铂_石墨烯氧还原电催化剂的共还原法制备及表征
一步法制备还原态氧化石墨烯载铂纳米粒子及其对甲醇氧化的电催化性能
一步法制备还原态氧化石墨烯载铂纳米粒子及其对甲醇氧化的电催化性能高海丽;李小龙;贺威;国瑞婷;柴博【摘要】以天然石墨为原料,采用改进的Hummers法制备氧化石墨.然后采用简单的一步化学还原法在乙二醇(EG)中同时还原氧化石墨烯(GO)和H2PtCl6制备高分散的铂/还原态氧化石墨烯(Pt/RGO)催化剂.采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)和透射电子显微镜(TEM)对催化剂的微结构、组成和形貌进行表征.结果表明,GO已被还原成RGO,Pt纳米粒子均匀分散在RGO表面,粒径约为2.3 nm.采用循环伏安法和计时电流法评价催化剂对甲醇氧化的电催化性能,测试结果表明,Pt/RGO催化剂对甲醇氧化的电催化活性和稳定性与Pt/C和Pt/CNT相比有了很大提高.另外其对甲醇电催化氧化的循环伏安图中正扫峰电流密度(^)和反扫峰电流密度(Ⅰb)的比值高达1.3,分别是Pt/C和Pt/CNT催化剂的2.2和1.9倍,表明Pt/RGO催化剂具有高的抗甲醇氧化中间体COad的中毒能力.【期刊名称】《物理化学学报》【年(卷),期】2015(031)011【总页数】7页(P2117-2123)【关键词】Pt纳米粒子;石墨烯;化学还原;甲醇氧化;抗中毒能力【作者】高海丽;李小龙;贺威;国瑞婷;柴博【作者单位】郑州轻工业学院材料与化学工程学院,郑州450001;郑州轻工业学院,河南省表界面科学重点实验室,郑州450001;郑州轻工业学院材料与化学工程学院,郑州450001;郑州轻工业学院材料与化学工程学院,郑州450001;郑州轻工业学院材料与化学工程学院,郑州450001;郑州轻工业学院材料与化学工程学院,郑州450001【正文语种】中文【中图分类】O646直接甲醇燃料电池(DMFCs)以其高能量密度、低操作温度、燃料易于储存和运输及对环境无污染等优点,1引起了人们的广泛关注. DMFCs通常使用贵金属Pt作为阳极催化剂, 然而Pt的资源有限及价格高昂, 极大地限制了DMFCs的大规模商业化.另外, 虽然金属Pt对甲醇的直接氧化具有很高的活性, 但是Pt容易被甲醇氧化中间体COad毒化, 极大降低电池性能.2所以, 研制高活性的甲醇氧化催化剂对DMFCs的商业化应用有重要意义.目前, 提高催化剂对甲醇氧化的电催化性能及降低催化剂成本的研究主要集中在三个方面: (1) 改进制备方法合成小粒径、高分散的Pt及Pt基金属纳米颗粒,3,4提高贵金属利用率; (2) 制备特殊形貌(空心结构、核壳结构、多孔结构、纳米线等)的Pt 基催化剂,5–8以降低贵金属负载量, 从而降低成本; (3)研究Pt基合金(PtRu, PtCo, PtPdAu, PtNi等)纳米催化剂,9–11以提高催化剂对甲醇氧化中间体COad的抗中毒能力; (4) 选用高比表面积、高导电性和高稳定性的载体.12–14其中, 选择及开发性能优良的载体材料是科研工作者研究的热点之一, 因为载体材料对于贵金属催化剂的粒径、形貌、尺寸分布、稳定性和分散性有重要影响, 从而影响燃料电池中催化剂的性能, 如物质传递、催化剂层导电性、电化学活性表面积和电池工作时金属颗粒的稳定性.15众所周知, 理想的载体材料应当具有高比表面积、合适的孔隙率、一定的形貌、高导电性、优良的抗腐蚀性及表面有官能团. 由于成本低和来源丰富, 炭黑成为低温燃料电池催化剂常用的载体材料. 其中, 美国卡博特公司的Vulcan XC-72炭黑(Cabot Corporation, America)因其高导电性和高比表面积成为低温燃料电池催化剂广泛使用的载体材料.16但是, Vulcan XC-72炭黑含有许多孔径小于1 nm的微孔不能充分利用, 使Pt纳米颗粒可沉积的表面积减小.17为解决这个问题, 在过去几十年里带有介孔结构(2–50 nm)的碳材料: 如碳纳米管(CNT)18和碳纳米纤维(CNFs)19被用来作为燃料电池催化剂载体, 但是其较高的成本在一定程度上增加了用其做载体的催化剂的成本. 相比CNTs和CNFs, 另一种新型的碳材料——石墨烯具有更大的比表面积(理论比表面积高达2620 m2g–1)、更高的电子导电性、良好的化学稳定性、易于官能化和潜在的较低成本,20成为低温燃料电池催化剂的潜在理想载体.迄今为止, 科学家做了许多工作来制备石墨烯做载体的催化剂,21–23研究表明以石墨烯做载体的催化剂对甲醇氧化的催化性能高于以其它碳材料做载体的催化剂性能. 目前, 制备石墨烯载Pt催化剂最常用的方法是两步还原法,24,25即先把氧化石墨烯(GO)还原成石墨烯, 然后在石墨烯上还原沉积Pt纳米粒子. 这种方法步骤繁多、制备时间长且有机溶剂和还原剂使用较多. 更为重要的是, 第一步中氧化石墨烯还原成石墨烯后由于范德华力作用很容易发生堆积, 发生堆积后的石墨烯难以在水溶液和有机溶剂中分散均匀, 导致第二步在其上还原沉积Pt时不能保证Pt纳米颗粒的分散均匀性, 从而影响催化剂的性能.本文以GO和H2PtCl6为原料, 用乙二醇(EG)做溶剂和还原剂, 柠檬酸钠做络合剂, 同时还原GO和H2PtCl6制备小粒径、高分散的还原态氧化石墨烯(RGO)载铂催化剂, 并测试了其对甲醇氧化的电催化性能. 该制备方法较简单, 一方面GO表面的含氧官能团可以使GO纳米片均匀分散在EG溶液中, 并且把Pt纳米颗粒固定在GO表面上, 有利于其高分散性; 另一方面, 在还原过程中, GO被还原成RGO, 而H2PtCl6被还原成Pt纳米粒子进入RGO纳米片的片层中, 可有效防止石墨烯的堆积. 以上两方面作用, 可以得到高分散、高活性的Pt/RGO催化剂. 循环伏安和计时电流测试结果证明了Pt/RGO对甲醇氧化的高催化活性、对甲醇氧化中间体良好的抗中毒能力及优良的稳定性.2.1 实验试剂实验所用试剂: 乙二醇(天津市风船化学试剂科技有限公司); 无水甲醇(南京化学试剂有限公司); KOH(天津市科密欧化学试剂有限公司); 柠檬酸钠(天津市风船化学试剂科技有限公司); H2PtCl6(沈阳市金科试剂厂); 浓H2SO4(洛阳市化学试剂厂); NaNO3(天津市风船化学试剂科技有限公司); H2O2(天津市科密欧化学试剂有限公司); KMnO4(天津市北辰化学试剂有限公司); Nafion溶液(上海格式新能源技术有限公司). 所用试剂均为分析纯. 石墨粉购自青岛恒胜石墨有限公司, 纯度99.9%. Vulcan XC-72 碳粉购自美国卡博特公司.2.2 催化剂的制备2.2.1 氧化石墨的制备采用改进的Hummers法制备氧化石墨, 其制备方法如下: 0.5 g石墨粉和0.5 g的NaNO3加入30mL浓硫酸, 温度稳定在0 °C左右, 向其中加入高锰酸钾, 在(35 ± 5) °C反应2 h, 然后缓慢加入40 mL水,在(90 ± 5) °C反应1 h, 接着向溶液中加入100 mL水和3 mL H2O2, 此时溶液变为亮黄色. 对溶液进行反复离心, 直到溶液中无为止, 离心结束后进行抽滤、洗涤、干燥, 得到氧化石墨样品.2.2.2 Pt/RGO催化剂的制备将适量柠檬酸钠溶于乙二醇中, 接着加入200mg氧化石墨使之超声分散均匀得到GO溶液, 然后向溶液中加入0.0386 molL–1的氯铂酸/EG溶液6.7 mL, 超声处理30 min, 使铂的前驱体均匀分散在溶液中. 然后用5% KOH/EG溶液调节pH > 10, 放入油浴中于120 °C反应6 h, 洗涤、过滤, 直到溶液中检测不到氯离子. 将得到的滤饼于烘箱中70 °C烘干,得到Pt/RGO催化剂. 为了对比, 分别用C和CNT为载体采用同样方法制备了Pt/C和Pt/CNT催化剂. 其中Pt的负载量均为20%. RGO 的制备方法与Pt/RGO相同, 只是在反应过程中没有加氯铂酸.2.3 催化剂的表征傅里叶变换红外(FTIR)光谱测试在德国Bruker TENSOR 27红外光谱仪上进行, 波数范围为4000–500 cm–1. 用日本理学D/MAX-RC型X射线衍射(XRD)进行仪物相分析, Cu-Kα(λ = 0.15406 nm)辐射, 电流为30 mA, 管电压为40 kV, 扫描速率为2(°)min–1, 扫描范围2θ为5°–80°. 在日本JSM-7000型透射电镜上进行高分辨透射电子显微镜(HRTEM)图分析, 加速电压为300 kV, 样品在无水乙醇中超声分散均匀, 然后负载到铜网样品架上制成样品.2.4 电催化性能测试催化剂的电化学性能测试在CHI 660C电化学工作站(上海辰华)上进行, 采用三电极体系, 辅助电极为铂丝, 参比电极为Ag/AgCl电极, 研究电极为涂有催化剂层的直径为4 mm的玻碳电极. 研究电极的制备方法为: 称取5 mg催化剂超声分散在1 mL 0.25%(w)Nafion/已醇溶液中, 然后取5 μL滴到玻碳电极表面, 常温干燥. 测试催化剂活性比表面积(ECSA)使用的电解液为0.5 moLL–1H2SO4溶液, 测试催化剂催化活性使用的电解质溶液为0.5 molL–1H2SO4+ 0.5 molL–1CH3OH混合溶液. 循环伏安曲线测量范围为–0.2―1.0 V, 扫描速率10 mVs–1, 每次测试前向电解液中通N215 min.为了得到催化剂的相组成和结构信息, 对催化剂进行了XRD测试. 图1(a)为石墨、GO和RGO的XRD图谱. 从图中可以看出石墨在2θ = 26°左右有一个明显的衍射峰, 此峰为石墨晶体(002)的特征衍射峰. 由布拉格公式可以计算出石墨晶体的(002)晶面的层间距d值为0.34 nm. GO在2θ = 26°附近的衍射峰消失, 而在2θ = 10°附近出现新的宽衍射峰, 对应的层间距d 值为0.82 nm 左右. GO的层间距比石墨的层间距增大, 是由于:26(1)在强氧化剂作用下,石墨片层间和边缘位置引入了C=O, C―OH,―COOH等大量含氧官能团, 这些官能团的接入引起碳原子结构层发生褶皱, 从而使层间距增加; (2)含氧官能团的存在使得GO具有极强的亲水性, 水分子插入层间, 从而导致碳原子结构层间距沿c轴方向增大. 这些官能团可以起到固定金属纳米颗粒的作用.27这说明石墨已被成功氧化成GO, GO表面含有官能团. GO经过EG还原后, 2θ = 10°附近的衍射峰消失, 在2θ = 24°和2θ = 43°出现宽衍射峰为C(002)和(100)特征峰, 表明GO已还原成RGO, 在还原过程中重新建立了sp2杂化石墨烯网络. 图1(b)为Pt/RGO的XRD图谱, 为便于比较, RGO、Pt/CNT和Pt/C的XRD图也放于其中. 很明显, Pt/RGO、Pt/CNT和Pt/C催化剂在39.7°、45.6°和67.4°左右分别出现了面心立方(fcc) Pt的(111)、(200)和(220)晶面, 表明H2PtCl6已被还原成Pt纳米粒子. Pt/RGO催化剂的XRD图中, GO在2θ = 10°的特征衍射峰消失,而在2θ = 24°出现了一个强度弱的宽衍射峰, 层间距为0.36 nm, 表明GO已被还原, 这与文献3报道的一致. 根据谢乐公式28可计算出Pt/RGO、Pt/CNT和Pt/C催化剂的平均粒径分别为2.3、2.4和2.6 nm.图2为石墨、GO和Pt/RGO的FTIR光谱. 石墨在500–4000 cm–1范围内没有出现明显的吸收峰, 而石墨经过氧化后生成的GO出现了明显的特征峰: 3405 cm–1处宽的强峰和1403 cm–1处的峰分别是由O―H的伸缩振动和弯曲振动引起, 在中频区的1727 cm–1位置附近出现的峰是氧化石墨边缘羧酸或羰基的C=O 伸缩振动吸收峰, 1621 cm–1处较尖锐的峰是吸附水分子的―OH振动吸收峰, 1380 cm–1位置的峰归属为―COOH 中CO的伸缩振动吸收峰, 1049 cm–1的吸收峰是由烷氧基的C―O伸缩振动引起.29GO的FTIR光谱证明了石墨已成功氧化成GO,与XRD结果相符. 这表明经过强氧化后, GO的表面含有丰富的含氧官能团. 对于一步还原法制备的Pt/RGO催化剂, 其FTIR光谱上含氧官能团在3405、1621、1403、1380和1049 cm–1处的吸收峰消失, 而在1703 cm–1处存在羰基的C=O 伸缩振动吸收峰,另外在1560 cm–1位置出现一个新的吸收峰, 它是由石墨烯的骨架振动引起.30以上结果说明, 催化剂中GO表面的含氧官能团已基本被脱除, GO已被有效还原, 这与XRD结果一致.催化剂的微观形貌用TEM进行观察, 其TEM和HRTEM图列于图3中. 从图3(a)可以看出采用改进的Hummers法制备的GO是褶皱的、透明、片状结构.Pt/RGO催化剂的低倍TEM图(图3(b)和图3(c))显示RGO表面粗糙, Pt纳米粒子均匀地分散在整个RGO的褶皱及边缘处, 这是由Pt纳米粒子和RGO载体间的强相互作用引起,31这种相互作用会影响Pt的电子结构, 从而影响催化剂的电催化性能.32图3(d)是Pt/RGO催化剂的HRTEM图, 其中插入的小图为单个Pt纳米粒子的放大图, 从中可以很明显看出Pt的晶格条纹, 晶面间距为0.22 nm, 这个值和面心立方(fcc)Pt的晶面间距一致. 