线路相间距离保护实验
输电线路相间的距离保护整定计算
输电线路相间的距离保护整定计算输电线路是电力系统中重要的组成部分,其众多保护装置中,相间距离保护是最为常用的一种保护。
本文将介绍输电线路相间距离保护的概念、选择及整定计算方法。
1. 相间距离保护概述相间距离保护是指通过测量故障电流和电压的相量差来判断故障点到保护点的距离,从而对电力系统进行保护的一种保护方式。
在电力系统中,一般采用成对的线路传输电能,因此,在相间距离保护中,普遍采用两线的距离来判断故障点到保护点的距离。
由于线路距离不同,其对应的保护距离也不同,因此,需要根据输电线路的物理特征和系统要求进行保护距离的合理选择和整定计算。
2. 相间距离保护的选择在选择相间距离保护时,主要应考虑以下三个方面:1.距离保护的可靠性要求:距离保护是电力系统中最为常用的保护方式之一,要求能够可靠地进行故障检测和判断,确保及时有效地切除故障电路,防止故障扩散和系统失稳。
2.输电线路的物理特征:距离保护的选择应考虑输电线路的长度、电压等级、输电能力、线路类型等多个因素。
例如,在长距离输电线路中,由于线路阻抗大,传输过程中存在较大的电力损耗和电压降,保护阻抗需相应设置较低;而在变电站内,由于线路较短、电压高、抢修容易,可适当提高保护设置阻抗。
3.保护方案的选择:距离保护可分为单相、双相和三相保护,具体选择应考虑电力系统的运行特点、系统设备的类型和数量、以及系统负荷状况。
在实际工作中,应根据以上因素选定合适的距离保护,进行系统调试。
3. 相间距离保护整定计算方法相间距离保护整定计算的主要内容包括保护距离、阻抗设置和整定系数的确定。
3.1 保护距离的确定保护距离是指相间距离保护所对应的线路长度,其一般应按照以下公式进行计算:Lp = Kp * L其中,Lp为保护距离,Kp为保护系数,L为线路长度。
在实际计算中,应根据具体线路的物理特征选取合适的保护系数。
同时,由于混合线路的存在,可能会产生等效阻抗的问题,需要对阻抗进行修正。
微机保护实验报告参考模板
实验七微机线路相间方向距离保护实验一、实验目的1、掌握微机相间方向距离保护特性的检验方法。
2、掌握微机相间方向距离保护一、二、三段定值的检验方法。
3、掌握微机保护综合测试仪的使用方法。
4、熟悉微机型相间方向距离保护的构成方法。
二、实验项目1、微机相间方向距离保护特性实验2、微机相间方向距离保护一、二、三段定值实验三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。
3、微机相间方向距离保护特性的测试第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护测试主界面。
(参见M2000使用手册)第二步:设置测试方式及各种参数。
将测试方式设置成自动搜索方式,时间参数设置:包括故障前时间、最长故障时间、间隔时间。
固定值:用户可以设置固定电压或电流及其大小。
间隔时间:是每一个脉冲后的停顿时间,在该时间内没有电压电流输出;若不希望在测试过程中有电压失压的情况,可将间隔时间设为 0 。
开关量输出:用户可以定义在故障发生时的开关量输出。
跳闸开关量:每个开关量输入通道以图形方式显示该通道的设定状态,设定状态包括:不选、断开、闭合三种。
您可以用鼠标点击相应开关的图形的中心即可切换开关状态。
在开关图形的右边有两个单选框分别为:与或,这是所有设定的开关量应满足的动作逻辑关系,与为所有设定的开关状态必须同时满足,或为设定的所有开关中某一个满足条件即可。
故障:设置故障类型。
设置成相间故障类型(如两相短路或三相短路)。
220kV线路距离保护设计探究
220kV线路距离保护设计探究摘要:本文对220kV线路距离保护实施方案进行了设计研究,供同行借鉴参考。
