向量与三角形内心、外心、重心、垂心知识的交汇

合集下载

三角形四心与向量的关系

三角形四心与向量的关系

三角形四心与向量的关系三角形是几何学中的基本图形之一,它有许多重要的性质和特点。

在三角形中,有四个特殊的点,它们被称为三角形的四心,分别是重心、外心、垂心和内心。

本文将探讨这四个特殊点与向量之间的关系。

我们来介绍一下三角形的四心。

重心是三角形三条中线交于一点的点,它被定义为三角形三个顶点的坐标的平均值。

外心是三角形外接圆的圆心,它被定义为三角形三个顶点和三个外接圆弧的交点之一。

垂心是三角形三个高线交于一点的点,它被定义为三角形三个顶点和三个高线的交点之一。

内心是三角形的内切圆的圆心,它被定义为三角形三条边的垂直平分线的交点之一。

接下来,我们来研究这些四心与向量之间的关系。

首先,我们来看重心。

重心可以表示为三个顶点向量的平均值。

设三角形的三个顶点分别为A、B、C,对应的向量为a、b、c,则重心G可以表示为G=(a+b+c)/3。

这个公式说明了重心与向量之间的关系,即重心是三个顶点向量的平均值。

然后,我们来看外心。

外心可以表示为三个顶点向量的线性组合。

设三角形的三个顶点分别为A、B、C,对应的向量为a、b、c,则外心O可以表示为O=(a+b+c)/2。

这个公式说明了外心与向量之间的关系,即外心是三个顶点向量的线性组合。

接下来,我们来看垂心。

垂心可以表示为三个顶点向量的和的负数。

设三角形的三个顶点分别为A、B、C,对应的向量为a、b、c,则垂心H可以表示为H=-(a+b+c)。

这个公式说明了垂心与向量之间的关系,即垂心是三个顶点向量的和的负数。

我们来看内心。

内心可以表示为三条边的单位法向量的线性组合。

设三角形的三个顶点分别为A、B、C,对应的边向量为AB、BC、CA,单位法向量为n1、n2、n3,则内心I可以表示为I=(n1+n2+n3)/(|n1|+|n2|+|n3|)。

这个公式说明了内心与向量之间的关系,即内心是三条边的单位法向量的线性组合。

我们可以得出结论:三角形的四心与向量之间有着紧密的关系。

向量与三角形四心结合(纯干货)

向量与三角形四心结合(纯干货)

三角形的“四心”与向量的完美结合知识概述:三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一、知识点总结1)O 是ABC ∆的重心=++⇔; 若O 是ABC ∆的重心,则,31ABC AOB AOC BOC S S S S ∆∆∆∆===故;,=++ 1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心OA OC OC OB OB OA ⋅=⋅=⋅⇔; 若O 是ABC ∆(非直角三角形)的垂心,则,tan :tan :tan ::C B A S S S AOB AOC BOC =∆∆∆故tan tan tan =⋅+⋅+⋅C B A3)O 是ABC ∆的外心)222OC OB OA ====⇔或 若O 是ABC ∆的外心,则C B A AOB AOC BOC S S S AOB AOC BOC 2sin :2sin :2sin sin :sin :sin ::=∠∠∠=∆∆∆ 故02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A 4)O 是内心ABC ∆的充要条件是0=⋅=⋅=⋅引进单位向量,使条件变得更简洁。

如果记,,的单位向量为321,,e e e ,则刚才O 是ABC ∆内心的充要条件可以写成0)()()(322131=+⋅=+⋅=+⋅e e OC e e OB e e OAO 是ABC ∆内心的充要条件也可以是0=++OC c OB b OA a若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆ 故sin sin sin =++=++C B A c b a 或;||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);知识点一、将平面向量与三角形内心结合考查【例 1】:O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心 (B )内心 (C )重心 (D )垂心【解答】:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又=-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.练习:在直角坐标系xOy 中,已知点A(0,1)和点B(–3, 4),若点C 在∠AOB 的平分线上,且||2OC =,则OC =_________________.【解答】:点C 在∠AOB 的平线上,则存在(0,)λ∈+∞使()||||OA OBOC OA OB λ=+=34(0,1)(,)55λλ+-=39(,)55λλ-,而||2OC=,可得3λ=,∴()55OC =-.【例2】:三个不共线的向量,,OA OB OC 满足()||||AB CA OA AB CA ⋅+=(||BA OB BA ⋅+||CB CB ) =()||||BC CA OC BC CA ⋅+= 0,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心解:||||AB CA AB CA +表示与△ABC 中∠A 的外角平分线共线的向量,由()||||AB CAOA AB CA ⋅+= 0知OA 垂直∠A 的外角平分线,因而OA 是∠A 的平分线,同理,OB 和OC 分别是∠B 和∠C 的平分线,故选C .【例3】:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++= ,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心 解:∵OB OA AB =+,OC OA AC=+,则()a b c OA bAB cAC++++= 0,得()||||bc AB ACAO a b c AB AC =+++. 因为||AB AB 与||AC AC 分别为AB 和AC 方向上的单位向量,设||||AB ACAP AB AC =+,则AP 平分∠BAC. 又AO 、AP 共线,知AO 平分∠BAC.同理可证BO 平分∠ABC ,CO 平分∠ACB ,所以O 点是△ABC 的内心.【方法总结】:这道题给人的印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