从图3(i)的粒径分布图可以看出Pt粒子的平均粒径约2.3 nm, 与XRD图中由Pt(220)衍射峰根据谢乐公式计算出的粒径(2.3 nm)一致. 由此可见采用一步还原法制备了小粒径、高分散的RGO载Pt纳米催化剂, 而高分散性和小粒径有利于催化剂高的电催化性能. 图3(e)和3(f)是做对比用的Pt/C催化剂的TEM和HRTEM图,可以看出Pt纳米粒子均匀分散在碳表面, 平均粒径约为2.6 nm. 做对比用的Pt/CNT催化剂的TEM和HRTEM图见图3(g)和3(h), 可以看出Pt纳米粒子相对均匀分散在CNT表面, 从图3(k)的粒径分布图可以看出Pt粒子的平均粒径约为2.4 nm. 可见, 用EG做溶剂和还原剂采用简单的一步还原法同时还原GO和H2PtCl6可制备出高分散的Pt/RGO催化剂, 在反应过程中, GO被还原为RGO, 而Pt纳米粒子由于和RGO间强的相互作用均匀地分散在RGO的表面和边缘.在0.5 molL–1H2SO4溶液中进行了循环伏安测试以计算催化剂的电化学活性表面积, 图4是Pt/RGO, Pt/CNT和Pt/C催化剂的循环伏安图. 三个催化剂在–0.2―0.11 V出现的峰是氢的吸脱附峰,三个催化剂的氢吸脱附峰的大小顺序为Pt/RGO > Pt/CNT > Pt/C. 根据H的脱附峰面积采用下式可以计算出催化剂的电化学活性表面积:33式中QH(mCcm–2)为所测得的氢的脱附峰面积, QHref是单位表面积的Pt吸附的电荷量. 根据每平方厘米的Pt可吸附1.3 × 1015个氢原子计算得QHref= 0.21 mCcm–2, MPt是负载到电极表面催化剂的质量, 单位是mgcm–2. 计算出Pt/C, Pt/CNT和Pt/RGO催化剂的ECSA分别为73.2、164.0和240.0 m2g–1. 很明显, 三个催化剂中Pt/RGO具有最大的电化学活性表面积,其ECSA分别是Pt/C和Pt/CNT的3.3倍和1.5倍. Pt/RGO高的电化学活性表面积是由其较小的粒径和高度分散引起的. 一般认为, 催化剂的催化活性和它的电化学活性表面积有关, ECSA 值越大表明催化剂的活性越高. 因此可以推断Pt/RGO会对甲醇氧化有优良的催化性能, 并且具有高的贵金属利用效率.为了评价催化剂对甲醇氧化的电催化性能, 在 0.5 molL–1H2SO4+ 0.5 molL–1CH3OH溶液中进行了循环伏安测试, 扫描速率为10 mVs–1, 其结果列于图5中. Pt/RGO、Pt/CNT和Pt/C催化剂的循环伏安曲线在扫描范围内都出现了两个峰: 正扫时在0.6V左右出现的峰(If)是甲醇氧化峰, 反扫时在0.45 V左右出现的峰(Ib)是中间产物COad氧化峰. 可以看出, 循环伏安正扫峰电流密度的大小趋势是:Pt/RGO > Pt/CNT > Pt/C, 这个趋势和ECSA结果一致. Pt/RGO、Pt/CNT和Pt/C催化剂对甲醇氧化的峰电流密度分别为0.48、0.39和0.33 Amg–1. 很明显, Pt/RGO催化剂对甲醇氧化的峰电流密度最大, 分别是Pt/CNT和Pt/C催化剂的1.2和1.5倍. 另外, Pt/RGO催化剂对于甲醇电催化氧化的起始电位是0.25 V, 与Pt/CNT和Pt/C催化剂相比分别负移了10和30 mV. Pt/RGO对于甲醇氧化较高的峰电流密度和较低的起始电位, 表明催化剂对甲醇氧化较高的电催化活性.催化剂对甲醇氧化的循环伏安曲线的正扫和反扫峰电流密度的比值(If/Ib)常用来评价催化剂对甲醇氧化中间体COad的抗中毒能力: 比值越大越有利于去除催化剂表面的毒化产物, 催化剂的抗中毒能力越强.22Pt/RGO、Pt/CNT和Pt/C催化剂的If/Ib值分别为1.3, 0.7和0.6. Pt/RGO的If/Ib值分别为Pt/C和 Pt/CNT催化剂的2.2倍和1.9倍, 表明Pt/RGO对甲醇氧化中间体具有较高的抗中毒能力, 即COad毒化产物利于从催化剂表面氧化成CO2祛除, 释放出较多Pt活性位. FTIR 测试结果表明Pt/RGO催化剂的RGO表面上还含有少量含氧官能团, 这些含氧基团对于祛除Pt邻近位上的毒性中间产物COad有重要作用, 含氧基团的存在可以提高催化剂的抗中毒能力.12所以Pt/RGO对甲醇氧化中间体具有较高的抗中毒能力. 采用简单的一步还原法制备的Pt/RGO对甲醇氧化的电催化活性和抗中毒能力均高于文献报道的Pt/Gr30和Pt/RGO12催化剂.稳定性是评价催化剂对甲醇氧化电催化性能的另一个重要参数, 为了测试催化剂的稳定性, 我们对比了几种催化剂在0.5 molL–1CH3OH + 0.5 molL–1H2SO4溶液中电位恒定在0.6 V处的计时电流曲线, 其测试曲线见图6. 可以看到, 在测试初始阶段, 由于催化剂表面被毒化, 电流快速降低, 然后很快达到稳定. 在整个测试期间, Pt/RGO的电流密度始终高于Pt/C和Pt/CNT催化剂. Pt/RGO、Pt/CNT和Pt/C在1000 s时的稳态电流密度分别是0.27、0.16和0.15 Amg–1. Pt/RGO催化剂较高的稳态电流密度, 表明Pt/RGO催化剂的稳定性高于Pt/C和Pt/CNT. 计时电流和循环伏安测试结果证明Pt/RGO对甲醇氧化的高活性和高稳定性.采用简单的一步还原法在乙二醇体系中成功制备出Pt/RGO纳米催化剂. XRD、FTIR和TEM结果证明了GO被还原成RGO, Pt纳米粒子高度分散在石墨烯表面, 有效阻止了RGO片的堆积. Pt/RGO催化剂对甲醇氧化的催化活性和稳定性高于Pt/C和Pt/CNT, 而且该催化剂对甲醇氧化中间体有良好的祛除能力. 该方法具有简单、高效的特点, 提高了贵金属Pt的使用效率, 所制备的Pt/RGO催化剂在直接甲醇燃料电池中有巨大应用潜力.(1)Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M. Electrochem. Commun. 2008, 10(10), 1527. doi: 10.1016/j.elecom.2008.07.047(2)Hamel, C.; Garbarino, S. B.; Irissou, E. R.; Bichat, M. P.; Guay, D. J. Phys. Chem. C 2010, 114 (44), 18931. doi: 10.1021/jp105706y(3)Lee, S. H.; Kakati, N.; Jee, S. H.; Maiti, J.; Yoon, Y. S. Mater. Lett. 2011, 65 (21–22), 3281.(4)Navaee, A.; Salimi, A.; Soltanian, S.; Servati, P. J. Power Sources 2015, 277 (3), 268.(5)Zhou, X.; Gan, Y.; Du, J.; Tian, D.; Zhang, R.; Yang, C.; Dai, Z. J. Power Sources 2013, 232 (6), 310.(6)Cai, Z. X.; Liu, C. C.; Wu, G. H.; Chen, X. M.; Chen, X. Electrochim. Acta 2014, 127 (5), 377.(7)Du, S.; Lu, Y.; Steinberger-Wilckens, R. Carbon 2014, 79 (11), 346.(8)Gao, H.; Liao, S.; Zeng, J.; Xie, Y. J. Power Sources 2011, 196(1), 54. doi: 10.1016/j.jpowsour.2010.07.040(9)Liu, A.; Yuan, M.; Zhao, M.; Lu, C.; Zhao, T.; Li, P.; Tang, W. J. Alloy. Compd. 2014, 586 (2), 99.(10)Zhang, Y.; Chang, G.; Shu, H.; Oyama, M.; Liu, X.; He, Y. J. Power Sources 2014, 262 (9), 279.(11)Xu, C.; Hou, J.; Pang, X.; Li, X.; Zhu, M.; Tang, B. Int. J. Hydrog. Energy 2012, 37 (14), 10489. doi: 10.1016/j.ijhydene.2012.04.041(12)Liang, Q.; Zhang, L.; Cai, M.; Li, Y.; Jiang, K.; Zhang, X.; Shen, P. K. Electrochim. Acta 2013, 111 (11), 275.(13)Lu, J.; Zhou, Y.; Tian, X.; Xu, X.; Zhu, H.; Zhang, S.; Yuan, T. Appl. Surf. Sci. 2014, 317 (10), 284.(14)Liu, C. S.; Liu, X. C.; Wang, G. C.; Liang, R. P.; Qiu, J. D. J. Electroanal. Chem. 2014, 728 (8), 41.(15)Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. J. Power Sources 2006, 155 (2), 95. doi: 10.1016/j.jpowsour.2006.01.030(16)Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa,B.; Dziura, R. Appl. Surf. Sci. 2011, 257 (19), 8211. doi:10.1016/j.apsusc.2011.04.078(17)Kakaei, K.; Zhiani, M. J. Power Sources 2013, 225 (3), 356.(18)Kakati, N.; Maiti, J.; Lee, S. H.; Yoon, Y. S. Int. J. Hydrog. Energy 2012, 37 (24), 19055. doi: 10.1016/j.ijhydene.2012. 09.083(19)Jung, J.; Park, B.; Kim, J. Nanoscale Res. Lett. 2012, 7 (1), 1. doi:10.1186/1556-276X-7-1(20)Abanin, D. A.; Morozov, S. V.; Ponomarenko, L. A.; Gorbachev, R. V.; Mayorov, A. S.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Novoselov, K. S.; Levitov, L. S.; Geim, A. K. Science 2011, 332 (6027), 328. doi:10.1126/science.1199595(21)Bragaru, A.; Vasile, E.; Obreja, C.; Kusko, M.; Danila, M.; Radoi, A. Mater. Chem. Phys. 2014, 146 (3), 538. doi: 10.1016/j.matchemphys.2014.04.012(22)Jothi, P. R.; Kannan, S.; G, V. J. Power Sources 2015, 277 (3), 350.(23)Chen, H.; Duan, J.; Zhang, X.; Zhang, Y.; Guo, C.; Nie, L.; Liu, X. Mater. Lett. 2014, 126 (7), 9.(24)Huang, H.; Chen, H.; Sun, D.; Wang, X. J. Power Sources 2012, 204 (4), 46.(25)Hu, Y.; Wu, P.; Zhang, H.; Cai, C. Electrochim. Acta 2012, 85 (15), 314.(26)Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. J. Mater. Chem. 2009, 19 (23), 3832. doi: 10.1039/b906253j(27)Chien, C. C.; Jeng, K. T. Mater. Chem. Phys. 2006, 99 (1), 80. doi:10.1016/j.matchemphys.2005.09.080(28)Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan, L. M. Langmuir 2003, 20 (1), 181.(29)Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Chem. Commun. 2010, 46 (7), 1112. doi: 10.1039/B917705A(30)Ji, Z.; Shen, X.; Zhu, G.; Chen, K.; Fu, G.; Tong, L. J. Electroanal. Chem. 2012, 682 (8), 95.(31)Georgakilas, V.; Gournisb, D.; Tzitziosa, V.; Pasquato, L.; Guldie, D. M.; Prato, M. J. Mater. Chem. 2007, 17 (26), 2679. doi: 10.1039/b700857k (32)Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Nano Lett. 2009, 9 (6), 2255. doi: 10.1021/nl900397t(33)Zhou, Y. K.; He, B. L.; Zhou, W. J.; Huang, J.; Li, X. H.; Wu, B.; Li, H. L. Electrochim. Acta 2004, 49 (2), 257. doi: 10.1016/j.electacta.2003.08.007。
