1化工原理流体流动解析
化工原理流体流动案例解析
油滴 混合液 水滴
2m R
17m
解: ①
水的流量,以m3/h表示
流量可以用孔板流量计关系式计算。
A0=0.785×0.0552=0.00237 m2
Vs u0 A0 c0 A0 2( pa pb )
c0 A0
2 gR( ' )
2 9.81 0.163 (13600 1000) 0.63 0.00237 1000 0.00948 m 3 /s 34.1 m 3 /h
② 泵的有效压头
u=Vs/A=0.00948/(0.785×0.1062)=1.075 m/s
Re
du
0.106 1.075 1000 1.14 105 110 3
R 17m
2 2
ε/d=0.21/106=0.00198
可以查得:λ=0.0252 在图示1-1、2-2截面
案例解析:
油水分离器流程设计
油层 水层
自动 处理
油层 水层
油水分离器尺寸设计 A-油水出口高度 设油出口高度H为1m,油水分离高度为0.5m,则:
1120 0.5 900 0.5 1120h 1120 0.5 900 0.5 解出:h 0.9017m 1120 B-分离器底面积 设分离器长、宽分别为L、B,沉降速度为ut,则:
如图所示,一输水管路,试分析: ① 当阀F关小时,压力表A、B的指示数如何变化? ② 当阀E关小时,压力表A、B的指示数如何变化?
化工原理第1章__流体流动_习题及答案解析
一、单选题1.单位体积流体所具有的()称为流体的密度。
AA 质量;B 粘度;C 位能;D 动能。
2.单位体积流体所具有的质量称为流体的()。
AA 密度;B 粘度;C 位能;D 动能。
3.层流与湍流的本质区别是()。
DA 湍流流速>层流流速;B 流道截面大的为湍流,截面小的为层流;C 层流的雷诺数<湍流的雷诺数;D 层流无径向脉动,而湍流有径向脉动。
4.气体是()的流体。
BA 可移动;B 可压缩;C 可流动;D 可测量。
5.在静止的流体内,单位面积上所受的压力称为流体的()。
CA 绝对压力;B 表压力;C 静压力;D 真空度。
6.以绝对零压作起点计算的压力,称为()。
AA 绝对压力;B 表压力;C 静压力;D 真空度。
7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。
DA 真空度;B 表压力;C 相对压力;D 绝对压力。
8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。
AA 大于;B 小于;C 等于;D 近似于。
9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。
AA 压力表;B 真空表;C 高度表;D 速度表。
10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。
DA 大气压;B 表压力;C 相对压力;D 绝对压力。
11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。
BA. Um=1/2Umax;B. Um=0.8Umax;C. Um=3/2Umax。
12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。
AA. 与指示液密度、液面高度有关,与U形管粗细无关;B. 与指示液密度、液面高度无关,与U形管粗细有关;C. 与指示液密度、液面高度无关,与U形管粗细无关。
13.层流底层越薄( )。
CA. 近壁面速度梯度越小;B. 流动阻力越小;C. 流动阻力越大;D. 流体湍动程度越小。
化工原理 流体流动 第一节 流体静力学基本方程讲解
p1 p2 A C gR
——微差压差计两点间压差计算公式
2021/4/14
14
例:用3种压差计测量气体的微小压差 P 100Pa
试问:(1)用普通压差计,以苯为指示液,其读数R为多少?
