- Plmax目标压差进行控制,因Pv-Plmax<P-Plmax,因此低温时会引起执行 元件供油量明显减少,而采用等差减压阀,检出多路阀进口压力与最高负载 压力之差PLs作为二次压力,向油泵调节阀和压力补偿阀同时反馈,避免了负 载敏感管道较长产生的负载压力信号延迟问题。
负载敏感液压系统压力振荡问题的解决办法
负载敏感液压系统压力振荡问题的解决办法◎ 应金玲 吴碧青 中国科学院南海海洋研究所摘 要:本文主要根据负载敏感液压系统的基本原理,结合实际应用过程中遇到的故障及解决经验,介绍负载敏感液压系统压力振荡问题的一种简单有效的解决办法,供相关液压设计人员及用户参考,希望液压设计人员在设计负载敏感液压系统时能够充分考虑各种复杂工况,设计更加合理,在实际应用中能够不断发展和完善。
关键词:负载敏感液压系统;压力振荡;蓄能器;节流孔1.负荷敏感液压系统基本原理负载敏感液压系统L S(lo a d senser)是一种液压系统中感受压力、流量变化和控制的需求,提供液压系统设备所需要的压力和流量的液压回路。
系统将控制阀后负载压力传递给负载敏感的变量泵,变量泵根据负载压力变化改变泵的排量,使泵提供系统所需求的流量。
下面结合某科考船6000米地质绞车液压控制系统部分截图来简单介绍一下负载敏感液压系统基本原理。
负载敏感液压系统主要的部件有负载敏感变量柱塞泵(见图1)、电液比例换向阀、压力补偿阀等功能阀件(见图2)。
负载敏感系统的工作原理核心为系统将负载的压力反馈到负载敏感泵上,压力油通过泵上的LS口,传入到泵内,泵内的负载敏感阀的弹簧感受压力油压力大小,改变泵的斜盘角度,从而改变泵的输出流量。
进一步讲是负载敏感阀上的弹簧,感受压力油而获得的弹簧变形的程度来改变泵的输出排量。
电液比例换向阀与压力补偿阀配合使用,由于压力补偿阀能保证换向阀前后压差(即泵出口压力和负载压力之差)恒定,去执行元件的流量仅由比例换向阀的开口大小决定,与负载压力无关。
电液比例换向阀前后压差(即泵出口压力和负载压力之差),即为压力补偿阀的调定弹簧值△P。
由于△P为常量,从而各执行元件的流量取决于电液比例换向阀阀口面积A的大小,即与压力无关的流量分配,可以很精准地控制执行元件的速度。
采用负载敏感技术的优点是:系统的输出压力及流量直接取决于负载,能确保液压泵的压力与负载所需自动匹配,可以大大提高系统的功率利用率;而且也能精确地控制负载的速度,使绞车速度变化平滑,根据负载调节泵输出流量,减少系统发热和能量损耗。
液压作业1 - 负载敏感系统
ห้องสมุดไป่ตู้
压力、流量双比例控制泵源系统
1.比例溢流阀3可以设置不同的最高负载输出 压力; 2.比例节流阀2设置不同的开度以改变泵的输 出流量, 泵1上流量阀4的存在稳定了比例节流 阀2的输出流量。 3.在该系统中,比例节流阀2采用倍流量的连接 方式达到增大通流能力的目的。 4.该系统通过流量、压力的双比例控制,使泵 变为一个流量、压力可以无级调整的比例泵。 采用该方案可以适应多负载尤其是多负载同时 工作的工况。虽然针对每个负载状况的不同, 可能由于最高压力的设置不当造成系统效率下 降, 但在该系统中依然不存在溢流现象。
采用负载敏感技术好处?
系统的输出压力及流量直接取决于负载的要求,可以大大提 高系统
两例油路分析
负载敏感控制原理图 压力、流量双比例控制泵源系统
负载敏感控制原理图
1.负载敏感泵1上集成有流量阀4及压力阀5 2.压力阀5---限定泵的最高工作压力P。 3.流量阀4---限定泵出口至液压缸进油口 之间的压差Δp。 4.负载的驱动压力pL通过梭阀3反馈到泵的 控制口X 液压缸运动的速度取决于节流阀2的开度。 在此系统中,节流阀2与流量阀4共同构成了 一个调速阀。
负载敏感技术在液压系统中应用举例
吴 晶 03121196 机自12-10班
什么是负载敏感技术?