向量与三角形内心外心重心垂心

向量与三角形内心外心重心垂心

向量与三角形的重心、垂心、内心、外心的关系一、四心的概念介绍、(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四线与向量的结合121212,PA =1=,=.ABOA OB PB AB λλλλλλ=++u u r u u u r u u u r1.定理:如图,设OP 则,且(记忆:交叉分配系数)=()OA OBAP BPλ+u u u r u u u r2.若M 是OP 上的任意一点,则OM (记忆:分母对应分配系数)应用1:(1)中线: (2)高线:(3)角平分线: (4)中垂线:应用2.四线上的动点表示:(1)中线上的动点: ()AB AC λ+u u u r u u u r 或()||sin ||sin ABAC AB B AC Cλ+u u u ru u u r u u ur u u u r(2)高线上的动点:()cos cos AB ACAB B AC Cλ+u u u r u u u r u u u r u u u r, (3)角平分线上的动点:()AB ACAB AC λ+u u u r u u u r u u u r u u u r(4)中垂线上的动点: ()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,三、四心与向量的结合 1.BOC AOC AOB O ABC S OA S OB S OC ∆∆∆∆++=u u u r u u u r u u u r r 定理:设是内任意一点,则(记忆:拉力平衡原则) 应用:(1)O 是ABC ∆的重心. ⇔b a S S S AOB AOC BOC ::::=∆∆∆=1:1:1⇔ 0OA OB OC ++=u u u r u u u r u u u r r(2)O 为ABC ∆的垂心. ⇔ C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ ⇔0OC C tan OB B tan OA A tan =++(3)O 为ABC ∆的内心.⇔c b a S S S AOB AOC BOC ::::=∆∆∆=sin :sin :sin A B C⇔0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或⇔0aOA bOB cOC ++=u u u r u u u r u u u r r (4)O 为ABC ∆的外心⇔ ⇔ 0OC C 2sin OB B 2sin OA A 2sin =++2.四心的向量表示:(1)O 是ABC ∆的重心. ⇔ 1()3PO PA PB PC =++u u u ru u u ru u u ru u u r(2)O 为ABC ∆的垂心. ⇔OA OB OB OC OC OA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r(3)O 为ABC ∆的内心.⇔()()()0AB AC BC BA CA CBOA OB OC AB AC BC BA CA CB•-=•-=•-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r (4)O 为ABC ∆的外心 ⇔OC OB OA ==四.典型例题:一、与三角形“四心”相关的向量问题题1:已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AB AC OP OA AB AC λ⎛⎫=++ ⎪⎝⎭u u u r u u u ru u u r u u u r u u u r u u u r , [0,)λ∈+∞. 则P 点的轨迹一定通过△ABC 的 A. 外心 B. 内心 C. 重心 D. 垂心题2:已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++u u u r u u u r u u u r u u u r, [0,)λ∈+∞. 则P 点的轨迹一定通过△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题3:已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u u r u u u r ,[0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::A. 重心B. 垂心C. 外心D. 内心题4:已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u u r u u u r ,[0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( )A. 重心B. 垂心C. 外心D. 内心题5:已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r , [0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( )A. 重心B. 垂心C. 外心D. 内心题6:三个不共线的向量,,OA OB OC u u u r u u u r u u u r 满足()||||AB CA OA AB CA ⋅+u u u r u u u r u u u r u u u r u u u r =(||BA OB BA ⋅u u u r u u u r u u u r+||CB CB u u u r u u u r ) =()||||BC CA OC BC CA ⋅+u u u r u u u r u u u r u u u r u u u r = 0,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心题7:已知O 是△ABC 所在平面上的一点,若OA OB OC ++u u u r u u u r u u u r= 0, 则O 点是△ABC的( )A. 外心B. 内心C. 重心D. 垂心题8:已知O 是△ABC 所在平面上的一点,若1()3PO PA PB PC =++u u u r u u u r u u u r u u u r(其中P 为平面上任意一点), 则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题9:已知O 是△ABC 所在平面上的一点,若OA OB OB OC OC OA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r,则O点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题10:已知O 为△ABC 所在平面内一点,满足2222||||||||OA BC OB CA +=+u u u r u u u r u u u r u u u r=22||||OC AB +u u u r u u u r ,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心题11:已知O 是△ABC 所在平面上的一点,若()OA OB AB +⋅u u u r u u u r u u u r =()OB OC BC +⋅u u u r u u u r u u u r= ()OC OA CA +⋅u u u r u u u r u u u r= 0,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心 题12:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++u u u r u u u r u u u r= 0,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题13:已知O 是△ABC 所在平面上的一点,若aPA bPB cPCPO a b c++=++u u u r u u u r u u u ru u u r (其中P 是△ABC 所在平面内任意一点),则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题14:△ABC 的外接圆的圆心为O ,两边上的高的交点为H ,OH u u u r =()m OA OB OC ++u u u r u u u r u u u r,则实数m =____________.二、与三角形形状相关的向量问题 题15:已知非零向量ABu u u r 与AC uuu r 满足()||||AB AC BC AB AC +⋅u u u r u u u ru u ur u u u r u u u r = 0且12||||AB AC AB AC ⋅=u u u r u u u ru u u r u u u r ,则△ABC 为( ) A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形 D. 等边三角形 题16:已知O 为△ABC 所在平面内一点,满足|||2|OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则△ABC 一定是( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形题17:已知△ABC ,若对任意t R ∈,||BA tBC -u u u r u u u r ≥||AC u u u r,则△ABC( )A. 必为锐角三角形B. 必为钝角三角形C. 必为直角三角形D. 答案不确定题18:已知a , b, c 分别为△ABC 中∠A, ∠B, ∠C 的对边,G 为△ABC 的重心,且a GA b GB c GC ⋅+⋅+⋅u u u r u u u r u u u r= 0, 则△ABC 为( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形 三、与三角形面积相关的向量问题题19:已知点O 是△ABC 内一点,23OA OB OC ++u u u r u u u r u u u r= 0, 则:(1) △AOB 与△AOC 的面积之比为___________________; (2) △ABC 与△AOC 的面积之比为___________________; (3) △ABC 与四边形ABOC 的面积之比为_____________. 四、向量的基本关系(共线)题20:如图,已知点G 是△ABC 的重心,若PQ uuu r过△ABC 的重心,记CA u u u r = a ,CB u u u r = b , CP u u u r = m a , CQ uuu r = n b , 则11m n+=_____.练习.O 为ABC ∆平面上一定点,该平面上一动点p 满足{|(sin ABM P OP OA C ABλ==++u u u ru u u r u u u r u u u r sin )0}AC B ACλ>u u u r u u u r ,,则ABC ∆的( ) 一定属于集合M .(A )重心 (B )垂心 (C )外心 (D )内心GABCMP Q。