石墨烯的制备及表征
石墨烯的制备及表征李亮;胡军;班兴明;陈郁勃【摘要】为了得到高性能的石墨烯材料,采用水合肼、茶多酚与抗坏血酸3种不同的还原剂将氧化石墨烯还原制备得到石墨烯.通过红外光谱、X射线衍射、接触角对产物的结构进行表征,采用四探针法测试电导率,循环伏安法和计时电位法测试电化学性能.水合肼、茶多酚与抗坏血酸这3种还原剂都能有效地将氧化石墨烯结构中的亲水基团去除,得到疏水的石墨烯.通过比较3种还原剂制备的石墨烯的电化学性能,发现通过茶多酚还原得到的石墨烯的导电性能最好,当电流密度为3 A/g时,茶多酚还原得到的石墨烯电容性能达到609 F/g,保持率达到87.71%.这表明由茶多酚还原得到的石墨烯具有更为优良的电化学性能.【期刊名称】《武汉工程大学学报》【年(卷),期】2014(036)008【总页数】5页(P46-50)【关键词】石墨烯;茶多酚;电化学性能【作者】李亮;胡军;班兴明;陈郁勃【作者单位】武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074【正文语种】中文【中图分类】O633石墨烯因其优异的电学﹑光学和机械性能被科学界称作奇迹材料[1-2],吸引了众多科学家和大量科研资金的投入,石墨烯的发现更是获颁 2010年度诺贝尔物理学奖[3-5].石墨烯最常用的制备方法是氧化还原法,步骤是先将石墨氧化成氧化石墨,再将氧化石墨剥离成氧化石墨烯,最后将氧化石墨烯还原成石墨烯.过程中常用到的氧化剂为高锰酸钾,高氯酸等,常用的还原剂为水合肼,联氨等.本文分别采用传统的水合肼,茶多酚,抗坏血酸作为还原剂,将氧化石墨烯还原成石墨烯,并将不同还原剂还原得到的石墨烯产物的电化学性能进行对比研究.1 实验部分1.1 石墨烯的制备方法a.水合肼作为还原剂:取一定量氧化石墨烯放入30 mL蒸馏水中,超声分散30 min后加水稀释至100 mL.用25%的氨水调节pH=10.向氧化石墨烯悬浮液中加入2 mL水合肼,使其混合均匀.加热至90 ℃,搅拌5 h.将所得产物过滤,用蒸馏水洗涤,真空60 ℃干燥24 h.密封保存,备用.b.茶多酚作为还原剂:取2 g绿茶粉加入到100 mL蒸馏水中,煮沸.过滤掉剩余茶叶粉末,绿茶水备用.取一定量氧化石墨烯加入到上述绿茶水中,加热至90 ℃,搅拌10 h.将产物过滤,用蒸馏水洗涤,真空60 ℃干燥24 h.密封保存,备用.c.抗坏血酸作为还原剂:取一定量氧化石墨烯放入30 mL蒸馏水中,超声分散30 min后加水稀释至100 mL.取一定量维生素C片研磨成粉末,加入氧化石墨烯悬浮液中,搅拌使其混合均匀.加热至90 ℃,搅拌24 h.将所得产物过滤,用蒸馏水洗涤,真空60 ℃干燥24 h.密封保存,备用.1.2 石墨烯的表征红外光谱(FT-IR)测试采用TJ270红外光谱仪,X射线衍射(XRD)测试采用BrukerD8 X射线粉末衍射仪.电化学性能测试是以1 moL/L KCl溶液为电解液,将产物固定在铂盘电极上作为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极的三电极体系中进行.2 结果讨论与分析2.1 红外光谱分析(FT-IR)图1为采用不同还原剂还原氧化石墨制备的石墨烯的红外光谱图.从图中可以看出不同还原剂制备的石墨烯光谱图均在3 450 cm-1和1 632 cm-1处出现吸收峰,这与石墨原料的红外光谱图基本一致[6],而未出现氧化石墨中一些极性基团的吸收峰,说明在还原剂的作用下,石墨烯中的含氧官能团大大减少,还原效果较好. 注:(a)水合肼,(b)茶多酚,(c)抗坏血酸图1 采用不同还原剂制备的石墨烯的红外光谱图 Fig.1 FTIR spectrum of graphene2.2 X-射线衍射分析(XRD)图2为产物的X射线衍射谱图,图中在2θ角为22.4°和7.2°出现了衍射峰,22.4°处的衍射峰对应石墨的(002)晶面,说明部分氧化石墨中的含氧官能团被除去了,同时说明石墨烯微晶排列较为无序或者存在较大的晶格缺陷,无法回到有序排列的状态.7.2°可能对应未氧化完全的氧化石墨(001)晶面的衍射峰.注:(a)水合肼,(b)茶多酚,(c)抗坏血酸图2 采用不同还原剂制备的石墨烯的XRD图 Fig.2 XRD patterns of graphene2.3 电导率表1为3种不同还原剂制备的石墨烯的电阻率和电导率数据.石墨在强氧化剂的作用下,其结构中的sp2结构和共轭π键被破坏,形成羟基,羧基及环氧基等极性官能团,形成sp3杂化的氧化石墨.结构层中的共轭π键被破坏,导致氧化石墨是绝缘体.氧化石墨经过还原剂还原后,其结构中的极性官能团被除去,恢复表面共轭结构,从而恢复期导电性.图中数据也说明了这一点,石墨烯(茶多酚)的电导率为2.604 S/cm,其导电性最好.表1 3种不同还原剂制备的石墨烯的电导率数据Tabel 1 Conductivities of graphene prepared by three different reducing agents样品电阻率/(Ω/cm)电导率/(S/cm)石墨烯(水合肼)0.5961.678石墨烯(茶多酚)0.3842.604石墨烯(抗坏血酸)0.472.1282.4 接触角从表2中可以看出,3种还原剂制备的石墨烯的接触角都大于90°,说明产物是完全疏水的,氧化石墨烯GO层状结构中含有大量的极性基团,例如羟基,羧基,羰基以及环氧基等,大大增强了GO的亲水性能,所以GO是完全溶于水的,可见还原过程GO结构中极性基团还原了,得到了疏水的层状石墨烯.表2 3种不同还原剂制备的石墨烯的接触角数据Tabel 2 Water contact angles of graphene prepared by three different reducing agents样品接触角/(°)石墨烯(水合肼)123.87石墨烯(茶多酚)92.62石墨烯(抗坏血酸)101.992.5 电化学性能测试石墨烯是由碳原子紧密堆积成的准二维层状结构物质,具有优异的电学性质,光学性质以及力学性质等.其结构中未成键的电子可以在晶格中自由移动,使其具有很好的导电性和电容性质,本文通过循环伏安法和恒电流充放电法对石墨烯的电容性质进行研究.图3为通过不同还原剂(分别为水合肼,茶多酚和抗坏血酸)还原氧化石墨制备石墨烯的循环伏安图,扫描速率分别为a:0.01 V/s,b:0.02 V/s,c:0.05 V/s,d:0.1 V/s.石墨烯(水合肼)的循环伏安曲线没有明显的氧化还原峰,并且曲线呈现近似的矩形形状,石墨烯(茶多酚)的循环伏安曲线有微弱的氧化还原峰,但是曲线整体也呈现矩形形状,对于石墨烯(抗坏血酸)曲线呈现规则的矩形,没有明显的氧化还原峰,说明3种还原剂制备的石墨烯材料都具有很好的电容性质.从图3(Ⅳ)中可以看出,石墨烯(水合肼)的循环伏安图面积最小,说明其电容最小,其次电容较小的是石墨烯(抗坏血酸),循环伏安面积最大的是石墨烯(茶多酚),说明其比电容最大,电化学性能最好.(Ⅰ)水合肼(Ⅱ)茶多酚(Ⅲ)抗坏血酸(Ⅳ)3种还原剂图3 不同还原剂合成石墨烯的循环伏安图Fig.3 Cyclic voltammograms of graphene reduced由图4(Ⅰ)、(Ⅱ)、(Ⅲ)中可以看出,3种石墨烯材料的充放电曲线呈现良好的线性关系,并且对称性良好,说明这3种石墨烯材料的充放电可逆性良好,具有良好的电容特性.当电流密度为3 A/g时,根据计算石墨烯(茶多酚)的电容性能最好,其比容量最大,值为609 F/g,石墨烯(抗坏血酸)最大比容量为237.15 F/g,石墨烯(水合肼)的最大比容量为82.5 F/g,这也与循环伏安图计算的结果相一致.说明石墨烯(茶多酚)最适合做超级电容器电极材料.(Ⅰ)水合肼(Ⅱ)茶多酚(Ⅲ)抗坏血酸图4 不同还原剂合成石墨烯的充放电图Fig.4 Constant current charge/discharge curves图5为根据充放电图计算的石墨烯比电容与电流密度关系图.从图5可以看出随着电流密度的增大,比容量值逐渐减小.主要是因为在电流较小的情况下,石墨烯内部较深的孔洞都能发挥双电层电容的性质,使整个电路中的阻抗较小;当电流升高时,由于受扩散控制,石墨烯内部较深的孔不能被完全利用,电路中的阻抗增加,导致比电容下降.图5 根据充放电图计算的石墨烯比电容Fig.5 Constant currentcharge/discharge curves of graphene图6为石墨烯(水合肼)(a)石墨烯(抗坏血酸)(b)和石墨烯(茶多酚)(c)的循环次数图,从图中可以看出3种还原剂制备的石墨烯材料的循环性能很好.石墨烯(茶多酚)的初次放电容量为480.25 F/g,前200圈的比容量有相对较大幅度的损耗,损耗率约为4.14%,循环1 000圈后的放电比容量为451.33 F/g,总容量损耗率为6.02%,说明制备的石墨烯(茶多酚)的稳定性很好,具有很好的循环性能.而石墨烯(抗坏血酸)的初次放电容量为130.7 F/g,循环1 000圈后,放电比容量为114.63 F/g,总容量损耗为12.29%,石墨烯(水合肼)的初次放电比容量为80.4 F/g,循环1 000圈后,放电比容量为70.125 F/g,总容量损耗为12.77%.说明制备的石墨烯材料的电化学性能很好,稳定性良好,具有较好的循环性能.注:(a)水合肼,(b)抗坏血酸,(c)茶多酚图6 还原的石墨烯的循环圈数-电容保持率曲线比较图Fig.6 Comparison of cycle number and retention rate of capacitance of graphene3 结语分别用水合肼,抗坏血酸和茶多酚还原得到石墨烯,并分别测试了它们的性能,茶多酚还原得到石墨烯的导电性能最好,电容性能也最好.石墨烯具有很好的导电性,化学稳定性及热力学稳定性,有望被用于电子器件构造.致谢此研究受到国家自然科学基金委员会资助和武汉工程大学资金资助,特表感谢!参考文献:[1] LI D,MULLERr M B,GILJE S.Processable aqueous dispersions of graphene nanosheets[J].Nat Nano,2008,3:101-105.[2] JUNG I,DIKIN D A,PINER R D.Tunable electrical conductivity ofindividual graphene oxide sheets reduced at low temperatures[J].Nano Lett,2008,8:4283-4287.[3] GUO S J,DONG S J,WANG E K.Polyaniline/Pt hybrid nanofibers:high-efficiency nanoelectrocatalysts for electrochemicaldevices[J].Small,2009,5:1869-1876.[4] WANG H L,ROBINSON J T,LI X L.Solvothermal reduction of chemically exfoliated graphene sheets[J].J Am Chem Soc,2009,131:9910.[5] CHEN G H,WENIG W G,WU D.PMMA/graphite nanosheets and its conducting properties[J].Eur Polym J,2003,39:2329-2335.[6] CHANDRA S,BAG S,BHAR R,et al.Sonochemical synthesis and application of rhodium-graphene nanocomposite[J].J Nanoparticle Res,2011,13,2769-2777.。