负载敏感技术就是将负载所需的压力、流量与泵源的压力 流量匹配起来以最大程度提高系统效率的一种技术。
提高系统利用效率要求?
1.将负载所需的压力与泵源的输出压力匹配 2.另一方面,泵源的输出流量正好满足负载驱动速度的需要。 3.实现待机状态的低功耗。
负载敏感和压力补偿的定义
复合动作时,各阀的负载压力PL不同,但由于压 力补偿阀都受相同的PLS 作用,因此Pin-PL=∆P是 相同的,而经各压力补偿阀的压差 ∆P’=P-Pin=P- PLS- PL此压差正好补偿了负载压力 差,起到了负载均衡器的。 PL+∆P+∆P’= PL+ PLS+P- PL-PLS=P
四、NACHI(不二越)负载敏感系统 四、NACHI(不二越)负载敏感系统
解决办法:一 解决办法
是回转单独使用单泵供油, 二是回转压力补 偿阀采用K<1的 压力补偿结构。
A2=A3=A1, K=A/A1 压力平衡式 Pin×A1=PL×A3=PLS ×A2 Pin=K×( PL +PLS )
多路阀主阀芯压降: ∆P=Pin-PL=K*PLS-(1-K)* PL 上式中,除回转K<1外,其余K=1,即∆P=PLS
发动机转速感受阀门F: Pr=P2H1-P2L0 等式右边即节流件S的压降,其与通过的流量 成正比,帮Pr大小随转速而改变。Pr作用于H阀,Pr↑,则 Qp↑。Pr=0.25~1.96Mpa
由于油泵调节阀H的目标压差随发动机转速而变, 使系统与发动机工况相匹配,在发动机转速范围 内部都保持最佳操纵感觉,改善了微调操纵性能, 也降低了能耗。
二、压力补偿
将压差设定为规定值进行的自动控制都叫压力补偿。 压力补偿流量控制:不受负荷压力变化和液压泵 流量变化的影响,由设定节流压差值对流量进行自 动控制。 在多路阀节流调速中,根据,在多路阀斗杆进出口 设置定差压力阀,使阀杆进出口压差(∆P)保持不 变,通过改变阀的开度,就能不受负载和液压泵流 量的影响,改变和控制流量,即利用流量控制阀的 原理进行调速。 在变量泵控制系统,设置泵排量定差调节阀(压 力补偿阀),使泵的出口油压和最大负荷执行器油 压之间保持一定,对泵的排量(流量)进行调节。
负载敏感技术原理
负载敏感技术原理1)关于负载敏感控制,从基本类型来讲可以区分为两大类:阀控系统与泵控系统。
楼主的示例是泵控系统。
2)在阀控系统中,如果只考虑用途比较广泛的传统方式,区分为比例方向阀前串联定差减压阀的负载补偿型,和比例方向阀并联定差溢流阀的负载敏感型。
在一般工业系统中,或者使用前者,或者使用后者,两者不可兼得。
3)第二点中,串联定差减压阀的负载敏感系统,其基本优点是所控制负载速度只与输入信号有关,不受负载压力变化的影响。
其缺点在于这是个定压系统,还存在较大的能量损失。
4)第二点中,并联定差溢流阀的负载敏感系统,除了所控制负载速度只与输入信号有关,不受负载压力变化的影响之外,其基本优点是节能,即不是定压系统,泵的出口压力仅仅比负载高一个固定的数值,例如5-10bar。
同时,阀内可配置先导压力阀,当系统压力达到其调定值时,就与主阀构成系统安全阀,限于系统的最高压力,省去另设系统安全阀。
在第3、第4中,有些产品还通过设置附加液压半桥,获得比例方向阀阀口压差的小范围可调,以适应用户的要求。
5)如前所述,上述第3、第4所讲的定差减压型,与定差溢流型在一般的比例方向阀系统中,两者只能选一。
这种负载补偿情况,在多路阀控制的多负载系统中,得到了新的发展(在多路阀中能够构成负载敏感系统的只有4通型多路阀,一般的6通型多路阀是无法实现的)。
这就是:多路阀中每一联配置定差减压阀,同时通过梭阀网络将同时动作各联的最高负载压力(LS信号)引到泵出口的定差溢流阀,总体上构成负载敏感适应系统。
也就是说,这种配置的负载敏感系统中各联之间互不干扰,速度只与各联输入信号相关;而且泵的出口压力不是一个定值,它随时随刻都只是比当时的最高负载压力高出一个固定的数值。
6)就以多路阀为例,介绍泵控负载敏感系统。
实际上就是上面第5点的LS信号不是引到定差溢流阀,而是引到负载敏感泵就成了(即以负载敏感泵代替第5点的定量泵和定差溢流阀)。
7)对于多路阀系统,第5点的系统一般称为开中心负载敏感系统,它还是有一定的能量损失。
负载敏感系统
一、负载敏感和压力补偿概念(一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。
以往液压系统在使用操纵过程中,存在着以下需解决的问题:1.节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。
2.操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。