关键词:220kV线路距离保护重合闸一、220kV线路保护的基本原理1.距离保护的基本原理(1)距离保护的概念。
距离保护是利用短路时电压电流同时发生变化的特征,测量电压与电流的比值,反映故障点到保护安装处的距离的工作保护。
(2)距离保护的构成。
距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成。
(3)阻抗继电器及其动作特性。
在距离保护中,阻抗继电器的作用就是在系统发生短路故障时,通过测量故障环路上的测量阻抗Zm,并将它与整定阻抗Zset 相比较,以确定出故障所处的区段,在保护范围内部发生故障时,给出动作信号。
1)圆特性。
圆特性阻抗继电器,有全阻抗圆、方向阻抗圆、偏移阻抗圆,后者是传统继电保护中应用最为广泛的阻抗继电器。
其中全阻抗圆特性无方向性,方向阻抗圆存在电压死区,偏移阻抗圆特性是前两者的综合,特性较好,应用较多。
2)四边形特性。
四边形特性阻抗继电器综合了电阻电抗型直线特性,并考虑了阻抗的方向性,是一种较为精确反映故障测量阻抗边界的阻抗继电器,具有良好的抗过渡电阻的能力。
在传统继电保护中,因难于实现而很少使用。
但随着微机保护的出现,这些功能在微机中非常容易实现,因此得到了广泛应用。
圆特性的阻抗元件在整定值较小时,动作特性圆也就比较小,区内经过渡电阻短路时,测量阻抗容易落在区外,导致测量元件拒动作;具有多边形特性的阻抗元件可以克服这些缺点,能够同时兼顾耐受过渡电阻的能力和躲负荷能力。
2.自动重合闸的基本原理(1)自动重合闸的作用。
大多数发生在送电线路上的故障都是瞬时性的,在线路被继电保护迅速断开以后,电弧即行熄灭,此时,如果把断开的线路断路器再合上,就能够恢复正常供电。
由于重合闸装置本身投资很低,工作可靠,因此,在电力系统中得到了广泛的应用。
(2)输电线路的三相一次重合闸。
距离保护I、Ⅱ、Ⅲ段定值校验
在“距离与零序保护试验”菜单可以定性分析距离保护各段动作的灵敏性和可靠性,能一次性自动完成相间距离Ⅰ、Ⅱ、Ⅲ段定值和接地距离Ⅰ、Ⅱ、Ⅲ段定值校验,根据规程,一般是以5%误差为标准对动作值进行定点校验,即距离保护Ⅰ、Ⅱ、Ⅲ段在0.95 倍定值时,应可靠动作;在1.05 倍定值时,应可靠不动作。
1、保护相关设置:保护定值设置:(2)保护压板设置:在“定值整定”里,把运行方式控制字“投I 段接地距离”、“投II 段接地距离”、“投III 段接地距离”、“投I 段相间距离”、“投II 段相间距离”、“投III 段相间距离”均置“1”,其他的均置“0”;在“压板定值”中,仅把“投距离保护压板”置“1”;在保护屏上,仅投“距离保护”硬压板。
2、试验接线:将测试仪的电压输出端“Ua”、“Ub”、“Uc”、“Un”分别与保护装置的交流电压“Ua”、“Ub”、“Uc”、“Un”端子相连。
将测试仪的电流输出端“Ia”、“Ib”、“Ic”分别与保护装置的交流电流“IA”、“IB”、“IC”(极性端)端子相连;再将保护装置的交流电流“IA'”、“IB'”、“IC'”(非极性端)端子短接后接到“IN”(零序电流极性端)端子,最后从“IN'”(零序电流非极性端)端子接回测试仪的电流输出端“In”。
将测试仪的开入接点“A”、“B”、“C”、“R”分别与保护装置的分相跳闸出口接点“跳A”、“跳B”、“跳C”以及“重合闸”接点相连。
测试仪的开入量公共端“+KM”与保护装置的公共端相连。
做距离保护试验时如果不带重合闸试验可以不用接重合闸出口,也可以直接一个开入量。
具体如下图所示:图1.7.1RCS-901B 距离保护接线图3、距离保护Ⅰ、Ⅱ、Ⅲ阻抗定值校验:在“距离与零序保护”菜单里,根据测试项目和故障类型的选择,试验分别由若干个子试验项目构成,各子试验项目都可以选择不同的故障内型和不同的阻抗倍数,整个试验项目中故障的启动方式由用户设置(时间启动,或按键启动)。