数学四心知识的交汇

数学四心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x⇔O 是ABC ∆的重心.证法2:如图++2=+=∴2=∴D O A 、、三点共线,且O 分AD为2:1∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅CA OB OC OA OB OC OB OB OAAC OB ⊥⇔同理BC OA ⊥,AB OC ⊥⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O c b a ⇔=++为ABC ∆的内心.证明:bACc AB 、分别为方向上的单位向量, ∴bc +平分BAC ∠, (λ=∴b AC c AB +),令cb a bc++=λBCD∴cb a bcAO ++=(b c +) 化简得)(=++++c b c b a∴=++c b a(4)==⇔O 为ABC ∆的外心。

典型例题:例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 分析:如图所示ABC ∆,E D 、分别为边AC BC 、的中点.AD AC AB 2=+∴λ2+=+= λ2=∴∴//∴点P 的轨迹一定通过ABC ∆的重心,即选C .例2:(03全国理4)O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P满足++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( B ) A .外心 B .内心 C .重心 D .垂心分析:分别为方向上的单位向量,∴+BAC ∠,∴点P 的轨迹一定通过ABC ∆的内心,即选B .例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P满足++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的B CD( )A .外心B .内心C .重心D .垂心分析:如图所示AD 垂直BC ,BE 垂直AC , D 、E 是垂足. +BC ⋅++=-=0∴点P 的轨迹一定通过ABC ∆的垂心,即选D .练习:1.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足=++,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 2.若ABC ∆的外接圆的圆心为O ,半径为1,=++,则=⋅OB OA ( ) A .21 B .0 C .1 D .21- 3.点O 在ABC ∆内部且满足22=++,则ABC ∆面积与凹四边形ABOC 面积之比是( )A .0B .23 C .45 D .344.ABC ∆的外接圆的圆心为O ,若OH ++=,则H 是ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222=+222+=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心6.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m =7.(06陕西)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形8.已知ABC ∆三个顶点C B A 、、,若⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 练习答案:C 、D 、C 、D 、D 、1、D 、C。

向量与三心

向量与三心

向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++0OC OB OA ⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔O 是ABC ∆的重心.证法2:如图++ 02=+=OD OA ∴OD AO 2=∴D O A 、、三点共线,且O 分AD为2:1∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅ AC OB ⊥⇔同理BC OA ⊥,AB OC ⊥⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心.证明:b ACc AB 、分别为AC AB 、方向上的单位向量, ∴bAC c AB +平分BAC ∠,(λ=∴AO bACc AB +),令c b a bc ++=λ∴c b a bcAO ++=(bAC c AB +)化简得0)(=++++AC c AB b OA c b a∴0=++OC c OB b OA a(4==⇔O 为ABC ∆的外心。

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)⇔=++O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔O 是ABC∆的重心.证法2:如图OC OB OA ++ 2=+=∴2=∴D O A 、、三点共线,且O 分AD为2:1∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅⊥⇔同理⊥,⊥⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心. 证明:b c 、分别为方向上的单位向量, ∴bc +平分BAC ∠, (λ=∴AO bc +),令c b a bc++=λ ∴c b a bc++=(bc +) 化简得0)(=++++AC c AB b OA c b a∴=++c b a(4==⇔O 为ABC ∆的外心。

三、典型例题:例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心例2:(03全国理4)O是平面上一定点,CB A 、、是平面上不共线的三个点,动点P满足+=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心例3:1)O是平面上一定点,CB A 、、是平面上不共线的三个点,动点P满足OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心2)已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++ ,[0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( ) A. 重心 B. 垂心 C. 外心 D. 内心3)已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++ , [0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( )A. 重心B. 垂心C. 外心D. 内心例4、已知向量123,,OP OP OP 满足条件1230OP OP OP ++= ,123||||||1OP OP OP === ,求证:123PPP △是正三角形.例5、ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m = .例6、点O 是三角形ABC所在平面内的一点,满足OA OB OB OC OC OA ==,则点O 是ABC ∆的().A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点例7在△ABC 内求一点P ,使222AP BP CP ++最小.例8已知O 为△ABC 所在平面内一点,满足222222||||||||||||OA BC OB CA OC AB +=+=+ ,则O 为△ABC 的心.例9..已知O 是△ABC 所在平面上的一点,若OA OB OB OC OC OA ⋅=⋅=⋅,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心例10 已知O 为△ABC 所在平面内一点,满足2222||||||||OA BC OB CA +=+ =22||||OC AB + ,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心例11已知O 是△ABC 所在平面上的一点,若()OA OB AB +⋅ =()OB OC BC +⋅ =()OC OA CA +⋅= 0,则O点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心例12:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++= 0,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心例13:已知O 是△ABC 所在平面上的一点,若aPA bPB cPCPO a b c++=++(其中P 是△ABC 所在平面内任意一点),则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心四、配套练习:1.已知ABC∆三个顶点CB A 、、及平面内一点P,满足0=++PC PB PA ,若实数λ满足:λ=+,则λ的值为( )A .2B .23 C .3 D .62.若ABC ∆的外接圆的圆心为O ,半径为1,=++,则=⋅( )A .21 B .0 C .1 D .21-3.点O 在ABC ∆内部且满足022=++OC OB OA ,则ABC ∆面积与凹四边形ABOC面积之比是( )A .0B .23 C .45 D .344.ABC ∆的外接圆的圆心为O ,若++=,则H是ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222=+222ABOC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 6.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =7.(06陕西)已知非零向量与满足(+)〃=0且〃=12, 则△ABC 为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形 8.已知ABC ∆三个顶点C B A 、、,若⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形9.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++, [0,)λ∈+∞.则P 点的轨迹一定通过△ABC 的( )A. 外心B. 内心C. 重心D. 垂心10.已知O 是△ABC 所在平面上的一点,若OA OB OC ++= 0, 则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心11.已知O 是△ABC 所在平面上的一点,若1()3PO PA PB PC =++(其中P 为平面上任意一点), 则O 点是△ABC 的( )健康文档 放心下载 放心阅读A. 外心B. 内心C. 重心D. 垂心。