3.单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。
合理地分配流量,实现理想复合动作。
4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。
为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。
目前液压传动仍存在问题有待解决。
例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。
目前人们正在研究采用电路中变压器这类东西,来解决这个问题。
(二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。
(即广义的负载敏感和压力补偿)。
负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行反馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。
负载敏感系统所采用的控制方式包括液压控制和电子控制。
从负载敏感系统的液压元件来看可分:负载敏感阀:将压力、流量和功率变化信号,向阀进行反馈,实现控制功能的阀。
负载敏感泵:将压力、流量和功率变化信号,向泵进行反馈,实现控制功能的泵和马达。
负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。
挖掘机负载敏感系统介绍
液压控制技术在液压控制技术起初,加工机械厂的加工运动的速度取决于控制阀的横截面及液压流体的粘度。
三位六通换向控制阀块(open center)对于速度的灵敏控制只能通过严格操纵才能实现。
接着,根据3位6通换向阀的原理对第一个控制阀块做一个重大改进,就使得一个机床工人同时相应地控制几个加工运动成为可能。
NeutralumlaufOpenFeinsteuerbereichFine MeteringDurchgeschaltetOpen下面用M1控制阀块的例子来图解这个工作原理在阀杆中位,油液通过铸造的通道无压的从P 口流到T 口(中位循环),泵和执行机构工作油路的接口A和B连接切断。
可利用机械式的手柄或依靠液压方式在a1或b1 口引入先导压力,使阀杆离开中位而移动。
依靠阀杆的换向和对阀杆的控制,减少P 口到T 口连接的通道,随着其进一步位移,进一步减少流通面积,使流阻增大(流通面积的缩减导致流阻的增加),以至于压力因此增加。
随着从P 口到T 口的流通面积减少,P 口到A 口或P 口到B 口的连接通道将打开,液体将流到执行器接口。
当由于压力和液压缸面积产生的力超过作用在液压缸上的负载外力时,油缸开始移动。
PTA (或PTB)的流通面积直接决定了流量,从而也决定了液压缸或液压马达的速度。
安全阀限制系统最高压力,活塞上单向阀能防止阀杆在中位时油缸下降。
以上所述的工作原理同样适用于几个阀杆,根据液压泵提供有效流量,所M1单阀块截面图有操作能从停止到最大速度相应并行地受到控制。
三位六通换向阀的控制原理,也称作“节流控制”,它在元件布置方面是简单的,操作可靠,经济划算,系统可使用定量或变量泵。
缺点是节流调速时,有部分多余的压力油直接回油箱,造成功率损失。
而且,其控制特点是与压力相关的,在并联油路几个执行机构同时动作时,可能彼此互相影响。
这就是开发与负载压力无关的负载传感系统的决定性原因。
负载传感系统同样就负载传感系统而言,执行机构的速度是由控制块内主阀芯的位置决定的。
负载敏感系统概述
一 载 敏 感 系 统 的 组 成 负
图 示 为 一 负 载 敏 感 液 压 系 统 该 回 路 由 基 本 单 元 组 成 ' # !所 (个 例 换 向 阀 !"比 2 它 是 一 个 比 例 换 向 阀 或 多 路 比 例 换 向 阀 分 手 控 式 和 电 控 式 两 种 其 作 用 除 控 制 液 压 马 达 或 液 压 缸 换 向 外 还 控 制 液 压 马 达 负 载 流 量 以 及 检 测 液 压 马 达 负 载 压 力 载 敏 感 阀 &"负 1 其 它 是 一 个 压 力 控 制 二 边 伺 服 阀 又 称 低 压 压 力 量 补 偿 阀 输 !流 入 记 号 是 液 压 泵 的 输 出 压 力 与 液 压 马 达 负 载 压 力 之 差 输 出 记 + + 限 号 是 压 力 用 来 操 纵 液 压 泵 变 量 机 构 压 阀 于 调 定 泵 的 最 高 + 5用 压 力 量 泵 '"变 ? 是 一 种 压 力 补 偿 式 变 量 泵 其 变 量 斜 盘 液 压 缸 制 载 负 *由 )控 !! 它
!"