07-第七部分 输电线路相间的距离保护整定计算
I I Z op K .1 res Z AB
式中
I Z op .1
I K rel
0.8 ~ 0.85 ;
Z AB
图7-1 距离保护整定计算系统图 若被保护对象为线路变压器组,则送电侧线路距离保护第Ⅰ段可 按保护范围伸入变压器内部整定,即 (7-2) Z I K I Z K Z
2.与相邻距离保护第Ⅱ段配合 为了缩短保护切除故障时间,可与相邻线路相间距离保护第Ⅱ段 配合,则 III III II (7-10)
Kb. min Z op.2 Z op.1 K rel Z AB K rel
12
式中 K IIi ——距离保护第Ⅲ段可靠系数,取 0.8 ~ 0.85 ; rel
相间距离保护第Ⅱ段的灵敏度按下式校验
K
II sen
Z
II op .1
Z AB
≥
1 . 3 ~ 1 .5
当灵敏度不满足要求时,可与相邻线路相间距离第Ⅱ段配合,其 动作阻抗为 (7-5) II II II op.1 rel AB rel b. min op.2
Z
K Z
K K
Z
8
式中
——可靠系数,取 K rel
II Z op .2
≤ K rel
0 .8 ;
——相邻线路相间距离保护第Ⅱ段的整定值。
13
当距离保护第Ⅲ段的动作范围未伸出相邻变压器的另一侧时, 应与相邻线路不经振荡闭锁的距离保护第Ⅱ段的动作时间配 合,即
III t op.1 II t op.2
5
式中
II K rel
——距离保护第Ⅰ段可靠系数,取 0.8 ~ 0.85 ;
距离保护综合实验报告
一、实验目的1. 理解距离保护的基本原理和工作特性。
2. 掌握距离保护的调试方法和步骤。
3. 分析距离保护在不同故障情况下的动作行为。
4. 提高对电力系统保护装置的维护和管理能力。
二、实验原理距离保护是一种根据电力系统故障点的距离来判定故障位置并实施保护的继电保护装置。
它利用故障点距离保护装置的距离与系统各元件阻抗的关系,通过测量保护装置处的电压和电流,计算出故障点的距离,从而实现对故障的快速切除。
距离保护的基本原理如下:1. 利用故障点的电压和电流的相位差,确定故障点与保护装置之间的距离。
2. 根据距离计算结果,判断是否发出跳闸信号,实现对故障的切除。
三、实验仪器与设备1. 距离保护实验装置2. 电力系统模拟器3. 数字示波器4. 电流表5. 电压表6. 计算器四、实验步骤1. 熟悉实验装置的结构和原理,了解各部件的功能。
2. 将实验装置按照实验要求进行接线,确保接线正确无误。
3. 打开电力系统模拟器,设置实验参数,如故障类型、故障位置等。
4. 启动实验装置,观察保护装置的动作情况,记录相关数据。
5. 改变故障参数,重复步骤4,观察保护装置的动作行为。
6. 分析实验数据,验证距离保护的工作原理和特性。
五、实验内容1. 故障类型:短路故障、接地故障、过负荷故障。
2. 故障位置:线路末端、线路中部、保护装置附近。
3. 故障类型与位置组合:共9种组合。
六、实验结果与分析1. 短路故障:在故障点附近,距离保护装置能够迅速动作,切除故障;在故障点较远的位置,距离保护装置动作时间有所延迟。
2. 接地故障:距离保护装置对接地故障的灵敏度较高,能够迅速动作,切除故障。
3. 过负荷故障:距离保护装置对过负荷故障的灵敏度较低,不能有效切除故障。
七、实验结论1. 距离保护能够根据故障点的距离,实现对电力系统故障的快速切除。
2. 距离保护在不同故障类型和位置下的动作行为有所不同,需要根据实际情况进行调整和优化。
3. 距离保护在实际应用中,需要定期进行维护和校验,确保其可靠性和准确性。
实验一距离保护实验一、实验目的掌...