石墨烯的氧化还原法制备及结构表征
实验目的:(1)了解石墨烯的结构和用途。
(2)了解氧化后的石墨烯比纯石墨烯的性能有何提升(3)了解Hummers法的原理一、实验原理:天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。
石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。
氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。
氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。
氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。
二、实验内容:1、利用氧化还原法制备石墨烯2、对制得的石墨烯进行结构表征三、实验过程:实验利用Hummers法进行实验:1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石;2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中;3、将92ml浓硫酸倒入三颈瓶中;4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h;5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关;6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红;7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液;8、对溶液进行离心操作7-8次,使得pH值在6-7;9、减压蒸馏,进行还原反应得到石墨烯;10、对得到的产物进行结构表征。
六、实验结果及讨论:(A)氧化后的氧化石墨烯悬浮液 (B) 还原过程加热温度对氧化石墨烯含量的对比记录(C)石墨烯的XRD(D)石墨烯的SEM图有(B)可知随着温度的上升,氧化石墨烯反应得越多,占比越低。
铂炭催化剂制备方法
铂炭催化剂制备方法铂炭催化剂是一种重要的催化剂,其制备方法具有较高的技术含量和复杂性。
本文将以铂炭催化剂制备方法为主题,介绍一种常用的制备方法。
一、原料准备制备铂炭催化剂的首要任务是准备好原料,其中主要包括铂盐和炭材料。
铂盐通常选择铂酸或铂氯酸为原料,而炭材料则可选择活性炭、石墨烯等具有较大比表面积和良好导电性的材料。
二、合成过程铂炭催化剂的制备过程主要包括前驱体的制备和载体上的还原。
具体步骤如下:1.前驱体的制备首先,将铂盐与适量的溶剂进行溶解,得到铂盐的溶液。
然后,将炭材料加入到溶液中,经过充分搅拌达到均匀分散。
在搅拌的同时,可以适当调节 pH 值,以促使铂盐更好地与炭材料相互作用。
2.还原过程将得到的混合溶液进行干燥处理,以去除多余的溶剂。
然后,将干燥后的混合物进行热处理,一般选择氢气还原法。
在适当的温度下,将氢气通过催化剂体系,使铂盐得以还原成金属铂颗粒,并与炭材料相互结合。
三、后处理步骤催化剂合成完成后,还需要进行一系列的后处理步骤,以得到更纯净和高效的铂炭催化剂。
1.洗涤将催化剂体系进行反复洗涤,以去除制备过程中残留的杂质和未反应的物质。
洗涤通常采用盐酸或酸性溶液,将其与催化剂体系充分反应,然后进行过滤和干燥。
2.表面修饰为了提高铂炭催化剂的催化活性和稳定性,可以进行表面修饰处理。
常用的表面修饰方法有浸渍法、沉淀法等。
通过在催化剂表面包覆一层金属、碳或其他材料,可以增加催化剂的表面活性位点和抗氧化能力。
3.活化处理将得到的铂炭催化剂进行适当的活化处理,以提高其催化活性。
常用的活化方法有高温处理、氧化还原处理等。
四、催化剂表征催化剂制备完成后,需要对其进行表征,以评估催化剂的性能和结构。
常用的表征方法有比表面积测定、电化学性能测试、扫描电子显微镜观察等。
比表面积测定可以通过氮气吸附法或歧管低温吸附法进行,以评估催化剂的比表面积和孔隙结构。
电化学性能测试可以通过循环伏安法、阳极扫描法等测试技术,以评估催化剂在电化学反应中的催化性能。
石墨烯的氧化还原法制备及结构表征
石墨烯的氧化还原法制备及结构表征近年来,石墨烯受到了越来越多的关注,它被认为是一种具有优异性能的二维纳米材料,可以用于电子学、光学学和材料学等多个领域。
石墨烯的制备技术是研究石墨烯特性的基础,氧化还原法是最近几年广泛研究的制备方法之一。
氧化还原法是一种以氧化物为原料,经过高温氧化和还原步骤而得到的石墨烯材料。
在此方法中,以催化剂石墨烯母体(Graphene Oxide,GO)作为原料,然后通过高温的氧化和还原步骤,GO发生氧化和还原反应,使其形成石墨烯(Graphene,G)。
首先,GO必须通过电性溶液(例如,高温氨水)形成超细粉末(粒径小于100 nm),以增加其表面积,并便于进一步处理。
然后,将高温氨水处理的粉末经过一系列的氧化还原反应,最终形成石墨烯,其中包括进行高温氧化(150~200)、还原(250~350)以及石墨化(500~600)等步骤。
石墨烯在结构上具有平板形式,其构成单位只有一个原子,并具有良好的导电性和透明性。
氧化还原方法得到的石墨烯具有良好的均匀性,大部分石墨烯片段为单层和双层,且具有良好的相容性,能够持久稳定存在。
为了表征经过氧化还原法制备的石墨烯的结构,常用的表征技术包括X射线衍射(XRD)、旋转反射显微镜(Raman)和扫描电子显微镜(SEM)等。
其中,X射线衍射(XRD)可用于判断石墨烯的形貌、尺寸和结构等性质,其特征谱即X射线可以提供石墨烯的结构特征。
旋转反射显微镜(Raman)是研究石墨烯结构最为常用的技术之一,也是衡量石墨烯结构质量的重要方法,它能够对石墨烯的厚度、层数、热性质和几何结构进行表征。
最后,扫描电子显微镜(SEM)可以得到石墨烯的粒径、形貌和区域分布等特征,从而对石墨烯的表面形貌进行表征。
综上所述,氧化还原法是最近广泛研究的石墨烯制备技术之一,其具有良好的均匀性和稳定性,对石墨烯的表征技术可以提供结构特征。
X射线衍射(XRD)、旋转反射显微镜(Raman)和扫描电子显微镜(SEM)等可以检测出氧化还原法制备的石墨烯的结构特性,因此,这种制备方法将会成为石墨烯的发展的重要推动力。
电化学电催化材料的制备和应用
电化学电催化材料的制备和应用电化学电催化材料是指在电化学反应中起催化作用的材料,广泛应用于燃料电池、金属空气电池、电解水制氢和二氧化碳还原等领域。
本文将介绍电化学电催化材料的制备方法和应用。
一、制备方法1. 贵金属基电催化材料贵金属基电催化材料具有较高的催化活性和稳定性,包括铂、钯、铱、钌等材料。
制备方法一般采用化学还原法、晶体控制生长法及溶胶凝胶法等方法。
其中,化学还原法是最常用的制备方法,通过还原酸性溶液中的金属离子,制备出纳米级别的贵金属催化剂。
2. 金属氧化物电催化材料金属氧化物具有较好的催化性能和稳定性,广泛应用于电催化反应中。
制备方法包括溶胶凝胶法、水热法、过渡金属离子掺杂法等。
其中,溶胶凝胶法制备的金属氧化物催化剂具有高度的控制性和可重复性,能够精确控制材料的形貌和尺寸。
3. 碳基电催化材料碳基材料包括碳纳米管、石墨烯、多孔碳、碳黑等。
制备方法主要包括化学气相沉积、溶胶凝胶法、热解法等。
碳纳米管和石墨烯等具有高比表面积和良好的导电性能,是电催化材料中的热门研究方向之一。
二、应用1. 燃料电池燃料电池是将燃料和氧气氧化反应产生电能的装置。
贵金属基催化剂被广泛应用于燃料电池中的正极(阴极),通常以铂为基础,与其它过渡金属杂化制备出新型的催化剂。
此外,新型碳基催化剂也是燃料电池中的研究热点之一。
2. 电解水制氢电解水制氢是指利用电解方法将水分解成氢气和氧气的过程。
金属氧化物催化剂在电解水制氢中发挥重要作用,能够提高氢气的产量和效率。
研究表明,钨酸铜催化剂具有较好的电解水制氢活性和稳定性,是一种有潜力的电解水制氢催化剂。
3. 二氧化碳还原二氧化碳还原是指利用电化学方法将二氧化碳还原成烃类等有机物的过程。
此过程能够将大量废弃的二氧化碳转化成有机物,具有环保和可持续性的特点。
碳基催化剂在二氧化碳还原中发挥着重要作用,石墨烯、碳纳米管等碳基材料都具有良好的二氧化碳还原活性。
结语电化学电催化材料是未来能源和环保领域的重要研究方向之一。
石墨烯负载铂基催化剂的制备及其对甲醇的电催化性能
单 一金属 的 P t / G r 相比, P t C e / G r 对 甲醇具 有更 高的活性 和稳 定性 。 不 同配 比 P t C e / G r 合金 催 化 剂
对 甲醇 电氧 化催化 活性顺序 为 P t 3 C e 7 / G r> P t 7 C e / G r> P t R C e , / G r> P t / G r 。 由各 个催化 剂在 甲
Su p po r t e d Pl a t i n um Ba s e d Ca t a l y s t s
L U L e i l e i ,DU Ba o z h o n g,L I U J i e ( F a c u l t y o f S c i e n c e , X i ’ a n U n i v e r s i t y o f T e c h n o l o g y ,X i ’ a n 7 1 0 0 4 8 , C h i n a )
A b s t r a c t :G r a p h i t e o x i d e( G O)w a s s y n t h e s i z e d b y H u m me r s l i q u i d p h a s e o x i d a t i o n m e t h o d .G r a p h e n e
行物理表征 , 用电化学方法研 究了催化剂对甲醇的电催化氧化性能。T E M 结果表明以石墨烯 为载 体 制备 的 P t / G r 和P t C e / G r 催化 剂 分散 良好 , 催化 剂 粒径 分别 为 2 . 2 n m和 2 . 5 n m。与 X C - 7 2为栽
体 制备 的催 化剂相 比 , 在对 甲醇 电氧 化 的性 能上 P t / G r 比P t / X C - 7 2的催 化 活性 和 稳 定性 更 高 。与
石墨烯的氧化还原法制备及结构表征(1)
收稿日期:2010-04-16。
收修改稿日期:2010-06-28。
国家自然科学基金资助项目(No .40502008)。
*通讯联系人。
E -mail :sunhongjuan@ ;会员登记号:S130010615S 。
第一作者:杨勇辉,男,26岁,硕士研究生;研究方向:纳米材料制备。
石墨烯的氧化还原法制备及结构表征杨勇辉1孙红娟*,2彭同江2(1西南科技大学理学院,绵阳621010)(2西南科技大学矿物材料及应用研究所,绵阳621010)摘要:采用改进的Hummers 法对天然鳞片石墨进行氧化处理制备氧化石墨,经超声分散,然后在水合肼的作用下加热还原制备了在水相条件下稳定分散的石墨烯。
用红外光谱、拉曼光谱、扫描探针显微镜和ζ电位仪对样品进行了结构、谱学、形貌和ζ电位分析。
结果表明,石墨被氧化后形成以C=O 、C -OH 、-COOH 和C -O -C 等官能团形式的共价键型石墨层间化合物;还原氧化石墨后形成的石墨烯表面的官能团与石墨的相似;氧化石墨烯和石墨烯在碱性条件下可形成稳定的悬浮液;氧化石墨烯和石墨烯薄片厚度为1.0nm 左右。
考察并讨论了还原过程中水合肼用量,体系反应温度、反应时间和pH 值对石墨烯还原程度和稳定性的影响,水合肼用量和反应时间是影响石墨烯还原程度的主要因素;pH 值对石墨烯稳定性影响较大。