# ' !
压 差 增 大 从 而 引 起 负 载 敏 感 阀 的 阀 芯 上 移 变 量 缸 无 杆 腔 与 泵 出 口 连 通 泵 流 量 ! ,的 减 小 这 于 是 泵 出 口 压 力 减 小 直 至 比 例 节 流 阀 端 的 压 差 恢 复 到 变 化 之 前 的 值 时 负 !两 载 敏 感 阀 的 阀 芯 又 重 新 回 到 中 位 系 统 在 比 原 来 较 小 的 流 量 下 达 到 了 新 的 平 衡 增 大 如 在 比 例 节 流 阀 的 开 口 则 系 统 调 解 过 程 与 上 述 过 程 相 反 比 例 节 流 阀 定 后 系 统 即 处 !调 于 平 衡 状 态 这 时 如 果 负 载 减 小 则 负 载 敏 感 阀 端 压 差 增 大 阀 芯 上 移 变 量 缸 '两 ! ,的 无 杆 腔 与 泵 出 口 连 通 使 泵 的 流 量 减 小 出 口 压 力 减 小 直 至 比 例 节 流 阀 端 的 压 差 减 !两 负 小 到 变 化 之 前 的 值 从 而 流 过 比 例 节 流 阀 流 量 和 负 载 减 小 之 前 相 等 载 增 大 也 是 !的 如 此 也 即 比 例 节 流 阀 定 之 后 系 统 即 处 于 恒 流 状 态 负 载 变 化 不 影 响 系 统 流 量 !调 统 压 力 控 制 &"系 当 负 载 压 力 达 到 比 例 调 压 阀 设 定 值 时 压 力 阀 开 启 由 于 液 阻 比 例 调 压 阀 &的 (与 间 构 成 液 压 半 桥 因 此 负 载 敏 感 阀 弹 簧 腔 压 力 降 低 阀 芯 上 移 变 量 缸 无 杆 腔 与 &之 5型 泵 出 口 连 通 泵 流 量 减 小 出 口 压 力 降 低 直 至 负 载 敏 感 阀 两 端 压 力 差 再 度 恢 复 原 值 由 于 这 半 桥 作 用 此 时 比 例 节 流 阀 端 压 差 小 于 负 载 敏 感 阀 两 端 压 差 阀 芯 又 处 于 中 位 !两 时 系 统 在 比 原 来 较 小 的 流 量 下 重 新 达 到 平 衡 即 泵 的 流 量 自 动 与 负 载 需 要 相 适 应 基 本 没 有 溢 流 损 失 当 系 统 压 力 达 到 比 例 压 力 阀 的 设 定 值 之 后 如 果 负 载 进 一 步 增 大 则 由 于 液 压 5型 半 桥 的 存 在 系 统 即 处 于 恒 压 状 态 压 力 不 可 能 继 续 升 高 除 非 增 大 比 例 溢 流 阀 的 电 流 为 防 止 比 例 溢 流 阀 压 力 设 定 过 高 损 坏 系 统 在 泵 出 口 处 装 有 安 全 阀 %
负载敏感系统阀前和阀后补偿
负荷传感系统分阀前补偿和阀后补偿,当有两个或两个以上的负载同时动作时,如果主泵提供的流量足够满足系统所需流量,阀前补偿和阀后补偿的作用是完全一样的;如果主泵提供的流量无法满足系统所需流量,那么阀前补偿的那种情况是:主泵流量首先往负荷小的负载提供流量,当满足完了负荷小的负载的流量要求时,才往其他的负载供流量;而阀后补偿的情况是:同比(阀开口量)减少各个负载的流量供给,达到动作很协调的效果。
即:主泵提供的流量无法满足系统所需流量时,阀前补偿的流量分配与负载有关,而阀后补偿的流量分配与负载无关,只与主阀的开口量有关。
阀前补偿和阀后补偿都是为了使负载运动速度与负载压力无关而产生的。
阀前补偿是为了能对补偿的控制,阀后补偿是对执行元件的直接补偿,阀前补偿是控制P口到A口之间的压差恒定,阀后补偿是控制B口到T口之间的压差恒定。
但是阀前补偿不能对系统产生的负负载进行补偿,而阀后补偿可以,如:rexroth的ludv系统采用阀后补偿。
根据压力补偿阀布置在整个液压油路中的位置,负载敏感压力补偿控制系统还可以分为阀前压力补偿负载敏感系统和阀后压力补偿负载敏感系统。