(2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? (3)若用微差压差计,其中加入苯和水两种指示液,扩大室截面积远远
学习这一章我们主要掌握有五个方面:1、流体的基本概念;2、流体静力学方
程及其应用;3、机械能衡算式及柏努利方程;4、流体流动的现象;5、流体流动
阻力的计算及管路计算。 流体静力学是研究流体在外力作用下的平衡规律,也就是说,研究流体在外力
作用下处于静止或相对静止的规律。静止流体的规律实际上是流体在重力作用下
第一章 流体流动
第 一 节 流体静力学基本方程
一、流体的密度 二、流体的压强 三、流体静力学方程 四、流体静力学方程的应用
2021/4/14
1
气体和液体统称流体。流体的特征是具有流动性,即其抗剪和抗张的能力很 小;无固定形状,随容器的形状而变化;在外力作用下其内部发生相对运动。流 体有多种分类方法:(1)按状态分为气体、液体和超临界流体等;(2)按可压缩性 分为不可压缩流体和可压缩流体;(3)按是否可忽略分子之间作用力分为理想流 体与粘性流体(或实际流体);(4)按流变特性可分为牛顿型和非牛顿型流体。
例水:层图高中度开h2=口0的.6m容,器密内度盛为有油2 和 1水00,0油kg层/ 高m3度h1=0.7m, 密度1 800kg / m3
1) 判断下列两关系是否成立pA=pA’,pB=pB’ 。
2) 计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同
化工原理第一章 流体流动
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
化工原理流体流动知识点总结
化工原理流体流动知识点总结化工原理中的流体流动是指在化工过程中物质(气体、液体或固体颗粒)在管道、设备或反应器中的运动过程。
了解流体流动的知识对于化工工程师来说至关重要。
下面是关于流体流动的一些重要知识点的总结。
1.流体的物理性质:-流体可以是气体、液体或固体颗粒。
气体和液体的主要区别在于分子之间的相互作用力和分子间距。
-流体的物理性质包括密度、黏度、表面张力、压力和流速等。
2.流体的运动方式:- 流体的运动可以是层流(Laminar flow)或紊流(Turbulent flow)。
-在层流中,流体以平行且有序的方式流动,分子之间的相互作用力主导着流动。
-在紊流中,流体以非线性和混乱的方式运动,分子之间的相互作用力相对较小,惯性和湍流运动主导着流动。
3.流体的流动方程:-流体流动可以通过连续性方程、动量方程和能量方程来描述。
-连续性方程(质量守恒方程)描述了流体在空间和时间上的质量守恒关系。
-动量方程描述了流体中的力平衡关系,包括压力梯度、黏度和惯性力等因素。
-能量方程描述了流体中的能量守恒关系,包括热传导、辐射和机械能转化等因素。
4.管道流动:-管道中的流体流动可以是单相(单一组分)或多相(多个组分)。
-管道流动的主要参数包括流速、压力损失和摩阻系数等。
- 常用的管道流动方程包括Bernoulli方程、Navier-Stokes方程和Darcy-Weisbach方程等。
5.流体输送:-流体输送是指将流体从一个地点输送到另一个地点的过程。
-在流体输送中,常用的设备和装置包括泵、压缩机、阀门、流量计和管道系统等。
-输送过程中要考虑流体的性质、流速、压力损失以及设备的选型和操作条件等因素。
6.流体混合与分离:-流体混合和分离是化工过程中常见的操作。
-混合可以通过搅拌、喷淋、气体分散等方法实现。
-分离可以通过过滤、沉淀、蒸馏、萃取和膜分离等方法实现。
7.流体力学实验:-流体力学实验是研究流体流动和相应现象的方法之一-常用的流体力学实验包括流速测量、压力测量、流动可视化和摩擦系数测定等。
化工原理流体流动
化工原理流体流动化工原理是化学工程领域的基础,其中包括了化工原理流体流动。
通过深入理解和掌握流体流动的原理,我们可以更好地设计、优化和控制化工流程的运行。
本文将介绍流体流动的基本概念、流体的运动方式、流场的描述和流体运动的控制等内容。
一、流体流动的基本概念流体是指能够流动的物质,包括了气体和液体。
流体流动是指流体在空间或管道中的运动过程。