关键词:石墨烯;氧化石墨;Hummers 法;氧化还原法中图分类号:O613.71文献标识码:A文章编号:100-4861(2010)11-2083-08Synthesis and Structural Characterization of Graphene by Oxidation ReductionYANG Yong -Hui 1SUN Hong -Juan *,2PENG Tong -Jiang 2(1College of Science,Southwest University of Science and Technology,Mianyang,Sichuan 621010)(2Institute of Mineral Materials &Application,Southwest University of Science and Technology,Mianyang,Sichuan 621010)Abstract:The graphite oxide (GO)was prepared from purified natural flake graphite by the modified Hummers method.The colloidal form of graphene was subsequently prepared by ultrasonicating GO in the presence of hydrazine hydrate.The samples were characterized by using FTIR,Raman,Scanning Probe Microscopy (SPM)and ζpotential technique.The results suggest that the graphite is oxidized to covalent bond -type graphite intercalation compounds with various oxygen bearing functional groups (C=O,C -O,C -OH,-COOH and C -O -C).FTIR spectra show that the surface functional groups of graphite and graphene are almost the same.Graphene oxide and graphene can readily form stable aqueous colloids in water or in alkali solution with uniform sheet thickness of 1nm.The factors affecting reduction degree and stability of graphene were discussed in reduction process,such as hydrazine hydrate dosage,reaction time and pH value in system.Reduction degree of graphene is mainly controlled by hydrazine hydrate dosage,reaction time in system while the stability is mainly affected by the pH value.Key words:graphene;graphite oxide;Hummers method;oxidation reduction石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶体结构的一种新型炭质材料,是自然界已知材料中最薄的一种材料。
氧化还原法制备石墨烯工艺详解
氧化还原法制备石墨烯工艺详解相信很多研究生进入实验室的第一课就是氧化石墨烯制备,制备氧化石墨烯真是一个巨大的工程,其中涉及了各种复杂参数的调控,可谓经历了九九八十一难,方能制备出理想的氧化石墨烯。
今天小编就来为你深入解读如何采用氧化还原法制备出氧化石墨烯,各种参数如何调控?如何还原得到石墨烯?工业级氧化还原石墨烯制备与实验室制备又有什么区别?氧化还原法制备石墨烯氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。
氧化还原法制备石墨烯优缺点氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。
氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。
氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。
氧化还原制备石墨烯分为三步,氧化、剥离、还原,如图1,图2.图1 氧化还原制备石墨烯流程图2 氧化还原制备石墨烯流程1氧化氧化石墨的方法主要有三种:第一种是Hummers法,第二种是Brodietz法,第三种是Staudenmaier法,他们首先均是用无机强质子酸例如浓H2SO4、发烟HNO3或者它们的混合物处理原始的石墨粉原料,使得强酸小分子进入到石墨层间,而后用强氧化剂(如高锰酸钾、KClO4等)氧化。
三种方法相比,Staudemaier法得到的氧化石墨的层结构受到严重破坏,原因是采用浓H2SO4和发烟HNO3混合酸处理了石墨,Hummers法具有很高的安全性,且可得到带有褶皱的氧化石墨的片层结构,并含有丰富的含氧官能团,在水溶液中分散性很好,对于此方法,许多研究人员也做了很大的改善。
不同还原方法制备石墨烯及其电化学性能
不同还原方法制备石墨烯及其电化学性能屈杨;汪伟伟;杨茂萍【摘要】采用Hummers改进法制备氧化石墨烯,分别选取水合肼、硼氢化钠、铝粉对所制备氧化石墨烯进行还原处理,用红外光谱(FTIR)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、原子力显微镜(AFM)、X射线电子能谱(XPS)对样品进行了结构、谱学、形貌表征,用高性能电池检测系统和电化学工作站对样品进行充放电测试、循环测试、CV测试和EIS测试分析.结果表明,所制备的氧化石墨烯分布相对均一、团聚现象较弱、片层厚度为1.107 nm、片层层数约为1~2层,C/O比为1.6.经过三种还原方法处理的石墨烯的含氧官能团在氧化石墨烯基础上都出现明显下降,C/O质量比分别提高到6.4、5.3、3.7.对三种不同还原方法制备的石墨烯(rGO/N2H4·H2O、rGO/NaBH4、rGO/AIP)进行电化学性能研究,导电性呈现rGO/N2H4·H2O>rGO/NaBH4>rGO/AIP趋势.导电性高,所制得的电池反应活性较高、极化较低,进而表现出较好的倍率和循环性能,GO/N2H4·H2O、rGO/NaBH4和rGO/AIP的0.2 C放电比容量分别为158.4、153.3和144.8 mAh/g;其中rGO/N2H4·H2O的导电性最高,表现出更好的倍率性能和循环性能,1C倍率保持95.5%、2C倍率保持仍能达到90.1%,0.2C@RT 800次循环后,容量保持率仍能达到95.3%,而rGO/NaBH4、rGO/AIP分别为91.1%和89.6%,相对较低.【期刊名称】《电源技术》【年(卷),期】2018(042)007【总页数】5页(P932-936)【关键词】氧化石墨烯;还原法;石墨烯;电化学性能【作者】屈杨;汪伟伟;杨茂萍【作者单位】合肥国轩高科动力能源有限公司,安徽合肥230011;合肥国轩高科动力能源有限公司,安徽合肥230011;合肥国轩高科动力能源有限公司,安徽合肥230011【正文语种】中文【中图分类】TM912.9石墨烯凭借其优异的理化性质,在超级电容器、电池、生物医学、萃取、传感器等多个领域表现出良好的应用潜力。
氧化还原法制备石墨烯及其表征
氧化还原法制备石墨烯及其表征陈瑞灿;王海燕;韩永刚;王新星;王星雨;刘伟;叶方德;姚宁【期刊名称】《材料导报》【年(卷),期】2012(026)012【摘要】采用改进的Hummers法氧化处理石墨粉制得氧化石墨,利用超声波作用将氧化石墨剥离,得到均匀分散的氧化石墨烯胶状悬浮液,然后在水合肼的还原作用下得到石墨烯.采用SEM、XRD以及Raman光谱对样品进行了形貌、结构以及谱学的表征分析.考察了还原过程中温度对还原效果的影响,以及中性条件下、碱性条件下水合肼用量对还原效果的影响.【总页数】4页(P114-117)【作者】陈瑞灿;王海燕;韩永刚;王新星;王星雨;刘伟;叶方德;姚宁【作者单位】郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052;郑州大学物理工程学院材料物理教育部重点实验室,郑州450052【正文语种】中文【中图分类】TB321;O469;O613.71【相关文献】1.氧化还原法制备石墨烯及其表征 [J], 刘赐德;丁楠;刘旭焱;肖洁;龚婧2.石墨烯的氧化还原法制备及结构表征 [J], 杨勇辉;孙红娟;彭同江3.氧化还原法石墨烯绿色制备技术研究进展 [J], 帅骁睿;张鹏程;张正卿;邓磊;吴浩伟4.氧化还原法石墨烯制备与储能应用 [J], 黎春燕5.氧化还原法石墨烯制备与储能应用 [J], 黎春燕因版权原因,仅展示原文概要,查看原文内容请购买。
石墨烯的氧化还原法制备及结构表征
实验目的:(1)了解石墨烯的结构和用途。
(2)了解氧化后的石墨烯比纯石墨烯的性能有何提升(3)了解Hummers法的原理一、实验原理:天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。
石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。
氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。
氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。
氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。
二、实验内容:1、利用氧化还原法制备石墨烯2、对制得的石墨烯进行结构表征三、实验过程:实验利用Hummers法进行实验:1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石;2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中;3、将92ml浓硫酸倒入三颈瓶中;4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h;5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关;6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红;7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液;8、对溶液进行离心操作7-8次,使得pH值在6-7;9、减压蒸馏,进行还原反应得到石墨烯;10、对得到的产物进行结构表征。
六、实验结果及讨论:(A)氧化后的氧化石墨烯悬浮液 (B) 还原过程加热温度对氧化石墨烯含量的对比记录(C)石墨烯的XRD(D)石墨烯的SEM图有(B)可知随着温度的上升,氧化石墨烯反应得越多,占比越低。
石墨烯的制备(一):氧化-还原法
高温-较低温’’反应过程。实验现象:1 原始石墨与浓硫酸混合呈现墨黑色、2 加入高锰酸钾 后变成墨绿色、3 加热反应后变成深褐色、4 样品溶入水中呈深棕色、5 经过双氧水处理后 呈橙黄色,6 样品经过离心洗涤、超声剥离、干燥研磨处理后得到样品 F1-3:GO-120。
2.3.F2-1:GO-72 的制备实验
国轩高科动力能源股份公司 材料分院
8
石墨烯的制备(一) :氧化-还原法
2015.10
4.1.2.GO 的 FT-IR 表征
图 13 不同 GO 的 FT-IR 图谱
从图 13 可以看出, 5 个样品在 3426cm-1 处都出现一个较宽的吸收峰, 其中 F1-2-2:GO-48、 F1-2-2:GO-120 和 F2-1:GO-72 的峰较强,这主要是由于-OH 的伸缩振动引起的;5 个样品在 1617cm−1 处的吸收峰可能是 C-OH 的弯曲振动吸收峰; F1-2-2:GO-120 在 1725cm−1 处出现的 较强的吸收峰为羧基上的 C=O 伸缩振动峰;5 个样品在 1076cm−1、1389cm−1 的峰为 C-O-C、 C-O 的振动吸收峰,但峰形很弱,表明 C-O-C 基团很少;另外,1617cm-1 和 1389cm-1 处振 动吸收峰的共同出现,对应的是水分子的变形振动吸收峰,说明样品中有水分子的存在,这 也说明样品中的水分子很难去除;综上所述,可得知所制备的氧化石墨烯主要含有 OH 、 -COOH、C-O-C、-C=O 四种官能团。
国轩高科动力能源股份公司 材料分院
10
石墨烯的制备(一) :氧化-还原法
2015.10
4.1.3.3.F1-3:GO-120
图 16 F1-3:GO-120 的 AFM 图谱
氮掺杂石墨烯的制备及氧还原电催化性能
氮掺杂石墨烯的制备及氧还原电催化性能一、本文概述随着能源危机和环境问题的日益严峻,寻求高效、清洁、可持续的能源技术已成为全球科研工作者的重要任务。
作为新一代能源技术的重要组成部分,燃料电池和金属-空气电池等电化学能源转换装置因具有高能量密度和环保特性而备受关注。
在这些电化学能源转换装置中,氧还原反应(ORR)是关键步骤之一,其催化剂的性能直接影响到整个装置的能量转换效率和使用寿命。
因此,开发高效、稳定的氧还原电催化剂成为了当前研究的热点。