三角形外心内心重心垂心与向量性质

三角形外心内心重心垂心与向量性质

三角形的“四心”所谓三角形的“四心”是指三角形的重心.垂心.外心及心坎.当三角形是正三角形时,四心重合为一点,统称为三角形的中间.一.三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心.ABC ∆的重心一般用字母O 暗示.性 质:1.外心到三极点等距,即OC OB OA ==.2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,.3.向量性质:若点O 为ABC ∆地点的平面内一点,知足⋅+=⋅+=⋅+)()()(,则点O 为ABC ∆的外心.二.三角形的心坎定 义:三角形三条角等分线的交点叫做三角形的心坎,即内切圆圆心.ABC ∆的心坎一般用字母I暗示,它具有如下性质:性 质:1.心坎到三角形三边等距,且极点与心坎的连线等分顶角.2.三角形的面积=⨯21三角形的周长⨯内切圆的半径.3.向量性质:设()+∞∈,0λ,则向量)||||(AC AB AP =λ,则动点P 的轨迹过ABC ∆的心坎.三.三角形的垂心定 义:三角形三条高的交点叫重心.ABC ∆的重心一般用字母H 暗示.性 质:1.极点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,.2.向量性质:结论1:若点O 为ABC ∆地点的平面内一点,知足⋅=⋅=⋅,则点O 为ABC ∆的垂心.结论2:若点O 为△ABC 地点的平面内一点,知足222222AB OC CA OB BC OA +=+=+, 则点O 为ABC ∆的垂心.四.三角形的“重心”:定 义:三角形三条中线的交点叫重心.ABC ∆的重心一般用字母G 暗示.性 质:G 的连线必等分对边.2.重心定理:三角形重心与极点的距离等于它与对边中点的距离的2倍.即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三极点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=.4.向量性质:(1)=++;(2))(31++=.。

三角形外心内心重心垂心与向量性质

三角形外心内心重心垂心与向量性质

三角形的“四心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC的重心一般用字母O表示。

性质:1.外心到三顶点等距,即OA= OB=OC。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即OD⊥BC,OE⊥AC,OF⊥AB .3.向量性质:若点O为ABC所在的平面内一点,满足(OA+OB)BA=(OB+OC)CB=(OC+OA)AC,则点O为ABC的外心。

二、三角形的内心定义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC的内心一般用字母I表示,它具有如下性质:性质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=1三角形的周长内切圆的半径.23.向量性质:设(0,+),则向量AP=( AB + AC ),则动| AB | | AC |点P的轨迹过ABC的内心。

三、三角形的垂心定义:三角形三条高的交点叫重心。

ABC的重心一般用字母H表示。

性质:1.顶点与垂心连线必垂直对边,即AH⊥BC,BH⊥AC,CH⊥AB。

2.向量性质:结论1 :若点O为ABC所在的平面内一点,满足OA OB=OB OC=OC OA,则点O 为ABC的垂心。

2 2 2 2 2 2结论2:若点O为△ABC所在的平面内一点,满足OA2+BC2= OB2+CA2=OC2+AB2,则点O 为ABC的垂心。

四、三角形的“重心”:定义:三角形三条中线的交点叫重心。

ABC的重心一般用字母G表示。

性质:1.顶点与重心G的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GA = 2GD,GB = 2GE,GC = 2GF3.重心的坐标是三顶点坐标的平均值.4.向量性质:(1)GA+GB+GC=0;2)PG = 1(PA+PB+PC)即x =x A+x B+x C, y G =y A + y B + y C3。

高三数学-专题复习-向量专题(1)向量与三角形四心内心、外心、重心、垂心(附向量知识点)

高三数学-专题复习-向量专题(1)向量与三角形四心内心、外心、重心、垂心(附向量知识点)

高三数学-三角形四心与向量关系 -内心、外心、重心、垂心(附向量知识点)一、三角形四心知识点(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、向量知识点☆零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行☆单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a|=1☆平行向量(共线向量):方向相同或相反的非零向量平行向量也称为共线向量☆向量加法AB BC u u u r u u u r =AC u u ur 向量加法有“三角形法则”与“平行四边形法则”:AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.☆实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的☆两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =☆平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底☆平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y r r ,1212a b x x y y rr (2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r,则a b r r ,02121 y y x x☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质☆两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r 与b r 的数量积(或内积) 规定0a r r☆向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影☆数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r 方向上的投影的乘积☆向量的模与平方的关系:22||a a a a r r r r☆乘法公式成立:2222a b a b a b a b r r r r r r r r ;2222a ba ab b r r r r r r 222a a b b r r r r☆向量的夹角:已知两个非零向量a r与b r ,作OA uu u r =a r , OB uuu r =b r ,则∠AOB= (001800 )叫做向量a r与b r 的夹角cos =cos ,a ba b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题补充: 线段的定比分点设,,,,分点,,设、是直线上两点,点在P x y P x y P x y P P P 11122212ll 上且不同于、,若存在一实数,使,则叫做分有向线段P P P P PP P 1212P P P P P P P P 12121200所成的比(,在线段内,,在外),且x x x y y y P P P x x x y y y12121212121122 ,为中点时, 如:,,,,,, ABC A x y B x y C x y 112233则重心的坐标是, ABC G x x x y y y 12312333三、三角形四心与向量关系典型例题:例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)( , ,0 ,则点P 的轨迹一定通过ABC 的( )A .外心B .内心C .重心D .垂心 分析:如图所示ABC ,E D 、分别为边AC BC 、的中点.2 2 2 // 点P 的轨迹一定通过ABC 的重心,即选C .例2:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足, ,0 ,则点P 的轨迹一定通过ABC 的( B )A .外心B .内心C .重心D .垂心分析:分别为方向上的单位向量,平分BAC ,点P 的轨迹一定通过ABC 的内心,即选B .例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足, ,0 ,则点P 的轨迹一定通过ABC 的( )A .外心B .内心C .重心D .垂心分析:如图所示AD 垂直BC ,BE 垂直AC , D 、E 是垂足.BC=0点P 的轨迹一定通过ABC 的垂心,即选D .三、四心与向量的结合(1) 0OC OB OA O 是ABC 的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O0OC OB OA)()()(0)()()(321321y y y y y y x x x x x x33321321y y y y x x x x O 是ABC 的重心. 证法2:如图OC OB OA 02 OD OA OD AO 2D O A 、、三点共线,且O 分AD 为2:1 O 是ABC 的重心(2) OA OC OC OB OB OA O 为ABC 的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)( AC OB 同理BC OA ,AB OC O 为ABC 的垂心(3)设a ,b ,c 是三角形的三条边长,O 是 ABC 的内心BCDB CDO c b a 为ABC 的内心.证明:bc 、分别为方向上的单位向量,bc平分BAC , (AO bc),令c b a bcc b a bc (bACc AB) 化简得0)( AC c AB b OA c b a0 OC c OB b OA a(4O 为ABC 的外心。