在流体流动中,流体分子与周围分子不断碰撞,产生微小的能量转移和动量转移,从而引起流体的整体运动。
流体流动可分为定常流、非定常流和稳定流等几种类型。
其中,定常流指的是流动过程中各种物理量(如质量、能量、动量等)随时间不变的情况;非定常流则与定常流相反,各种物理量会随时间或空间变化;稳定流是指虽然物理量会随时间变化,但整个流动过程仍然是稳定的,即不出现突然的萎缩或涌流等现象。
流体流动过程中会出现速度、压力、密度等物理量的变化,这些变化可用流体力学方程式来描述和计算。
其中,质量守恒定律、动量守恒定律和能量守恒定律是描述流体流动的基本方程式。
二、流体的运动方式流体的运动方式包括了分子运动、分子间相互作用和运动量转移等几种。
在分子运动方面,气体分子之间距离较大,运动自由度高;而液体分子之间距离较近,分子运动更加有限。
流体的运动始终与分子相互作用有关。
在空气中,分子间间隔很大,因此分子之间的相互作用不太重要。
但在液体中,分子之间的相互作用较为紧密,从而导致液体的可压缩性低于气体。
在运动量转移方面,流体运动时会发生质量、能量和动量的转移。
其中,质量转移是指流体中的物质在空间中的传递过程,能量转移则是指流体在不同地点和不同形态之间转移热能,而动量转移则是指流体分子的运动量在不同地点之间的转移。
三、流场的描述流场是指流体的物理状态和运动状态。
在流动过程中,流体分子会产生不同的物理量变化,因此需要对流场进行描述。
在描述流场时,可使用不同的数学工具和方法。
其中,流线、等势线、流函数、速度势和压力势是比较常用的方法。
化工习题解析
课后解析化工原理学院:环境与化学工程学院班级:化学工程与工艺1201班学号:姓名:日期: 2014年6月20日第一章流体流动2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥的油品,油面高于罐底 6.9 m,油面上方为常压。
在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm的钢制螺钉紧固。
若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力即P油≤σ螺解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺 = 39.03×103×3.14×0.0142×nP油≤σ螺得 n ≥ 6.23取 n min= 7至少需要7个螺钉3.某流化床反应器上装有两个U 型管压差计,如本题附图所示。
测得R1 = 400 mm , R2 = 50 mm,指示液为水银。
为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气连通的玻璃管内灌入一段水,其高度R3= 50 mm。
试求A﹑B两处的表压强。
分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。
解:设空气的密度为ρg,其他数据如图所示a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2由于空气的密度相对于水和水银来说很小可以忽略不记即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05= 7.16×103 Pab-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1P B = 13.6×103×9.81×0.4 + 7.16×103=6.05×103Pa4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。
化工原理第一章流体流动知识点总结
第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
化工原理第一章_流体流动
非标准状态下气体的密度: 混合气体的密度,可用平均摩尔质量Mm代替M。 式中yi ---各组分的摩尔分数(体积分数或压强分数)
比体积
• 单位质量流体的体积称为流体的比体积,用v表示, 单位:m3/kg
• v=V/m=1/ρ