阀前补偿是指压力补偿阀布置在油泵与操纵阀之间,阀后补偿是指压力补偿阀布置在操纵阀与执行机构之间。
阀后补偿比阀前补偿要先进,主要体现在泵供油不足的情况下。
如果泵供油不足的话,阀前补偿的主阀,导致的结果是向轻载去的流量多,重载去的流量少,就是轻载动得快,复合动作时,各个执行元件不同
步。
而阀后补偿没有这个问题,会比例分配泵所提供的流量,复合动作时使各个执行元件同步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、负载敏感和压力补偿概念(一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。
以往液压系统在使用操纵过程中,存在着以下需解决的问题:1.节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。
2.操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。
3.单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。
合理地分配流量,实现理想复合动作。
4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。
为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。
目前液压传动仍存在问题有待解决。
例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。
目前人们正在研究采用电路中变压器这类东西,来解决这个问题。
(二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。
(即广义的负载敏感和压力补偿)。
负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行反馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。
负载敏感系统所采用的控制方式包括液压控制和电子控制。
从负载敏感系统的液压元件来看可分:负载敏感阀:将压力、流量和功率变化信号,向阀进行反馈,实现控制功能的阀。
负载敏感泵:将压力、流量和功率变化信号,向泵进行反馈,实现控制功能的泵和马达。
负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。
压力补偿:将压差设定为规定值进行的自动控制都叫压力补偿。
压力补偿流量控制:不受负荷压力变化和液压泵流量变化的影响,由设定节流压差值对流量进行自动控制,称为压力补偿流量控制。
在节流调速中,根据流量基本计算式,p k Q ∆=,压差保持不变(=∆p 常数),只要调节阀口面积(反映在k 上)就能控制通过阀的流量,通过改变阀的开度,不受负载和液压泵流量影响,改变和控制流量,利用流量控制阀的原理来进行调速,提出了压力补偿概念。
在节流口上,并联或串联一个压力补偿器。
(三)开中心直通型油路系统存在的问题。
前面已经谈到挖掘机开心式油路都采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。
并联供油路,组成并联油路,把二种油路采用各种方式组成起来,就构成了复杂多变的挖掘机油路。
操纵阀的结构简图和符号图如图1所示。
量来实现的。
由于是靠回油节流建立的压力来克服负载压力,因此调速特性受负载压力和油泵流量的影响,如图所示,图中①表示低负载,②表示高负载。
当滑阀行程一定,负荷压力增大,去油缸的流量减小。
随着负载压力增加和液压泵流量的减少,阀杆调速的死区(空行程)增大,而阀杆有效调速范围的行程减小,调速特性曲线(流量随行程变化)变陡,阀杆行程稍有变化,流量变化大,使调速操作性能差。