实验一 距离保护实验一、实验目的1. 了解距离保护的原理;2. 熟悉接地距离保护的多边形特性和相间距离保护的圆特性;3. 掌握距离保护的逻辑组态方法。
二、实验原理及逻辑框图相间距离保护采用圆特性的阻抗元件。
相间阻抗元件由ZAB 、ZBC 、ZCA 三个阻抗元件和偏移阻抗元件、电抗线、负荷特性曲线组成。
a. 阻抗元件在故障发生150 ms 之内采用带记忆的正序电压作极化量的欧姆继电器,记忆电压采用故障前八周电压。
动作方程:1ΦΦY ΦΦ|0|1m 1θ270I Z U U Argθ90-<-<-︒︒式中:|0|1m U 为故障前的正序电压;AB、BC、CA ΦΦ=; 1θ为方向特性向一象限偏移角;Zy 为各段定值。
150ms 之后取消记忆,采用正序电压作极化量,动作方程为:1ΦΦY ΦΦ1m1θ270I Z U U Argθ90-<-<-︒︒若正序电压较低(15% Un ),为三相短路,为保证正方向故障能动作,反方向故障不动作,设置了偏移特性。
在I 、II 段距离继电器暂态动作后,改用反偏阻抗继电器,保证继电器动作后能保持到故障切除。
在I 、II 段距离继电器暂态不动作时,改用上抛阻抗继电器,保证母线及背后故障时不误动。
对后加速则一直使用反偏阻抗继电器。
反偏或上抛的阻抗值为:)ZY Ω,0.5 min(0.3Z 1q =1ZY 为相间距离I 段定值Ⅰ、Ⅱ段阻抗继电器暂态及稳态动作特性如图5-1,5-2所示:图5-1 Ⅰ、Ⅱ段阻抗继电器暂态特性 图5-2 Ⅰ、Ⅱ段阻抗继电器稳态特性Ⅲ段阻抗继电器的动作特性:1ΦΦY ΦΦ1m1θ270I Z U U Argθ90-<-<-︒︒b.电抗线为防止相间阻抗元件偏移后的超越,距离Ⅰ、Ⅱ增加电抗线特性,其动作特性为:︒︒<⨯φφ<90Zy/Uop)Arg(-I 90-c.负荷特性曲线在重负荷时,测量阻抗可能落入阻抗元件内,因此增加负荷特性曲线。
实验三距离保护
实验三、距离保护及方向距离保护整定实验一、实验目的1.熟悉阶段式距离保护及方向距离保护的工作原理和基本特性。
2.掌握时限配合、保护动作阻抗(距离)和对DKB、YB的实际整定调试方法。
二、预习与思考1.什么是距离保护?距离保护的特点是什么?2.什么是距离保护的时限特性?3.什么是方向距离保护?方向距离保护的特点是什么?4.方向距离保护的Ⅰ段和Ⅱ段为什么在单电源或多电源任何形状的电网中都能够保证有选择性地切除故障线路?5.阶段式距离保护中各段保护是如何进行相关性配合的?6.在整定距离保护动作阻抗时,是否要考虑返回系数。
三、原理说明1.距离保护的作用和原理电力系统的迅速发展,使系统的运行方式变化增大,长距离重负荷线路增多,网络结构复杂化。
在这些情况下,电流、电压保护的灵敏度、快速性、选择性往往不能满足要求。
电流、电压保护是依据保护安装处测量电流、电压的大小及相应的动作时间来判断故障是否发生以及是否属于内部故障,因而受系统的运行方式及电网的接线形式影响较大。
针对被保护的输电线路或元件,在其一端装设的继电保护装置,如能测量出故障点至保护安装处的距离并与保护范围对应的距离比较,即可判断出故障点的位置从而决定其行为。
这种方式显然不受运行方式和接线的影响。
这样构成的保护就是距离保护。
以上设想,表示在图5-1中。
图中线路A侧装设着距离保护,由故障点到保护安装处间的距离为l,按该保护的保护范围整定的距离为l zd,如上所述,距离保护的动作原理可用方程表示:l≤l zd。
满足此方程时表示故障点在保护范围内,保护动作;反之,则不应动作。
图5-1 距离保护原理说明Z—表示距离保护装置距离比较的方程两端同乘以一个不为零且大于零的z1(输电线每千米的正序阻抗值)得到:Z d = z1l ≤ z1l zd ( 5-1 )式(5-1)称为动作方程或动作条件判别式。
表明距离保护是反应故障点到保护安装处间的距离(或阻抗)并与规定的保护范围(距离或阻抗)进行比较,从而决定是否动作的一种保护装置。
距离及零序保护试验注意事项