5 流体的压强及其特性
垂直作用于单位面积上的表面力称为流体的静压强,简 称压强。流体的压强具有点特性。工程上习惯上将压强 称之为压力。
R
a
b
0
2. 倒置 U 型管压差计
用于测量液体的压差,指示剂密度 0 小于被测液体密度 , U 型管内位于同 一水平面上的 a、b 两点在相连通的同一 静止流体内,两点处静压强相等
p1 p2 R 0 g
由指示液高度差 R 计算压差
若 >>0
p1 p2 Rg
0
a
b
R
p1 p2
3. 微差压差计
p1 p2 R 01 02 g
对一定的压差 p,R 值的大小与 所用的指示剂密度有关,密度差越小, R 值就越大,读数精度也越高。
p1 p2
02
a
b
01
4. 液封高度
液封在化工生产中被广泛应用:通过液封装置的液柱高度 , 控制器内压力不变或者防止气体泄漏。
为了控制器内气体压力不超过给定的数值,常常使用安全液 封装置(或称水封装置),其目的是确保设备的安全,若气体压 力超过给定值,气体则从液封装置排出。
传递定律(巴斯葛原理):当液面上方有变化时,必 将引起液体内部各点压力发生同样大小的变化。
液面上方的压强大小相等地传遍整个液体。
静力学基本方程式的应用
1.普通 U 型管压差计
U 型管内位于同一水平面上 的 a、b 两点在相连通的同一静 止流体内,两点处静压强相等
化工原理-第1章 流体流动 知识点
可见,欧拉法描述的是空间各点的状态及其与时间的关系。 (3)定态流动(稳定流动,定常流动) 若空间各点的状态不随时间变化,改流动称为定态流动。
ux , u y , uz , p ,……,= f (x, y, z),与 t 无关
(1)连续性假设 在化工原理中是考察液体质点的宏观运动,流体质点是由大量分子组成的流体微团,其尺寸远小于设 备尺寸,但比起分子自由路程却要大的多。这样,可以假定流体是有大量质点组成、彼此间没有间隙、完 全充满所占空间连续介质。流体的物性及运动参数在空间作连续分布,从而可以使用连续函数的数学工具 加以描述。 在绝大多数情况下流体的连续性假设是成立的,只是高真空稀薄气体的情况下连续性假定不成立。 (2)流体运动的描述方法 ① 拉格朗日法 选定一个流体质点,对其跟踪观察,描述其运动参数(位移、数度等)与时间的关 系。可见,拉格朗日法描述的是同一质点在不同时刻的状态。 ② 欧拉法 在固定的空间位置上观察 流体质点的运动情况,直接描述各有关参数在空间各点的分布 情况合随时间的变化,例如对速度 u,可作如下描述:
积流量,须说明它的温度 t 和压强 p
质量流量 qm (Kg/s 或 Kg/h),解题指南用 ms 表示。 qv 与 qm 的关系为: qm =qv ρ 式中:ρ——流体的密度, Kg/m3
气体的ρ亦与温度 t、压强 p 有关,但 t、p 对ρ及 qv 的影响刚好相反,相互抵消,故气体 qm 与 t、p
设单位质量流体上的体积力在 x 方向的分量为 x(N/Kg),则微元所受的体积力在 x 方向的分量为
xρδxδyδz ,该流体处于静止状态,外力之和必等于零、对 x 方向,有
化工原理之一 流体流动
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。
化工原理--流体流动概述
化工原理–流体流动概述引言流体流动是化工领域中常见的一个研究领域,它在很多工艺过程中起着至关重要的作用。
流体流动的研究可以帮助我们了解流体在管道、设备和反应器中的行为,从而优化工艺过程,提高生产效率。
本文将从基本理论、流体流动模型和流动参数分析等方面对流体流动进行概述。
基本理论流体流动的基本理论是流体力学的一部分。
它研究流体在管道、设备和反应器中的运动规律。
在流体流动中,有两个重要的参数:流速和压力。
流速描述了流体在单位时间内通过某一截面的体积,通常以米/秒来表示。
压力则是单位面积上的力,通常以帕斯卡(Pa)来表示。
根据流速和压力的变化,可以描绘出流体的流动状态,理解流体在设备中的传输行为。
流体流动模型在化工过程中,流体流动的行为非常复杂,通常使用一些流体流动模型来描述。
常见的流体流动模型有层流流动和湍流流动。
层流流动层流流动是指流体在管道或设备中呈稳定的层流状态,流体在截面中的各个部分以均匀的速度运动。