近年来,石墨烯作为一种新兴的二维纳米材料,因其独特的电子结构和物理化学性质,在电催化领域展现出巨大的应用潜力。
而氮掺杂石墨烯作为一种通过引入氮原子对石墨烯进行改性的材料,不仅保留了石墨烯原有的优点,还在电催化性能上有了显著提升。
氮掺杂石墨烯的引入可以改变石墨烯的电子结构,提高其对氧分子的吸附能力,从而优化氧还原反应的动力学过程。
因此,氮掺杂石墨烯被认为是一种具有广阔应用前景的氧还原电催化剂。
本文旨在探讨氮掺杂石墨烯的制备方法以及其在氧还原电催化反应中的性能表现。
我们将详细介绍氮掺杂石墨烯的合成方法,包括化学气相沉积法、热解法、溶剂热法等,并分析各种方法的优缺点。
我们将通过电化学测试手段,如循环伏安法、线性扫描伏安法等,评估氮掺杂石墨烯在氧还原反应中的催化性能,并探讨其催化机理。
我们还将讨论氮掺杂石墨烯在实际应用中所面临的挑战和可能的解决方案。
通过本文的研究,我们期望能够为氮掺杂石墨烯在氧还原电催化领域的应用提供有益的理论指导和实验依据,为推动新一代电化学能源转换装置的发展做出贡献。
二、氮掺杂石墨烯的制备方法氮掺杂石墨烯的制备是提升其氧还原电催化性能的关键步骤。
目前,常见的氮掺杂石墨烯制备方法主要包括化学气相沉积法、热处理方法、化学还原法以及原位合成法等。
化学气相沉积法是一种在气相中通过化学反应生成固态物质并沉积在基底上的方法。
在氮掺杂石墨烯的制备中,含碳和含氮的前驱体在高温下分解,碳原子和氮原子在基底上重新排列,形成氮掺杂石墨烯。
石墨烯的氧化还原法制备及结构表征
石墨烯的氧化还原法制备及结构表征
石墨烯是一种二维碳材料,具有优异的性能,如超强弹性、优良的热导率和电学性能等。
目前,主要的制备技术有氧化还原法。
氧化还原法是用氧化剂把石墨彻底分解成碳氧微粒,再用还原剂将碳氧微粒重组成石墨烯的技术。
其具体实现过程主要包括选择介质、制备原料碳原料悬浮液,合成悬浮液氧化/ 竞争性反应,滤液洗涤,单分子层稳定化吸附,水热处理法, 热处理,电解沉积等步骤。
氧化还原制备石墨烯的好处是可以制备灵活多变的微纳结构,如各种卷曲石墨烯,交织石墨烯和空心石墨烯等,尺寸可以调节范围从几纳米到几十纳米;另外,由于控制了还原反应,可以调节它的结构,例如碳冒号数量,棱镜样角等纳米特征,从而改变其物理性能;此外,氧化还原法可以在各种介质,如水、溶剂混合物、电解质、有机溶剂中实现绿色环保的合成。
可见,氧化还原法是一种有效的制备石墨烯的方法,它具有灵活的形状、微纳的结构、易于控制的参数和绿色环保的特点,使石墨烯在电子、力学和绝热方面具有广阔的应用前景。
石墨烯在电化学催化中的应用
石墨烯在电化学催化中的应用石墨烯作为一种具有特殊结构和优异性能的材料,在电化学催化领域展现出了巨大的潜力。
其优异的导电性、高比表面积及良好的化学稳定性使其成为一种理想的催化剂载体。
本文将重点介绍石墨烯在电化学催化中的应用,并对其在氧还原反应、水电解、氢氧化物电化学制备以及有机电合成等方面的应用进行探讨。
1. 氧还原反应氧还原反应作为重要的电化学过程,在能源转换和储存中具有重要的应用。
传统的氧还原反应催化剂如铂和碳材料存在成本高和稀缺的问题,而石墨烯由于其高比表面积和优异的导电性,成为一种理想的替代材料。
石墨烯基复合材料如石墨烯负载纳米金属颗粒的催化性能优于传统催化剂,并且具有更好的长期稳定性。
2. 水电解水电解是一种重要的氢气制备方式,其效率和催化剂的活性密切相关。
石墨烯能够提供大量的催化活性位点,提高电催化剂在水电解中的效率。
石墨烯基复合材料在水电解中表现出优异的电催化活性,具有较低的过电势和较高的稳定性。
石墨烯与过渡金属氮化物复合材料在水电解中展现出良好的协同催化效应,进一步提高了水电解的效率和稳定性。
3. 氢氧化物电化学制备石墨烯也可以被应用于氢氧化物的电化学合成过程。
石墨烯基复合材料具有高比表面积和优异的导电性,可作为电极材料,能有效提高氢氧化物的合成效率。
石墨烯与金属氧化物、金属薄膜等材料的复合形成的电极在氢氧化物的电化学制备中表现出较高的电催化活性和稳定性。
4. 有机电合成石墨烯能够作为催化剂参与有机电合成反应,例如电化学还原、氧化和羧酸酯的电解反应等。
其优异的导电性和大表面积提供了良好的催化性能。
石墨烯基官能化复合材料在有机电合成中展现出较高的选择性和活性。
综上所述,石墨烯作为一种优异的催化剂载体材料,在电化学催化中具有广泛的应用前景。
其在氧还原反应、水电解、氢氧化物电化学制备以及有机电合成等领域的应用研究不断深入,有望为能源转换和储存等领域带来重要的突破。
然而,石墨烯在大规模制备、催化活性的调控等方面仍然存在一些挑战,需要进一步的研究和优化。
石墨烯的氧化还原法制备及结论
氧还原催化剂的制备及电化学性能的研究
氧还原催化剂的制备及电化学性能的研究摘要:随着环境问题越来越引起人们的关注,环境保护已成为可持续发展的核心。
全球都致力于研究高效节能环保的新型能源。
燃料电池是一种可以高效地将燃料和氧化剂转化为电能的发电装置。
世界经济和科技的日益发展离不开能源。
随着现代社会在工业、农业、科技、信息技术等各个方面的飞速发展,石油、天然气、煤等不可再生的常规能源消耗已经日渐殆尽,同时常规能源使用排放的有毒有害物质引发的环境问题、生态问题也随之加剧。
因此,幵发新能源、环保能源具有重大深远的意义,势必成为当今科研的主流趋势。
本文就氧还原催化剂的制备及电化学性能进行分析与研究关键词:氧还原催化剂;制备;电化学性能引言氧还原反应是众多新型电池正极电极所发生的过程。
促进其反应过程一直以来是电化学领域研究的侧重方向,故而开发和研究氧还原催化剂性能的工作显现出极高的科研价值和应用价值。
做为众多电化学工作者的研究热点,电催化氧还原技术具备广泛的应用范围,长期以来,由于电化学催化氧还原技术在燃料电池、微生物燃料电池、高级电氧化技术、水处理等方面越来越多的应用,使化学修饰电极电催化领域得到普遍关注。
催化剂在电极表面的氧还原反应中起到了非常重要的作用,制备一种高性能、低成本、对环境友好的催化剂是非常有价值的。
一、氧还原反应在氧还原电极上,氧发生的还原反应是个复杂的过程,氧还原反应涉及4个电子及2~4个质子的转移,和0-0键的断裂,由于其复杂性,可以写出各种各样的反应机理。
通常,依照中间产物过氧化氢(H2O2)的生成与否,其历程主要包括两类:1.直接四电子反应途径:此类途径并没有可检测的过氧化氢。
0-0键在吸附氧分子时断裂变为吸附氧原子MO,在酸性溶液中,氧分子持续得到四个电子还原为H2O,在碱性溶液中,还原为OH-。
在酸性介质中:02+4H++4e →2H20, E=1.229V在碱性介质中:02+2H20+4e →40H,E=0.401V2.间接二电子反应途径:在碱性溶液中,碳、石墨、金、汞等电极上02还原主要是此途径,其过程有中间产物过氧化氢生成,在氧分子吸附时先得到两电子还原为H202或H02,0-0键并不断裂,并没有催化剂时再还原为H20,或者存在催化剂情况下被催化剂分解。
铂碳催化剂氧还原测试实验报告
铂碳催化剂氧还原测试实验报告摘要:本实验以铂碳催化剂为研究对象,通过氧还原反应测试其催化性能。
实验结果表明,铂碳催化剂在氧还原反应中具有较高的催化活性和稳定性,具有广泛的应用前景。
引言:氧还原反应是一种重要的电化学反应,广泛应用于燃料电池、金属空气电池等能源转换器件中。
铂碳催化剂作为一种常用的催化剂,被广泛用于氧还原反应中。
本实验旨在测试铂碳催化剂在氧还原反应中的催化性能,为其应用提供实验依据。
实验方法:1. 制备铂碳催化剂:按照一定比例混合铂粉和活性炭,加入适量的乙醇悬浮液中,超声处理后得到铂碳催化剂。
2. 制备电化学测试电极:将铂碳催化剂涂覆在玻碳电极表面,制备成铂碳催化电极。
3. 确定电极活化条件:使用循环伏安法对铂碳催化电极进行活化,确定最佳活化条件。
4. 进行氧还原反应测试:在酸性电解液中进行氧还原反应测试,记录电流-电压曲线,并计算催化剂的电化学活性表面积。
实验结果与讨论:1. 铂碳催化剂的制备:通过超声处理,铂粉和活性炭均匀分散在乙醇悬浮液中,得到了均一的铂碳催化剂。
2. 电极活化条件的确定:通过循环伏安法测试,确定了最佳活化条件为循环次数为10次,电势范围为-0.2 V至1.0 V。
3. 氧还原反应测试:在最佳活化条件下,进行氧还原反应测试,得到了电流-电压曲线。
通过计算电流密度,可以得到催化剂的电化学活性表面积。
结论:本实验通过对铂碳催化剂的氧还原性能测试,发现铂碳催化剂具有较高的催化活性和稳定性。
铂碳催化剂在酸性电解液中表现出良好的氧还原性能,适用于燃料电池等能源转换器件中。
本实验为铂碳催化剂的应用提供了实验依据,具有重要的科学意义和应用价值。
致谢:感谢实验中得到的帮助和支持,没有你们的帮助,我们无法完成这个实验报告。
谢谢!。
针对氧化石墨烯电催化还原的合成与应用
针对氧化石墨烯电催化还原的合成与应用近年来,氧化石墨烯作为一种新型的碳材料备受关注。
其具有高度的表面积、优异的导电性以及独特的化学稳定性等诸多优点,广泛应用于电化学催化领域。
在其中,电催化还原反应,即CO2还原反应是一个备受关注的话题。
一、氧化石墨烯的合成方法氧化石墨烯目前有许多种合成方法,包括化学氧化法、还原剂还原法、热处理法、电化学氧化还原法等。
其中最为常见的是化学氧化还原法和还原剂还原法。
化学氧化法是最早被报道的氧化石墨烯合成方法。
该方法通过强酸氧化石墨烯而得到氧化石墨烯。
然而,由于强酸氧化会造成石墨烯原有性质的严重破坏,因此该方法在制备高质量石墨烯方面存在一些局限性。
近年来,还原剂还原法逐渐成为氧化石墨烯的合成首选。
该方法是利用还原剂对氧化石墨烯进行还原,得到高质量的氧化石墨烯。
与化学氧化法相比,该方法制备的氧化石墨烯晶格结构更为完整,其性质得到更好的保留。
二、氧化石墨烯在电催化还原反应中的应用氧化石墨烯具有优异的电化学性质,其高度的表面积、良好的催化活性以及近零的电子机率等特点,使其成为一种非常有效的电催化还原剂。
在电催化还原反应中,氧化石墨烯经常作为电极材料被使用。
氧化石墨烯电极的优点在于其良好的电子输导性、超大的比表面积以及高度的化学稳定性。
在CO2还原反应中,氧化石墨烯电极同样起到关键作用。
通过电子传递和催化作用,氧化石墨烯电极能够实现高效的CO2还原反应,将CO2转化为有用的化学品。
三、氧化石墨烯在CO2还原中的应用氧化石墨烯在CO2还原中的应用主要包括三个方面:单质碳、甲醇以及醇类化合物的制备。
其中,单质碳是最为简单的CO2还原产物,其可以被利用于电池、催化剂等领域。
而甲醇和醇类化合物则更为复杂,涉及到更多的催化机理和反应路径。
在实验中,许多研究者通过优化催化剂和反应条件来提高氧化石墨烯的催化活性,实现高效的CO2还原反应。
例如,研究者通过在氧化石墨烯表面引入金属纳米颗粒,实现了高效的CO2还原反应,产物可达到95%以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .2012,28(12),2879-2884December Received:July 5,2012;Revised:September 13,2012;Published on Web:September 25,2012.∗Corresponding author.Email:zfma@;Tel:+86-21-54742894.The project was supported by the National Natural Science Foundation of China (21073120,21176155)and Science and Technology Foundation of Shanghai Municipality,China (10JC1406900).国家自然科学基金(21073120,21176155)及上海市自然科学基金(10JC1406900)资助项目ⒸEditorial office of Acta Physico ⁃Chimica Sinicadoi:10.3866/PKU.WHXB 201209252铂/石墨烯氧还原电催化剂的共还原法制备及表征王万丽马紫峰*(上海交通大学化学工程系,上海200240)摘要:使用硼氢化钠共还原法制备40%(w )铂/石墨烯电催化剂用于氧还原反应.通过循环伏安测试发现,这种方法制备所得铂/石墨烯催化剂对氧还原反应活性较铂/碳催化剂差,但稳定性有所提高.在稳定性测试中,铂/石墨烯电催化性能衰减为50%,较铂/碳(79%)好.X 射线衍射(XRD)和透射电子显微镜(TEM)表征发现在铂/石墨烯催化剂中两者存在明显交互作用,这可能是阻止石墨烯再堆垛和防止铂颗粒团聚的主要原因.通过对单电池性能测试也发现铂/石墨烯催化剂更有利于电池长期稳定.