距离及零序保护试验注意事项2004-12-7 10:55:02 阅读1443次1、注意正确设置各段阻抗定值:整定值以R-X或Z-Φ方式给出应分别选R-X或Z-Φ方式输入进输入框中。
对于四方、许昌、南自厂的某些保护如定值以XX1~XX3、XD1~XD3的方式给出的则以R-X方式输入,但其中各段的R值均设为0。
2、正确设置各段的试验电流:对相间距离一般按以下公式设置各段试验电流:I×Z在〔10-35〕V范围内;对接地距离一般按以下公式设置各段试验电流:I×Z在〔10-25〕V范围内。
3、正确确定零序补偿系数的设置方式:各种保护零序补偿系数的定值给出方式一般有3种:KL方式(KL. Φ)、Kr/Kx方式、Z0/Z1方式,应根据定值的给出方式正确选择,并正确填入设置数据。
4、正确设置各段的试验时间:各段的试验时间一般应略大于该段的整定时间(大0.2s即可),注意I段的整定时间一般为0,则该段的试验时间设为0.2s。
5、做零序保护时一般设置故障相电压为10-30V,相角设为灵敏角,或90º。
6、仅做各段的动作定检时,一般设为瞬时性故障,只做跳闸;如需同时做重合闸和后加速跳闸,则需设为永久性故障。
故障前时间一般应大于5 s,如需做重合闸,则应大于20 s。
7、做接地距离时应退出零序保护压板,做零序保护时应退出距离保护压板。
距离和零序保护试验经验总结2005-1-4 8:34:08 阅读1437次110KV及以上的变电站一般都装有距离和零序保护,作为线路保护的主保护。
继保之星强大的软硬件功能已能满足一次性完成三段式相间与接地距离,和三段式零序保护的测试,并且,根据实际情况设置正向或反向故障。
试验期间只需按软件提示投退相应的压板,无须其它任何的干预即可自动地完成全部的试验,并且试验报告完整详细,一目了然。
选择“零序和距离保护”测试模块进行试验,按软件界面的提示将距离和零序保护的定值填入,按0.95和1.05倍测试。
距离保护试验方法
距离保护试验方法距离保护试验方法是电力系统中一种非常重要的手段,用于确保系统的可靠性和稳定性。
本文将详细介绍距离保护试验方法,并提供一些实用的指导意义。
在电力系统中,距离保护是一种常见的保护方式,用于保护输电线路和变电站。
它的主要功能是在发生故障时,快速准确地判断故障发生的位置,并切断故障区域与正常区域之间的电气连接,以避免故障扩散和对系统的进一步损害。
距离保护试验一般分为在线试验和离线试验两种方式。
在线试验是指在正常运行状态下进行试验,不需要停电,可以实时监测和采集故障数据。
离线试验则需要停电,对系统进行人为干扰,模拟故障,通过观察和记录来评估保护装置的性能。
在线试验的方法包括干扰试验、正常工况试验和故障应急试验。
干扰试验是通过人为改变系统的负荷、电压等工作条件,观察保护装置的动作情况,以验证其鉴别能力和可靠性。
正常工况试验是在正常运行状态下对保护装置进行校验,例如检查设备的接线是否正确、参数设置是否准确等。
故障应急试验是对系统进行突发故障的模拟,测试保护装置的速断性能和动作时间。
离线试验的方法包括人工故障模拟试验、电子故障模拟试验和实际故障试验。
人工故障模拟试验是通过在系统中接入故障发生器,模拟各种故障类型,观察保护装置的动作情况和动作时间。
电子故障模拟试验是通过专用的测试设备,产生各种故障波形,对保护装置进行评估。
实际故障试验则是在实际运行中记录故障信息,并对保护装置进行测试。
在进行距离保护试验时,需要注意以下几点。
首先,试验前需要对试验方案进行充分的计划和准备工作,确保试验的顺利进行。
其次,在进行离线试验时,要注意保护设备的安全性,严禁对系统造成过大的影响和损害。
再次,试验过程中要仔细记录数据,并进行分析和比对,以评估保护装置的性能和可靠性。
最后,试验结束后要对试验结果进行总结和归纳,及时修复和改进保护装置的缺陷。
总之,距离保护试验方法是确保电力系统运行安全的重要手段。
通过合理的试验方法和细致的试验过程,可以及时发现和排除保护装置的故障,提高系统的可靠性和稳定性。
华北电力大学继电保护综合实验报告完整版