在层流流动中,不同层之间的流速差很小,流体分子之间的相对位置一直保持不变。
层流流动通常发生在流速较低的条件下,管道的直径较小,并且流体的黏性较高。
层流流动可以用泊肃叶定律进行描述。
湍流流动湍流流动是指流体在管道或设备中呈不稳定的湍流状态,流体在截面中的各个部分以复杂而无规律的方式运动。
在湍流流动中,不同层之间的流速差很大,流体分子之间的相对位置不断变化。
湍流流动通常发生在流速较高的条件下,管道的直径较大,并且流体的黏性较低。
湍流流动的模型较为复杂,常用的描述方法有雷诺平均法和雷诺应力传递方程。
流动参数分析在对流体流动进行研究时,需要对一些流动参数进行分析。
这些参数可以帮助我们了解流体的流动特性和传输行为。
流量流量指的是单位时间内通过管道或设备截面的流体体积。
通常以单位时间内液体或气体通过单位面积的体积来表示,单位为立方米/秒。
流量是一个非常重要的参数,可以用来确定设备的尺寸和流程的设计。
压降压降指的是流体在通过管道或设备时由于阻力而导致的压力降低。
化工原理——第一章 流体流动
黏度在物理单位制中的导出单位,即
dyn / cm 2 dyn s
g
P(泊)
du
cm/ s
dy
cm
cm2 cm s
1cP 0.01P 0.01 dyn s
1
1 100000
N
s
1
Pa s
cm2
100
(
1 100
)
2
mபைடு நூலகம்
2
1000
即1Pa s 1000cP
流体的黏性还可用黏度μ与密度ρ的比值表示。这 个比值称为运动黏度,以ν表示即
pM
RT
注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。
三、混合物的密度
混合气体 各组分在混合前后质量不变,则有
m A xVA B xVB n xVn
xVA, xVB xVn——气体混合物中各组分的体积分率。
或
m
pM m RT
M m ——混合气体的平均摩尔质量
例如用手指头插入不同黏度的流体中,当流体大 时,手指头感受阻力大,当小时,手指头感受阻 力小。这就是人们对粘度的通俗感受。
在法定单位制中,黏度的单位为
du
Pa m
Pa • s
dy
s
m
某些常用流体的黏度,可以从本教材附录或手册中查
得,但查到的数据常用其他单位制表示,例如在手册中
黏度单位常用cP(厘泊)表示。1cP=0.01P(泊),P是
M m M A yA M B yB M n yn
yA, yB yn——气体混合物中各组分的摩尔(体积)分率。
混合液体 假设各组分在混合前后体积不变,则有
1 xwA xwB xwn
化工原理 第一章 流体流动
2. 混合物
l→ 1 x wA x wB ... x wn (体积不变)
m A B
n
g→ m A xVA B xVB n xVn (质量不变)
3. 不可压缩流体:改变T或p时, Const; 可压缩流体:改变T或p时,ρ显著变化。
注意→若T或p变化不大时,ρ变化很小,气体视 为不可压缩流体。
推导伯努利方程
1. 能量形式
内能→U;位能→gZ,基准面以上为+,以下为-;
动能→u2/2;静压能(流动功)→
pA
V A
pV;
pV m
p
;
热量→Qe,吸+放-;外功(净功或有效功)→We, 得+失-,Ne wsWe
总机械能→位能、动能和静压能的总和。
流体流动的基本方程 -伯努利方程
2. 流体稳态流动时机械能衡算方程
牛顿型流体:所有气体和大多数液体; 非牛顿型流体:血液、油漆等流体。
流体性质-压强
1. 压强单位
1 atm=1.0133105 Pa 101.33 kPa 0.10133 MPa 760 mmHg 10.33 mH2O 1.013 bar 1.033 kgf/cm2 14.697 PSI
流体性质-黏度
2. 牛顿黏性定律
F u S y
F u S
y
F u
S y
du
dy
黏度:反映流体黏性的大小。T l , g ; p对影响小
1 Pags 10 P 1000 cP
运动黏度 1 m2 gs-1 104 St 106 cSt
1
常压气体
混合物: m
yi i M i 2
x Rex0.5
湍流 0.376
化工原理 第一章 流体流动