三角形“四心” 与向量的完美结合

三角形“四心” 与向量的完美结合

三角形“四心”及向量完美结合三角形重心、垂心、外心、内心向量形式充要条件向量形式 一. 知识点总结1)O 是ABC ∆重心⇔0OC OB OA =++; 若O 是ABC ∆重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆重心.2)O 是ABC ∆垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆外心⇔|OC ||OB ||OA |==(或222OC OB OA ==) 若O 是ABC ∆外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ∆充要条件是(=-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ O 是ABC ∆内心充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 C sin B sin A sin c b a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔ABC ∆内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆内心(是BAC ∠角平分线所在直线);二. 范例(一).将平面向量及三角形内心结合考查例1.O是平面上一定点,A,B,C 是平面上不共线三个点,动点P 满足OA OP ++=λ,[)+∞∈,0λ则P 点轨迹一定通过ABC ∆( )(A )外心(B )内心(C )重心(D )垂心 解析:AB 单位向量设AB 及AC 方向上单位向量分别为21e e 和, 又=-,则原式可化为)(21e e AP +=λ,由菱形基本性质知AP 平分BAC∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.点评:这道题给人印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它模不就是单位向量? 此题所用都必须是简单基本知识,如向量加减法、向量基本定理、菱形基本性质、角平分线性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

高三数学-专题复习-向量专题(1)向量与三角形四心内心、外心、重心、垂心(附向量知识点)

高三数学-专题复习-向量专题(1)向量与三角形四心内心、外心、重心、垂心(附向量知识点)

高三数学-三角形四心与向量关系-内心、外心、重心、垂心(附向量知识点)「、三角形四心知识点(1) 重心——中线的交点:重心将中线长度分成2 : 1 ;(2) 垂心一一高线的交点:高线与对应边垂直;(3) 内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4) 外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、向量知识点☆零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行☆单位向量:模为1个单位长度的向量向量a0为单位向量I a0|= 1.☆平行向量(共线向量):方向相同或相反的非零向量平行向量也称为共线向量一uuu UULT uuur☆向量加法AB BC = AC向量加法有“三角形法则”与“平行四边形法则”:uuu uur uuur uuu uuu uuuAB BC CD L PQ QR AR,但这时必须“首尾相连”.☆实数与向量的积:①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下:(I) a a ;(U)当0时,入a的方向与a的方向相同;当0时,入a的方向与a的方向相反;当0时,a 0,方向是任意的☆两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b = a☆平面向量的基本定理:如果0(2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数i , 2使:a 心 2e 2,其中不共线的向量©(2叫做表示这一平面内所有向量的一组 基底☆平面向量的坐标运算:uuu⑵若 A X i , y i , B X 2, y 2,则 AB x ? X i , y 2 y i⑶若a :=(x,y), 则 a =( x, y)⑷若a 冷% r ,b r r x 2, y 2,贝U a//b x 』2 X2% 0⑸若a冷% r ,br rx 2, y 2,贝U a b ,X iX 2y i y 2☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和 性质☆两个向量的数量积:rr r已知两个非零向量a 与b ,它们的夹角为,则a • b = I a 丨・丨b 丨cos叫做a 与b 的数量积(或内积)规定o$ 0rr☆数量积的几何意义:a • b 等于a 的长度与b 在a 方向上的投影的乘积ra若r br by2y1卷X1yy y1X1r bra☆向量的投影:I cos€R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影☆向量的模与平方的关系: r r r 2 r 2 a a a | a |☆乘法公式成立: a br 2 r r r a 2a bb☆向量的夹角:已知两个非零向量 a 与b , uun r uuu r作O A = a , O B = b ,贝AOB=(0°1800 )叫做向量a 与b 的夹角y2卷r r 2 r 2 r r r 2 a b a 2a b br r c r r c r当且仅当两个非零向量a 与b 同方向时,B =0°,当且仅当a 与b 反方向时9 =180 0,同时0与其 它任何非零向量之间不谈夹角这一问题 补充: 线段的定比分点x i x 2X i,p 为P i P 2中点时, y i y 21y设 P X i ,y i ,P 2 X 2,y 2,分点 Px , y ,设R 、P 2是直线I 上两点,P 点在I 上且不同于R 、 P 2,若存在一实数,使 P i PPP 2,则叫做P 分有向线段RP 2所成的比(0,P 在线段P 1P 2内,0,P 在RP 2外),且 如: ABC ,A X i ,y i ,B X 2,y ?C X 3,y 3则ABC 重心G 的坐标是X i X 2 X 3y i y 2 y 33cos = cosrarb 9. rax 1 x 2 2 y i y 2 2—b 2 y2三角形四心与向量关系典型例题: 例1 : O是平面上一定点,A、B、C是平面上不共线的三个点,动点分析:如图所示ABC , D、E分别为边BC、AC的中点.AB AC 2AD OP OA 2 ADOP OA AP AP 2 AD AP〃AD点P的轨迹一定通过ABC的重心,即选C .AB AC平分BAC ,AB AC 满足OP OA (AB AC),0, ,则点P的轨迹一定通过ABC的(A .外心B .内心C .重心D .垂心OP 例2 : O是平面上一定点,A、B、C是平面上不共线的三个点,OA(AB AC、AC),0, ,则点P的轨迹一定通过ABC的(B动点满足A .外心B .内心C .重心D .垂心分析:ABMAC分别为AB、AC方向上的单位向量,ACOP点P的轨迹一定通过ABC的内心,即选例3: O是平面上一定点,OA (AB ACB.AB cosB),AC cosCA、B、0,是平面上不共线的三个点, 动点,则点P的轨迹一定通过ABC的(满足A .外心B .内心C .重心D .垂心分析:如图所示AD垂直BC , BE 垂直AC ,D、E是垂足.AB ACAB cosB)BCAC cosCB D=AB BC AC BCAB cosB AC cosC三、四心与向量的结合证法 1:设 O(x, y), A(x 「yj B (X 2, y 2),C(X 3, y 3)证法2 :如图AO 2ODO 是ABC 的重心(2)OA OB OB OC OC OA O 为 ABC 的垂心. 证明:如图所示O 是三角形ABC 的垂心, BE 垂直 AC ,AD 垂直BC E 是垂足.OA OB OB OC OB(OA OC) OB CA 0 OB AC 同理OA BC ,OC AB O 为 ABC 的垂心 (3)设a,b ,c 是三角形的三条边长,0是 ABC 的内心 AC BC cosC| AC | cosC点P 的轨迹一定通过 ABC 的垂心,即选D .(1 ) OA OB OCO 是ABC 的重心.OA OB OC 0(X i x) (y i y)(X 2 x) (X 3 x) 0 y) (y 3y) 0(y 2X i X 2 X 33 % y 2 y 33O 是ABC 的重心.OA OB OC OA2ODA 、0、D 三点共线, 且O 分AD 为2 :AB BC cosBBC + BC =0aOA bOB cOC 0 O 为 ABC 的内心.证明: AB 、、AC 分别为ABAC 方向上的单位向量,c b aOA bOB cOC 0(4) OA OB OC O 为 ABC 的外心。