华北电⼒⼤学继电保护综合实验报告完整版华北电⼒⼤学继电保护与⾃动化综合实验报告院系班级姓名学号同组⼈姓名⽇期年⽉⽇教师肖仕武成绩Ⅰ. 微机线路保护简单故障实验⼀、实验⽬的通过微机线路保护简单故障实验,掌握微机保护的接线、动作特性和动作报⽂。
⼆、实验项⽬1、三相短路实验投⼊距离保护,记录保护装置的动作报⽂。
2、单相接地短路实验投⼊距离保护、零序电流保护,记录保护装置的动作报⽂。
三、实验⽅法1表1- 12、三相短路实验1) 实验接线图1- 1表1- 2表1- 3 三相短路故障,距离保护记录4) 保护动作结果分析R=5.0Ω,X=1.0Ω时,距离保护I段动作,故障距离L=20.00R=5.0Ω,X=3.3Ω时,距离保护II段动作,故障距离L=74.00R=5.0Ω,X=6.0Ω时,距离保护III段动作,故障距离L=136.003、单相接地短路实验1) 实验接线见三相短路试验中的图1-12) 实验中短路故障参数设置见三相短路试验中的表1-2表1- 4 A相接地故障,保护记录4) 报⽂及保护动作结果分析R=5.0Ω,X=1.0Ω时,距离保护I段动作,故障距离L=20.00R=5.0Ω,X=3.3Ω时,距离保护II段动作,故障距离L=77.50R=5.0Ω,X=6.0Ω时,距离保护III段动作,故障距离L=142.00四、思考题1、微机线路保护装置161B包括哪些功能?每个功能的⼯作原理是什么?与每个功能相关的整定值有哪些?功能:距离保护,零序保护,⾼频保护,重合闸1)距离保护是反应保护安装处到故障点的距离,并根据这⼀距离远近⽽确定动作时限的⼀种动作距离保护三段1段:Z1set=(0.8~0.85)Z l,瞬时动作2段:Z1set=K(Z l+Z l1),t=0.053段:躲过最⼩负荷阻抗,阶梯时限特性与距离保护相关的整定值:KG,KG2,KG3,R DZ,XX1.XX2,XX3,XD1,XD2,XD3,,TD2,TD3,T ch,I DQ,I jw,CT,PT,X2)三相电流平衡时,没有零序电流,不平衡时产⽣零序电流,零序保护就是⽤零序互感器采集零序电流,当零序电流超过⼀定值(综合保护中设定),综和保护接触器吸合,断开电路.与零序保护相关的整型值KG1,KG2,KG3,I01,I02,I03.I04,T02.T03,T04,TCH,TQD,IIW,KX,K12,GT,PT3)⾼频保护是⽤⾼频载波代替⼆次导线,传送线路两侧电信号的保护,原理是反应被保护线路⾸末两端电流的差或功率⽅向信号,⽤⾼频载波将信号传输到对侧加以⽐较⽽决定保护是否动作。
相间距离保护实验指导书
相间距离保护实验指导书一、实验目的1 、掌握 LZ-21 型方向阻抗继电器动作阻抗整定;最大灵敏角和动作阻抗特性测试 。
2 、掌握相间距离保护原理接线。
3 、掌握距离保护的整组测试。
二、实验类型综合型三、实验仪器MRT-2000多功能继电保护测试仪,LZ-21阻抗继电器,时间继电器,中间继电器。
四、实验原理1、LZ-21 型方向阻抗继电器继电器简介:1.1、功能:方向继电器是相间距离保护装置最主要的交流元件,它的作用是判别线路故障的方向,测量保护安装处与保障点之间的距离(阻抗),并与继电器的整定阻抗进行比较以确定继电器的工作状态。
本实验选用 LZ-21 型方向阻抗继电器为对象,原理线路图如下:图(1) LZ-21 型方向阻抗继电器原理图1.2、工作原理说明:由电抗变压器( DKB )二次绕组( W3 )提供的,与短路电流成一定比例(且转动一定角度)的电压 Uk ,Uk =KiIj (其中 Ki 是 DKB 的转移阻抗.具有阻抗量纲,)。
由整定变压器 (YB) 二次绕组 (W2) 提供的,与残余电压相位一致并成一定比例的电压Uy 。
Uy=KyUcl (其中 y K 是 I 、 II 段整定板所表示的百分数——实数)。
由极化变压器( JYB )两个二次绕组分别提供两个作为参考向量的极化电压 Uj 。
Uj=KjUcl (其中 Kj 是实数)。