关键词:石墨烯;共还原法;电催化剂;氧还原反应;质子交换膜燃料电池中图分类号:O646Synthesis and Characteristics of Pt/graphene by Co-ReductionMethod for Oxygen Reduction ReactionsWANG Wan-LiMA Zi-Feng *(Department of Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,P .R.China )Abstract:40%(w )Pt/graphene composites were prepared by sodium borohydride chemical co-reduction,and were subsequently used as an electrocatalyst for oxygen reduction reactions.The electrocatalytic activity and stability was evaluated by cyclic voltammetry.The results indicated that the initial activity of Pt/graphene was lower than that of Pt/C due to the oxygen diffusion inhibition;however,the Pt/graphene showed superior durability characteristics.Degradation tests showed a 50%degradation of Pt/graphene,which was substantially less than that of Pt/C (79%).X-ray diffraction and transmission electron microscope results showed that the composite formed strong interactions between the platinum nanoparticles and the graphene supports.The graphene supports may also prevent the graphene sheets from folding or re-stacking,which would hinder platinum nanoparticles ʹaggregation.The performance of a single cell was also tested,confirming an improvement in durability.Key Words:Graphene;Co-reduction method;Electrocatalyst;Oxygen reduction reaction;Proton exchange membrane fuel cell1IntroductionGaphene has attracted great attention from researchers in both theoretical and applied chemistry in recent years.Its use has also been studied in capacitors,1,2lithium batteries,3-6and fuel cells 7-9because of its interesting properties,such as ultra-high surface area (there is a theoretical surface area of 2620m 2·g -1for an isolated graphene sheet),special quantum proper-ties 10-13and so on.Proton exchange membrane (PEM)fuel cells have been de-veloped as a promising energy technology because of their in-herent advantages,such as simplicity,viability,and quick start-up,which give them of great potential in almost any con-2879Acta Phys.⁃Chim.Sin.2012V ol.28ceivable application.14However,several problems still hinder its commercialization.One major problem is the corrosion of carbon support which results in the catalyst being degraded quickly.Much research has been done,however,to improve the durability of carbon support.It was found that carbon mate-rials with nanostructure can improve catalytic properties signif-icantly because of their special electronic properties.15Gra-phene has also been studied as one of the candidates with the most likely potentiality for its ultrahigh surface area and rela-tively high conductivity.16The Pt/graphene nanocomposite has been identified as a ma-terial possibly able to play an important part in the develop-ment of low temperature fuel cells.9,17The nano composite has a large surface area,a high electrochemical surface area (ECSA),and well dispersity of platinum particles.However, its performance in a single cell,particularly the durability of the catalyst,still needs to be further researched.In this study,Pt/graphene composite was co-reduced,charac-terized,and compared with Pt/C for oxygen reduction reaction. The electrochemical properties of Pt/graphene were discussed from several aspects,especially its durability.2Experimental2.1Material synthesisAll the chemicals used were analytical reagents,purchased from Sigma-Aldrich(USA).Prior to Pt/gaphene preparation,graphite oxide(GO)was synthesized by the modified Hummers method.18,19In brief,the graphite powder(1g)was stirred in concentrated sulfuric acid with potassium permanganate added gradually in a water bath till completely oxidized.The reaction was terminated by the ad-dition of a large amount of distilled water and30%(w)H2O2 solution,and then the mixture was centrifuged and washed sev-eral times till a natural pH value.The dried film was stored and dispersed in solvents as needed.The Pt/graphene was fabricated by a co-reduction process. 10mg GO was exfoliated into10mL water by ultrasonication to form GO dispersion.Adding H2PtCl6·6H2O with stirring and adjusting its pH value to13by1mol·L-1potassium hydrox-ide,the dispersion was then reduced by0.1mol·L-1sodium bo-rohydride added dropwise at room temperature for4h.Pt/gra-phene powder was gathered by filtration through a mixed cellu-lose ester membrane filter(0.45μm pore size),and then it was dried in air.After grinding and sifting through a200-mesh sieve,the powder was roasted at200°C for1.5h.For comparison,40%(w)Pt/C was fabricated using the same procedure using Vulcan XC-72R(Cabot Corporation, USA)instead of graphene.Pure graphene powder was pre-pared in the same procedure without the platinum precursor. 2.2CharacterizationThe content of platinum in samples was analyzed by induc-tively coupled plasma mass spectrometer(ICP-MS,Agilent Technologies,USA).The powder X-ray diffraction(XRD)measurements of the samples were recorded on an X-ray pow-der diffractometer(D/max-2200/PC,Rigaku Corporation,Ja-pan)using Cu Kαradiation(λ=0.15406nm)with scattering an-gles(2θ)of20°-80°.Scanning electron microscope(SEM, S-4800,Hitachi Corporation,Japan)and energy-dispersive X-ray(EDX)spectroscopy(Inca Oxford,U.K.)attached to the SEM were used to confirm the deposition of Pt on the gra-phene.The catalyst features were characterized by a transmis-sion electron microscope(TEM,JEM-2010,Jeol,Japan).2.3Electrochemical measurementsThe electrochemical measurements were conducted in a three-electrode cell recorded by a potentiostat/galvanostat mod-el273(EG&G Princeton Applied Research,USA).Platinum mesh and saturated calomel electrode(SCE)were used as the counter and reference electrodes,respectively.0.5mol·L-1 H2SO4were employed as the electrolyte.The sample inks were prepared by mixing10mg sample powder with0.45mL