化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。
当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。
质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。
如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。
如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。
其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。
上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。
因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。
化工原理流体流动解析
教
研
室
化工原理
14/138
流体流动
四 川
(5)对低压混合气体
理 工
其中
学
院 材
式中 Mi——混合气体中各组分的摩尔质量,kg/mol; yi——混合气体中各组分的摩尔分率。
化
或 (1m3)混合气体的质量等于各组分的质量之和。即
系
化
学
工 程 教
式中 i——混合气体中各组分的密度,kg/m3; xvi——混合气体中各组分的体积分率。
工 和时间上的变化,即描述空间各点的状态及其与
程 时间的关系。
教 研
在讨论流体流动中,通常选用欧拉法。
室
化工原理
10/138
流体流动
四 川
§1-0 概述
理 工
4、流线与轨线
学 ➢轨线:同一流体质点在不同时刻所占空间位置 院 的连线。
材 化 系
➢流线:采用欧拉法观察的结果,表述同一瞬时 不同质点的速度方向。流线的属性:1)流线互
四
川 理
第一章 流体流动
工
教学要求
学 院
§1-0 概述
材
§1-1 流体静力学基本方程
化 系
§1-2 流体在管内的流动
化
§1-3 流体的流动现象
学
§1-4 流体在管内的流动阻力
工 程 教
§1-5 管路计算 §1-6 流量测量
研
复习
室
化工原理
1/138
流体流动
四 川
教学要求
理 工
重 点:连续性方程;机械能衡算式。
研
室
化工原理
3/138
流体流动
四 川
熟悉的内容:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二. 流体静力学基本方程
1.静压力的特点:
从各个方向作用于某一点上的静压力相等。 若通过该点指定一作用平面,则压力的方向垂直于作用面; 重力场中,同一水平面上各点的静压力相等,随位置高低而
变。 过 程 原 2、静力学方程的推导: 理 与 作用于薄层下底面的总压力 pA 装 备 作用于薄层上底面的总压力 (p+dp)A 重力作用 ρgAdz
真空度=大气压—绝对压力=101.33-5.3=96.03KPa
9
二. 流体静力学基本方程
质量力 流体所受到的力 表面力 如重力、离心力等, 属于非接触性的力。 切向力 (剪力) 法向力(压力)
过 程 原 质量力 -- 重力场中单位质量流体所受 理 质量力,即为重力加速度。 与 静止流体所受到的力 装 法向力 -- 静止流体内部任一点的压力, 备 习惯上称为静压力。
适用场合:绝对静止、连续、均质、不可压缩流体
13
四. 流体静力学方程的应用
等压面的确定: 具备四个条件: 静止、连通、同一水平面、同一流体
截面a—a’、b—b’ 为等压面 过 程 Pa= Pa’ , Pb= Pb’ 原 理 与 Pa’≠ Pb 装 备
a
a’
b
b’
14
1. 压力计 (1)单管压力计
4
u
1. 流体的热力学性质 流体的密度—单位体积流体的质量。用表示。
m V
影响因素:流体种类、浓度、温度、压力
液体:温度对密度的影响:T↑ρ↓, T↓ρ↑. 故选用密度数值时要注意所确定的温度。
获得方法:(1)查物性数据手册 过 程 原 理 与 装 备 (2)公式计算: 气体:
0 M
F P A
7
3.压力的表示方法 绝对压力 绝对真空(零压)为基准
表压
大气压力为基准
表压
绝对压力 p1 真空度 p2 绝对压力