JYB 初级绕组所连接的记忆回路利用其谐振电路中的电流未衰减消失之前.对短路故障前的电压相位加以记忆.并经高电阻 R6 接至第三相电压,以消除故障相与非故障相之间的电压差对测量元件的影响。
通过整流比相回路对上述三个电压进行条件判别得到动作方程: ³+-,,,j y k U U U ,,,jy k U U U --1) 当,,,j y k U U U +->,,,j y k U U U --,加在执行元件——极化继电器( J )两个线圈的电压和值为正,继电器动作。
继电保护仿真实验报告
继电保护数字仿真实验报告姓名:班级:班学号:一.线路距离保护数字仿真实验1.实验预习电力系统线路距离保护的工作原理,接地距离保护与相间距离保护的区别,距离保护的整定。
2.实验目的仿真电力系统线路故障和距离保护动作。
3.实验步骤(1)将dist_protection拷到电脑,进入PSCAD界面;(2)打开dist_protection;(3)认识各个模块作用,找到接地距离保护和相间距离保护部分;(4)运行。
4.实验记录(1)断路器B1处保护的包括故障瞬间及断路器断开瞬间的三相测量电压、电流;如图一所示:其中蓝、绿、红分别为A、B、C三相电压,单位为kV如图二所示:其中蓝、绿、红分别为A、B、C三相电流,单位为kA(2)各个接地距离、相间距离保护测量阻抗的变化。
在dist_relay模块中找到显示接地距离、相间距离保护测量阻抗和整定阻抗的两个XY_Plot,利用Plot右侧的滑竿可以清楚看到测量阻抗与整定阻抗的关系。
注意记录的Plot要显示整个运行期间测量阻抗与整定阻抗的关系。
A-G接地距离保护:图三图四5.实验分析(1)dist_protection所设是何故障,由何种距离保护动作;答:由图可知,图三中的a相测量阻抗轨迹线和整定阻抗圆相交,图四中两条测量阻抗轨迹线和整定阻抗圆不相交。
应该是a相接地故障,而且由接地距离保护动作。
(2)示例中整定阻抗是否与教材所授一致,整定阻抗的阻抗角是否为线路阻抗角;答:不一致,由线路参数可得线路阻抗角为85.98。
6.进一步思考(1)按教材所授重新设置I段整定阻抗,要求整定阻抗的阻抗角为线路阻抗角;(2)改变线路故障位置,使B1断开。
要求上交满足(1)(2)项的仿真示例。
(1)重新设置1段整定阻抗:设为r=50的全阻抗圆,即圆心位于原点处:(2)改变线路故障位置:B1 closed,B2 Relay图七傅立叶分析分析其构成。
3.实验步骤(1)将Current_in_rush拷到电脑,进入PSCAD界面;(2)打开Current_in_rush;(3)认识各个模块作用,a.知道怎么通过下面模块设置合闸角,初始设为0,如图1所示;b.图1. 合闸角设置c.改变下面模块的设置时间从而改变空载合闸时的剩磁(断路器跳开外部电源后,磁通将随时间衰减),图2. 变压器与外接电源断开时间设置(4)按初始条件运行,观察并记录变压器三相励磁电流,两相励磁电流差,三相磁通的变化;(5)使控制角为90度运行,观察并记录仿真结果;(6)增大断路器断开时间(参见(3)b.),使断路器重新合上时的剩磁约为0,运行,观察并记录仿真结果。
三段式距离保护实验总结
在电力系统的稳定运行与安全保障中,距离保护装置起着至关重要的作用。
为了深入了解和评估距离保护的性能,我们开展了一系列严谨的三段式距离保护实验。
通过精心的设计、严格的实施以及全面的数据分析,本次实验取得了丰富的成果,现将实验总结如下。
一、实验背景与目的距离保护是一种基于测量故障点到保护安装处距离的继电保护原理。
它能够快速、准确地切除故障,确保电力系统中设备和线路的安全。
本次三段式距离保护实验的目的在于:验证三段式距离保护装置在不同故障类型、故障位置和系统运行条件下的动作特性和可靠性;分析距离保护的动作时间、灵敏度等关键参数的变化规律;探究影响距离保护性能的因素,并提出相应的改进措施和优化建议。
通过实验,为电力系统的运行、维护和管理提供科学依据,提高电力系统的安全性和稳定性。
二、实验设备与方法(一)实验设备本次实验选用了先进的数字式继电保护测试仪、高精度电流电压互感器、微机保护装置等设备。