这是开式油路的一大缺点。
挖掘机工作过程负载压力是不稳定变化着的,液压泵的流量也在不断变化,因此使其调速操作性能很不稳定,操纵困难。
这类油路主阀设计时,其开口特性需要精心设计,另外阀杆上的液动力和在主阀上的防吸空阀的吸入特性对操纵性能也有影响,需要考虑。
开式油路操纵性能另一缺点是:当一泵供多个执行器同时动作时,因液压油是向负载轻的执行器流,需要对负载轻的执行器控制阀杆进行节流,特别是像挖掘机这类机械,各执行器的负荷时刻在变化,但又要合理地分配流量,能相互配合实现所要求复合动作,是很难控制,操纵性差。
另外开中心直通型油路由于很难控制去各执行器的流量,要适应挖掘机各种作业工况的流量分配要求,不得不在多路阀中加上各种控制阀,使得挖掘机多路阀不能采用通用多路阀,而必须采用专用多路阀,其结构很复杂。
总之,这类油路可控性差,司机要精确控制挖掘机工作装置是很困难的,全靠司机感觉、经验和临场发挥。
因此司机操作要求注意力高度集中,其精神负担和心理负担是很重的。
二、通常的负载敏感阀系统:该系统采用四通阀,并联供油(一)该负载敏感系统由定量泵、阀组入口溢流阀型压力补偿器、操纵阀杆可变节流器和梭阀网络组成。
在四通多路阀组入口处设旁通型压力补偿流量控制阀(又称溢流阀型压力补偿器或三通压力补偿器),其工作原理和调速阀相同,在定差溢流阀后,设节流阀组成调速阀。
操纵阀杆可控的开口面积变化起可变节流阀作用(如图3b 所示)。
进入操纵阀的压力和经操纵阀杆节流去执行器的压力分别引到定差溢流阀阀心的左右两端。
当操纵阀多阀杆同时动作时,通过梭阀网络检出执行器中负荷压力最高的压力,作用到定差溢流阀的右端。
通过操纵阀的流量γpg a c Q ∆⋅⋅=2式中:c :流量系数,a :节流开度(与阀行程有关),g :重力加速度,γ:油的比重,Δp :补偿阀压差其中c ,g ,γ可认为是常数,则p ka Q ∆=,由于补偿阀压差一定,则通过操纵阀的流量由阀杆行程所决定,与负荷无关(见图3c 和d )。
该系统的特点是:1. 在操纵阀杆都处于中位时,溢流阀背面油压回油箱,起卸载阀作用,中位卸载压力为3.5bar 左右。
由于中位通过卸载阀卸油,操纵阀杆是封闭的,油液不通过阀杆,因此俗称闭式(闭中心)油路。
2. 有一个操纵阀杆动作时,油泵通过该阀组的流量,由该阀杆的行程所确定,和其负载和油泵流量无关,如图3(c )和(d )所示。
泵的出口压力比负载压力约高10bar 左右,(用于克服补偿器液阻和操纵阀液阻)。
3. 多个操纵阀杆同时动作时,只是负载压力最高的得到补偿,该执行器流量由此阀杆行程确定。
而其他阀杆操纵时的流量分配是不确定的。
4. 溢流旁通型压力补偿阀可作为优先供油阀,即将旁通回油箱改为旁通供给下游阀。
该阀首先保证它控制的阀的供油需要,剩下的才供给其下游阀。
图4各阀杆压力补偿系统 仅在阀组入口设旁通型压力补偿流量控制阀,在多阀杆同时动作时,只是负荷压力最高的得到补偿,而其他阀杆流量是不确定的,为了解决此问题,在操纵阀各阀杆前增设减压阀型压力补偿流量控制阀(或称直通型或二通型压力补偿器),如图4(a )所示,减压阀型压力补偿流量控制阀如图4(b )所示。
该阀与调速阀工作原理相同,它是在定差减压阀后设节流阀组成调速阀,操纵阀杆可控开口面积变化起可变节流阀的作用。
操纵阀阀杆入口压力和操纵阀杆节流控制去执行器的压力分别引到定差减压阀阀芯的左右两端。
其通过流量p k Q ∆=,当减压阀弹簧力设定后,Δp 可认为不变,因此通过阀杆的流量只和k (阀杆行程)有关,基本不受负载压力变化的影响,多阀杆同时动作时彼此没有影响,提高了各阀杆的调速控制性能。
减压阀型压力补偿流量控制阀设计压降一般为7bar 左右,但是这种负载敏感系统存在一个缺点,当液压泵流量足够时,通过操纵阀阀口的压差都能达到补偿压力,这时各阀入口压力补偿阀都能起调节作用。