三角形外心内心重心垂心与向量性质

三角形外心内心重心垂心与向量性质

三 角 形 的“四 心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心;当三角形是正三角形时,四心重合为一点,统称为三角形的中心;一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心;ABC ∆的重心一般用字母O 表示;性 质:1.外心到三顶点等距,即OC OB OA ==;2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,.3.向量性质:若点O 为ABC ∆所在的平面内一点,满足AC OA OC CB OC OB BA OB OA ⋅+=⋅+=⋅+)()()(,则点O 为ABC ∆的外心;二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心;ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角;2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.向量性质:设()+∞∈,0λ,则向量||||(AC AB AP =λ,则动点P 的轨迹过ABC ∆的内心;三、三角形的垂心定 义:三角形三条高的交点叫重心;ABC ∆的重心一般用字母H 表示;性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,;2.向量性质:结论1:若点O 为ABC ∆所在的平面内一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 为ABC ∆的垂心;结论2:若点O 为△ABC 所在的平面内一点,满足222222AB OC CA OB BC OA +=+=+, 则点O 为ABC ∆的垂心; 四、三角形的“重心”:定 义:三角形三条中线的交点叫重心;ABC ∆的重心一般用字母G 表示;性 质:1.顶点与重心G 的连线必平分对边;2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍;即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=. 4.向量性质:10=++GC GB GA ; 2)(31PC PB PA PG ++=;。

高中数学平面向量四心总结

高中数学平面向量四心总结

OP OA ( AB AC ) , 0, ,则点 P 的轨迹一定通过 ABC 的( B )
AB AC
A.外心
B.杰 老师高考驿站
98 训练营
分析: AB 、AC 分别为 AB、AC 方向上的单位向量, AB AC
AB AC 平分 BAC, AB AC
点 P 的轨迹一定通过 ABC 的内心,即选 B .
(1) OA OB OC 0 O 是 ABC的重心.
证法 1:设 O(x, y), A(x1, y1 ), B(x2 , y2 ), C(x3 , y3 )
OA OB OC
0
(x1 x) (x2 x) (x3 x) 0 ( y1 y) ( y2 y) ( y3 y) 0
比是(
) A.0
B. 3 2
C. 5 4
D. 4 3
4. ABC的外接圆的圆心为 O,若 OH OA OB OC ,则 H 是 ABC 的( )
A.外心
B.内心
C.重心
D.垂心
5. O 是平面上一定点, A、B、C 是平面上不共线的三个点,若
2
OA
2
BC
2
OB
2
CA
2
OC
2
AB
,则 O 是 ABC 的(
典型例题: 例 1 : O 是 平 面 上 一 定 点 , A、B、C 是 平 面 上 不 共 线 的 三 个 点 , 动 点 P 满 足
OP OA (AB AC) , 0, ,则点 P 的轨迹一定通过 ABC 的(
A.外心
B.内心
C.重心
D.垂心
分析:如图所示 ABC, D、E 分别为边 BC、AC 的中点.
AB AC AP ,则 的值为( )