绝压、表压与真空度的关系: 过 程 表压=绝对压力-当地大气压 原 理 与 真空度=当地大气压-绝对压力 装 备
大气压Biblioteka 绝对真空图1-1 绝对压力、表压 与真空度的关系
8
例:在兰州操作的苯乙烯真空蒸馏塔顶的真空表读数为
80KPa。在天津操作时,若要求塔内维持相同的绝对压
力,真空表的读数应为多少?兰州地区的平均大气压为 85.3Kpa,天津地区的平均大气压为101.33KPa。
解:根据兰州地区的大气压,可求得操作时塔顶的绝对
过 程 原 理 与 装 备
压力: 绝对压力=大气压—真空度=85.3-80=5.3KPa 天津操作时,塔内维持相同的绝对压力,而大气压 不同,则塔顶的真空度也不同,其值为:
pM RT ----------理想气体状态方程
22.4
M P T
0
22.4 P 0 T
an a1 a2 1 液体混合物: m 1 2 n
气体混合物: m 11 22 nn
质量分率
体积分率
5
混合气体的平均密度
m
pM m RT
过 程 原 理 与 装 备
在研究流体流动时,常将流体看成是由无数分子集团
所组成的连续介质 。
流体力学:流体静力学和流体动力学
3
一、流体流动的考察方法 ——流体质点与连续介质模型
连续性假设: 提出质点概念作为流体宏观运动的最小考察对象, 工程上将流体看成是充满所占空间的由无数质点(分子 微团)所组成的彼此没有间隙的连续介质。 过 质点的含义: 程 (1)由大量分子构成的微团 原 理 (2)质点间无间隔——连续 与 装 (3)质点的大小远小于管路或容器的 备 尺寸,但比分子自由程大得多。
z1 g
p2
z2 g
能量形式 液柱高形式
12
三. 流体静力学基本方程的讨论 1. 液面上方的压力 一定,内部任一点压力与液体密度 和液 面深度 h 有关。静止的、连通的同种液体,处于同一水平面上 的各点压力都相等。压力相等的面称为等压面。 2. 液面压力 改变时,内部各点的压力将发生同样大小的改 变— 帕斯卡原理(压力具有传递性) 过 3. 压力或压力差的大小可用液柱高度来表示。 程 原 4. p2 p p1 或 z+ 理 z1+ g = z2+ g = 常数 g 与 装 备 静力学方程反映了静止流体内部能量守恒与转换的关系。
《化工原理》
Principles of Chemical Engineering
化工原理教研室
Chemical Engineering Teaching&Research Section
1
第一章 流体流动
2
第一章
流体流动
流体:具有流动性的物体,包括液体和气体。 流体流动是其它单元操作过程的基础。
A 1
..
pa R
p1 – pa = p1 (表) = g R
pa
过 程 原 理 与 装 备
(2)U形压力计
A
1 h R
p1 = pa + 0 gR – g h
2 3
指示液
U管压差计:U形管内装入与被测流体不同的液体——指示液。 指示液与所测流体不互溶,密度要大于被测流体的密度,常选Hg。
比容v:单位质量物体的体积——密度的倒数
V 1 v m
过 程 液体的比重d:任一液体的密度与4℃水的密度之比 原 理 d 水 与 装 备 重度:单位体积的物体重量——工程上常用
6
2.流体的压力及其表示方法
总压力:作用于整个面上的力
流体的压力—流体垂直作用于单位面积上的力,称为流体 的压强。用p表示,工程上习惯称之为压力。 (1)压力单位 SI制: N/m2 = Pa,称为帕斯卡 工程制:kgf/cm2 过 生产上:atm(标准大气压)、m(流体液柱高度) 程 原 5 理 1atm(标准大气压)=1.013×10 Pa =760 mmHg =10.33 mH2O 与 装 2=10mH 0=735.6mmHg=9.81x104Pa 1 at ( 工程大气压 )=l kgf / cm 2 备
11
三力之和为0: 向上作用力为正 pA-(p+dp)A-ρgAdz =0
(P+dP)A dZ ρgAdz
P
dp+ρgdz =0
积分: p+ρgz=C
或
过 程 原 理 与 装 备
p/ρ+gz=C
----流体静力学基本方程
p2 p1 g ( z1 z2 ) 压力形式
p1
p1 p2 z1 z2 g g