当多个执行器同时动作时,其操纵阀都在大开度下工作。
各执行器总流量需求往往会超过泵的供油流量,即所谓的流量出现饱和时。
这时由于并联供油,油首先供给低压执行器,满足低压执行器的需要,流经低压操纵阀的压力降能达到补偿压力,其压力补偿阀能起控制流量作用。
即泵流量不足时首先保证供给低压执行器,多余下来的油才供给高压执行器,此时流向高压执行器操纵阀的流量不足,达不到压力补偿阀起作用的压力。
高压执行器动作速度降低,甚至不动,见图5(由于泵的油都供给负荷低的执行器,其输出压力可能低于最高负荷压力)。
此时进入达到补偿压差的低压执行器,可由其操纵阀行程来控制其速度,达不到补偿压差的高压执行器,不能用操纵阀来控制其运动。
低压执行器和高压执行器的操纵阀杆行程和其速度关系如图5所示。
部流量,其次挖掘机经常需要几个执行器同时动作,而且挖掘机负荷大,其压力感应恒功率控制和发动机转速下降等因素,都使泵输出流量降低,因此经常出现泵流量饱和现象,必须解决此问题。
(三)变量泵负载敏感压力补偿系统以上所述的是定量泵负载敏感压力补偿系统,执行元件调速采用节流调速,能量损失大,为了减少能量损失,应把节流调速改为容积调速,为此采用变量泵负载敏感压力补偿系统,如图6所示。
该系统采用了负载敏感泵,其变量机构由伺服油缸和油泵调节阀(负载敏感)组成。
油泵调节阀左端受油泵压力作用,右端受最大负载压力和弹簧力作用。
当左端油泵压力作用力小于右端最大负载压力和弹簧力作用时,阀在右位,伺服缸回油,在其弹簧力作用下,油泵处于最大排量位置。
当左端油泵压力作用力大于右端最大负载压力和弹簧力作用时,阀在左使油泵排量变得最小,实现中位卸载。
当油泵压力作用力大于最大负载压力作用力和卸载阀弹簧力时,卸载阀打开,油泵回油,由于卸载阀弹簧作用力设计成大于油泵调节阀弹簧作用力,因此油泵调节阀处于左位,油泵压力油进入伺服缸,使油泵排量变得很小,实现高压卸载。
当操纵某一操纵阀阀杆时,由于操纵阀杆节流,压力补偿阀节流和沿途阻力损失,使油泵压力P大于负载压力P L。
当P作用力大于P L作用力加弹簧力时,使阀处于右位,压力油进入伺服缸,克服弹簧力,使油泵排量减小。
由于油泵排量减小,使得操纵阀和压力补偿阀的节流压降和沿途压降都减小,则压差P-P L 减小,使油泵调节阀向右移动,取得新的平衡,即操纵阀开度减小时,油泵排量也随之减少,实现容积调速,按需供油。
当多阀杆同时动作时,油泵响应最大负载操纵阀进行变量供油。
三、分流比(抗流量饱和)负载敏感阀系统当多个执行器同时动作,其流量需要超过泵的供油流量时,会出现负荷较大的执行元件速度变慢,甚至停止。
使得几个机构不能同时动作,影响挖掘机正常工作。
当出现流量饱和时,不能满足各执行元件流量的需要,较合理的方法是各执行元件都相应地减少供油量,对应各阀杆操纵行程,按比例分配流量。
我们称这种系统为分流比负荷敏感阀系统。
通常的负荷敏感阀系统的特点是各操纵阀由独立的压力补偿器来设定阀杆的进口压力和出口压力之差是一定的。
各阀杆的补偿压力可以设定为不相同,阀杆进出口压差是由弹簧力所决定。
其主要问题是要起补偿作用必须油流经操纵阀产生的压降达到补偿压力。
在并联油路中油优先流向低负荷执行器,在流量不足时,高负荷执行器得不到足够流量,不起补偿作用。
为了解决此问题,将压力补偿器进行改进,让它起负荷均衡器作用,低负荷的执行器通过压力补偿器的节流,使它与高负荷执行器的负荷压力相同,这样图6所示为林德公司分流比负载敏感系统,其特点是:在每个操纵阀前设置压力补偿阀,此压力补偿阀阀心左端受油泵压力P P 和其负载压力P L 作用,右端受操纵阀前压力P m 和由梭形阀引入的最高负载压力P L1(设P L1>P L2,P L1=P Lmax )作用,对压力补偿阀1取力平衡得:(设阀芯左右面积相等)111L m L p P P P P +=+得 1m p P P =油流通过压力补偿阀无压差。