高中数学-三角形内心、外心、重心、垂心与向量关系

高中数学-三角形内心、外心、重心、垂心与向量关系

高中数学-三角形内心、外心、重心、垂心与向量关系(附向量知识点)一、三角形四心知识点(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、向量知识点☆零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行☆单位向量:模为1个单位长度的向量 向量0a 为单位向量⇔|0a|=1☆平行向量(共线向量):方向相同或相反的非零向量平行向量也称为共线向量☆向量加法AB BC +=AC向量加法有“三角形法则”与“平行四边形法则”:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.☆实数与向量的积:①实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下: (Ⅰ)a a⋅=λλ;(Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的☆两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ☆平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底☆平面向量的坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±,1212a b x x y y ⋅=⋅+⋅(2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5) 若()()1122,,,a x y b x y ==,则a b ⊥,02121=⋅+⋅y y x x☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质☆两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ 叫做a 与b 的数量积(或内积) 规定00a ⋅=☆向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 ☆数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积☆向量的模与平方的关系:22||a a a a ⋅==☆乘法公式成立: ()()2222a b a b a b a b +⋅-=-=-;()2222a ba ab b ±=±⋅+222a a b b =±⋅+☆向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (01800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a ba b•<>=•=222221212121y x y x +⋅+当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题补充:线段的定比分点()()()设,,,,分点,,设、是直线上两点,点在P x y P x y P x y P P P 11122212ll 上且不同于、,若存在一实数,使,则叫做分有向线段P P P P PP P 1212λλλ→=→P P P P P P P P 12121200→><所成的比(,在线段内,,在外),且λλx x x y y y P P P x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪=+=+⎧⎨⎪⎪⎩⎪⎪12121212121122λλλλ,为中点时,()()()如:,,,,,,∆ABC A x y B x y C x y 112233则重心的坐标是,∆ABC G x x x y y y 12312333++++⎛⎝ ⎫⎭⎪三、三角形四心与向量关系典型例题:例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 分析:如图所示ABC ∆,E D 、分别为边AC BC 、的中点.AD AC AB 2=+ ∴AD OA OP λ2+= AP OA OP += AD AP λ2=∴AP ∴//AD ∴点P 的轨迹一定通过ABC ∆的重心,即选C .例2:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( B )A .外心B .内心C .重心D .垂心分析:ACAB分别为AC AB 、方向上的单位向量,∴AC AB +平分BAC ∠,∴点P 的轨迹一定通过ABC ∆的内心,即选B .例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心分析:如图所示AD 垂直BC ,BE 垂直AC , D 、E 是垂足.AC AB +BC ⋅=BC AC BC AB ⋅+=+-=0∴点P 的轨迹一定通过ABC ∆的垂心,即选D .三、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++0OC OB OA ⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔O 是ABC ∆的重心. 证法2:如图OC OB OA ++02=+=OD OA ∴OD AO 2=∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅CA OB OC OA OB OC OB OB OA AC OB ⊥⇔同理BC OA ⊥,ABOC ⊥⇔O 为ABC ∆的垂心B CDB CD(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心.证明:bACc AB 、分别为AC AB 、方向上的单位向量, ∴bACc AB +平分BAC ∠, (λ=∴AO bACc AB +),令c b a bc ++=λ ∴c b a bc AO ++=(bACc AB +) 化简得0)(=++++AC c AB b OA c b a∴0=++OC c OB b OA a(4==⇔O 为ABC ∆的外心。

向量与三角形内心、外心、重心、垂心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇在三角形中,有四个特殊的点,即内心、外心、重心和垂心,它们可以与向量知识有所交汇。

1. 内心:三角形的内心是三条角平分线的交点,表示为I。

内心到三角形的各个顶点的距离相等,即IA=IB=IC。

如果我们用向量OA、OB、OC表示三条边的向量,并设内心为I的向量为OI,那么可以得到关系式:OI = (IA/2) * (OA/|OA| + OB/|OB| + OC/|OC|)。