这些设备具备高精度、高稳定性和良好的可操作性,能够满足实验的要求。
(二)实验方法采用模拟故障的方法进行实验。
根据电力系统的实际参数和运行情况,设置不同的故障类型、故障位置和系统运行条件。
通过继电保护测试仪向保护装置施加故障电流和电压,观察保护装置的动作情况,并记录相关的数据,如动作时间、动作电流、动作电压等。
对实验过程进行实时监测和数据分析,确保实验的准确性和可靠性。
三、实验结果与分析(一)动作特性分析在实验中,我们分别模拟了各种不同类型的故障,包括单相接地故障、两相接地故障、两相短路故障和三相短路故障。
通过对实验结果的分析,发现三段式距离保护装置能够准确地识别故障类型,并在规定的时间内可靠地动作。
在不同故障类型下,装置的动作时间和动作特性基本符合设计要求,具有良好的选择性和速动性。
在单相接地故障实验中,装置的第一段距离保护在故障点靠近保护安装处时迅速动作,切除故障;第二段距离保护在故障点稍远时动作,进一步扩大了切除故障的范围;第三段距离保护在故障点更远时动作,确保了故障的完全切除。
线路距离保护实训反思
线路距离保护实训反思
本次课程设计的任务是设计输电线路的距离保护,线路的电流电压保护构成简单,可靠性好,用于中、低压电网一般能满足对保护性能的要求。
但是由于其灵敏度受系统运行方式的影响,有时保护范围很小,再者,该保护的整定计算比较麻烦,这使得其在35KV及以上
的复杂网络中很难适用,为此本文研究了性能更好的保护原理和方案:距离保护。
文中对保护1的各段保护整定值进行了计算与灵敏度校验,并针对系统可能出现的振荡和短路过渡电阻的影响进行了分析,然后
对保护1的各段动作过程进行了理论推断。
在保护1的各段整定值和灵敏度计算完成后,还对各段保护的动作时间进行了精确计算,这是很重要的一“个环节,因为各段保护的动作选择性主要由这两个数据来进行判断。
然后对设计提出的系统震荡和短路过渡电阻对系统的影响进行相应的计算分析,并确定距离保护的范围,并分析系统在最
小运行方式下振荡时,保护1的各段距离保护的动作情况。
在进行计算的时候由于对分支系数K,的概念理解不够清楚,导致后续计算数据出现偏差,最后通过与他人的数据进行比较分析,找出错误所在,
最终得到合理的数据方案。
线路距离保护与电流电压保护类同,亦可构成三段式距离保护,
其中距离保护第I、II段为线路的主保护,距离保护1第II段为本
线主保护的近后备保护和相邻元件的远后备保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二相间距离保护(1)实验目的
1. 了解距离保护的原理;
2. 熟悉相间距离保护的圆特性;
3. 掌握距离保护的逻辑组态方法。
(2)实验原理及逻辑框图
1.距离保护的原理及整定方法;
2.距离保护评价
3.距离保护逻辑框图;
(3)实验内容
1.装置接线检查无误后,合上三相漏电断路器,使装置上电,按照电力系统同期并网操作步骤进行并网。
2.修改保护定值:进入微机线路保护装置菜单“定值”→“定值”,输入密码后,进入→“相间距离保护Ⅰ段”→按“确认”按钮,进入定值修改界面,修改输电线路相间距离保护的保护定值,距离保护定值清单如下:
3.投入保护压板。
将相间距离保护的硬压板(用导线将端子“开入+”接到端子“距离保护压板”,用导线将端子“合闸断线+”与端子“合闸断线-”短接,将端子“跳闸断线+”与端子“跳闸断线-”短接)和软压板投入(“定值”→“压板”,输入密码后,进入→“相间距离保护Ⅰ段,相间距离保护Ⅱ段,相间距离保护Ⅲ段”,分别将其保护软压板投入后→按“确认”后显示压板固化成功),其他所有保护的硬压板和软压板均退出。
4.参考“输电线路实验系统的故障模拟”中的三段式相间距离保护实验模拟的方法进行输电线路的距离保护实验。
(4)实验数据
记录WXH-825微机输电线路保护装置中记录的三段式相间距离保护动作时的三相电流值、故障阻抗及保护的整定值,并制作相应的表格。
线路相间距离保护实验数据表。