根据这个关系式,我们可以通过向量知识计算内心的位置。

2. 外心:三角形的外心是三条垂直平分线的交点,表示为O。

外心到三角形的各个顶点的距离相等,即OA=OB=OC。

如果我们用向量AB、BC、CA表示三条边的向量,并设外心为O的向量为OO,那么可以得到关系式:OO = (OA/2) + (OB/2) + (OC/2)。

根据这个关系式,我们可以通过向量知识计算外心的位置。

3. 重心:三角形的重心是三条中线的交点,表示为G。

重心到三角形的各个顶点的距离按比例为2:1,即GA = GB = GC = 2/3 * OA。

如果我们用向量OA、OB、OC表示三条边的向量,并设重心为G的向量为OG,那么可以得到关系式:OG = (OA + OB + OC)/3。

根据这个关系式,我们可以通过向量知识计算重心的位置。

4. 垂心:三角形的垂心是三个高的交点,表示为H。

垂心到三角形的各个顶点的距离满足HHa/HOa = HHb/HOb = HHc/HOc = -1。

如果我们用向量HA、HB、HC表示三个高的向量,并设垂心为H的向量为OH,那么可以得到关系式:OH = HA + HB + HC。

根据这个关系式,我们可以通过向量知识计算垂心的位置。

向量知识可以帮助我们计算三角形的内心、外心、重心和垂心的位置,从而揭示它们之间的关系。

三角形中有关内心 外心 垂心 重心的向量的数值关系

三角形中有关内心 外心 垂心 重心的向量的数值关系

三角形中有关内心外心垂心重心的向量的数值关系1. 引言三角形是数学中一个重要的几何形状,具有许多有趣的性质和特征。

在三角形中,内心、外心、垂心和重心是四个与三角形相关的重要点,它们的位置和性质提供了丰富的几何信息。

本文将围绕三角形的内心、外心、垂心和重心展开讨论,并研究它们之间的向量数值关系。

2. 内心内心是一个三角形的最大内切圆的圆心,它与三角形的三条边相切。

记三角形的内心为I,三个顶点为A、B、C,分别到内心的距离记为r。

根据定义,内心到三角形的三条边的距离相等,即IA = IB = IC = r。

那么,我们可以利用向量的知识来研究内心与三角形顶点之间的数值关系。

假设三角形的边向量分别为向量AB、向量BC和向量CA,内心到三角形顶点的向量分别为向量IA、向量IB和向量IC。

根据向量的基本性质,我们可以得到以下关系:1) 向量IA = r * 向量AI,即向量IA与向量AI同方向且长度为r倍关系。

2) 由向量加法的性质,我们可以得到向量IB = 向量AB + 向量AI。

同理,向量IC = 向量BC + 向量BI。

通过这些向量关系,我们可以进一步研究内心与三角形顶点之间的数值关系,并深入探讨内心在三角形内部的位置特性。

3. 外心外心是一个三角形外接圆的圆心,它位于三角形的三条边的垂直平分线的交点处。

记三角形的外心为O,外心到三角形三个顶点的距离分别为R1、R2和R3。

根据定义,外心到三角形的三条边的距离相等,即OA = OB = OC = R。

同样地,我们可以利用向量的知识来研究外心与三角形顶点之间的数值关系。

假设三角形的边向量分别为向量AB、向量BC和向量CA,外心到三角形顶点的向量分别为向量OA、向量OB和向量OC。

根据向量的基本性质,我们可以得到以下关系:1) 向量OA = R * 向量AO,即向量OA与向量AO同方向且长度为R 倍关系。

2) 由向量加法的性质,我们可以得到向量OB = 向量AB + 向量AO。

重心垂心内心外心的向量结论

重心垂心内心外心的向量结论

重心垂心内心外心的向量结论
在平面几何中,重心、垂心、内心和外心是四个十分重要的概念,它们是我们研究三角形的必备元素。

今天我们就来谈谈重心、垂心、
内心和外心的一些向量结论。

首先,我们来说一下重心。

重心是指三角形三条中线的交点,也
是三角形内所有点到三角形三个顶点距离之和最小的点。

通过向量的
知识,我们可以得知,重心到三角形三个顶点的向量和为零向量。


句话说,三角形顶点的向量和就是重心的向量。

这条结论对于求解重
心问题非常有用。

接下来,我们来谈一下垂心。

垂心是指三角形三个顶点到对边垂
线的交点。

我们可以得知,垂心到三角形三个顶点的向量互相垂直。

这条结论也非常有用,可以用来方便地计算垂心的坐标。

再来说一下内心。

内心是指三角形三条角平分线的交点,是三角
形内切圆的圆心。

我们可以得知,内心到三角形三个顶点的向量之和
等于零。

这条结论同样也非常有用,可以用来方便地计算内心的坐标。

最后,我们来说一下外心。

外心是指三角形三个垂直平分线的交点,是三角形外接圆的圆心。

我们可以得知,外心到三角形三个顶点
的向量互相垂直且长度相等。

这条结论同样非常有用,可以用来方便
地计算外心的坐标。

综上所述,重心、垂心、内心和外心都有其特定的向量结论。

这些结论不仅在求解相关问题时非常有用,而且对于我们加深对向量的理解也有很大帮助。

因此,我们需要加强对这些结论的学习和掌握,进一步提高数学思维水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量与三角形内心、外心、重心、垂心知识的交汇
天津四中:刘晖
一、四心的概念介绍
(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合
(1)⇔=++0OC OB OA O 是ABC ∆的重心.
证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O
⇔=++0OC OB OA ⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩
⎪⎪⎨⎧++=++=⇔33
3
21321y y y y x x x x
⇔O 是ABC ∆的重心.
证法2:如图
OC OB OA ++
02=+=OD OA
∴OD AO 2=
∴D O A 、、三点共线,且O 分AD
为2:1
∴O 是ABC ∆的重心
(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心.
证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.
0)(=⋅=-⇔⋅=⋅CA OB OC OA OB OC OB OB OA
AC OB ⊥⇔
同理BC OA ⊥,AB OC ⊥
⇔O 为ABC ∆的垂心
(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心
O OC c OB b OA a ⇔=++0为ABC ∆的内心.
证明:b
AC
c AB 、
分别为AC AB 、
方向上的单位向量, ∴
b
AC c AB +平分BAC ∠, (
λ=∴AO b AC c AB +),令c
b a bc
++=λ

c
b a bc
AO ++=
(b AC c AB +) 化简得0)(=++++AC c AB b OA c b a
∴0=++OC c OB b OA a
(4
)==⇔O 为ABC ∆的外心。

典型例题:
例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足
)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )
A .外心
B .内心
C .重心
D .垂心 分析:如图所示ABC ∆,
E D 、分别为边AC BC 、的中点.
AD AC AB 2=+
∴AD OA OP λ2+=
AP OA OP += AD AP λ2=∴
AP ∴//AD
∴点P 的轨迹一定通过ABC ∆的重心,即选C .
例2:(03全国理4)O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P
满足AC AB OA OP +
+=λ,[)+∞∈,0λ ,
则点P 的轨迹一定通过ABC ∆的( B ) A .外心 B .内心 C .重心 D .垂心
分析:AC
AB
分别为AC AB 、方向上的单位向量,

+
BAC ∠,
∴点P 的轨迹一定通过ABC ∆的内心,即选B .
例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P
满足
AC AB OA OP +
+=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的
B C
D
( )
A .外心
B .内心
C .重心
D .垂心
分析:如图所示AD 垂直BC ,BE 垂直AC , D 、E 是垂足
. AC AB +
BC ⋅
+
+
=-
=0
∴点P 的轨迹一定通过ABC ∆的垂心,即选D .
练习:
1.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )
A .2
B .
2
3
C .3
D .6 2.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( ) A .
21 B .0 C .1 D .2
1
- 3.点O 在ABC ∆内部且满足022=++OC OB OA ,则ABC ∆面积与凹四边形
ABOC 面积之比是( )
A .0
B .
23 C .45 D .3
4
4.ABC ∆的外接圆的圆心为O ,若OC OB OA OH ++=,则H 是ABC ∆的( )
A .外心
B .内心
C .重心
D .垂心
5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若2
2
2
OB BC OA =+
2
22AB OC CA +=+,则O 是ABC ∆的( )
A .外心
B .内心
C .重心
D .垂心
6.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,
则实数m =
7.(06陕西)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →
=0且AB →|AB →| ·AC →|AC →| =12 , 则
△ABC 为( )
A .三边均不相等的三角形
B .直角三角形
C .等腰非等边三角形
D .等边三角形
8.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2
,则
ABC ∆为( )
A .等腰三角形
B .等腰直角三角形
C .直角三角形
D .既非等腰又非直角三角形 练习答案:C 、D 、C 、D 、D 、1、D 、C。

相关文档
最新文档