deion-ized water,0.03mL isopropanol,and0.02mL Nafion®solu-tion(5%(w),Dupont Company,USA),followed by sonication in a water bath for10min.20μL ink was dispensed and dried in air on the glassy carbon electrode(φ=0.5cm).The electrode was immersed in de-aerated electrolyte and pretreated in cy-cles between-0.24and1V at a scan rate of100mV·s-1for 100cycles.The anodic corrosion was measured by anodic lin-ear sweep voltammetry from-0.05V(vs open circuit voltage) to1.76V at a scan rate of5mV·s-1.The cyclic voltammetry (CV)performance of supported platinum catalyst was mea-sured in a standard way between-0.24and0.96V at a scan rate of5mV·s-1.The electrochemical surface area was calcu-lated from the hydrogen adsorption-desorption peak of the CV profiles.20The accelerated durability was measured by cyclic voltammetry in the range of-0.24to0.96V for1000cycles at a scan rate of50mV·s-1.Oxygen reduction reaction(ORR) performance was evaluated by rotating disc electrode(RDE) technique.The polarization curves for oxygen reduction reac-tion were measured in an oxygen saturated electrolyte by scan-ning the potential from0.9to0.1V at a scan rate of5mV·s-1. All potentials were reported with respect to the normal hydro-gen electrode(NHE)scale.The gas diffusion layer for the cathode and the gas diffusion electrode(1.0mg·cm-2)for the anode were purchased from ElectroChem,Inc.The platinum loading at the anode side is relatively high,so the overpotential due to the anode half reac-tion can be neglected allowing the focus to be solely on the cathode side.21In this experiment,catalyst suspension was mixed by a supported platinum catalyst,Nafion(5%(w),Du-pont Company,USA),and isopropanol.The mass ratio of cata-lyst to Nafion was3:4.After being thoroughly dispersed,the suspension was brushed on the gas diffusion layer at the plati-num loading until0.4mg·cm-2using as the cathode electrode. Nafion117membrane(Dupont Company,USA)was pretreat-ed by boiling in5%(w)hydrogen peroxide for1h,followed by treating in1mol·L-1sulfuric acid.After each step the Na-2880WANG Wan-Li et al .:Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reductions No.12fion membrane was boiled in deionized water for 30min.The prepared anode and cathode were positioned on the both sides of the membrane and hot pressed at 2tons and 110°C for 4min to form the membrane electrode assembly (MEA).The PEM fuel cell was tested in a fuel cell testing unit with an active electrode area of 1.5cm×1.5cm.The cell was operat-ed at atmospheric pressure.The oxygen and hydrogen flow rate was 200mL ·min -1.The temperature of the cell was 50°C.The current -voltage curves were collected after an activation process at a constant operation voltage of 0.6V .3Results and discussion3.1Material propertiesThe amounts of platinum loaded on Pt/C and Pt/graphene were determined by ICP-MS showing that the contents of plati-num were 39.62%(w )and 40.73%(w ),respectively.XRD pat-terns of Pt/graphene and graphene are shown in Fig.1,which contain typical platinum diffraction peaks and a broadening C (002)peak.The peaks at the 2θof 39.86°,46.25°,and 67.69°are assigned to (111),(200),and (220)facets of the face-cen-tered cubic structure of platinum respectively,which are in agreement with the standard card of platinum (JCPDS No.4-802).The crystallite size is calculated from Scherrer equa-tion as following:D =K λβcos θwhere,D is the crystallite size;K is the Scherrer constant (K =0.89);βis the peak width at half height;θis the angle of dif-fraction;λis the wavelength of X-ray (λ=0.154056).The crys-tallite size of platinum is calculated as 7.7nm,bigger than that of Pt/C (6.8nm).The calculated lattice constants of platinum supported by graphene and carbon are a =b =c =0.3912nm and a =b =c =0.3938nm,respectively.The change between these val-ues shows clearly that a stronger interaction exists when plati-num particles are deposited onto graphene.22On the other hand,carbon diffraction peaks of Pt/graphene composite are broad-ened and weakened compared to that of pure graphene,which suggests that there might be a certain interaction between plati-num particles and graphene support.It may be caused by plati-num particles embedding into the spaces between graphene lay-ers and leading to graphene lattices growing disorderly.8Theseresults also confirm that the platinum precursor and graphite oxide are reduced to the composite of Pt/graphene.The features of pure graphene and Pt/graphene composite are shown in Fig.2.The monolayer graphene sheets are found in TEM images,supporting the platinum particles (black dots).The outstretched wrinkles of graphene sheets are clearly ob-served,which are obviously different from those of Vulcan XC-72.This might be attributed to the dispersion of platinum particles which also hinders the migration of the platinum parti-cles.17The particle size of platinum observed is about 8nm which agrees well with the results from XRD.The multi-crys-tal diffraction rings of platinum can be assigned to the (111),(200),and (220)facets of platinum in the selected area electron diffraction (SAED)pattern.However,Pt/graphene has a partic-ular orientation which can be confirmed by the bright spots on the diffraction rings.This might be caused by the surface groups on the dispersed graphite oxide (epoxy and hydroxyl groups),acting as anchoring sites for platinum particles to de-posit on.The platinum particles could only have adhered to the top or the bottom of the graphene sheets.The graphene sheets are reduced with wrinkles emerging in succession,leading to parts of the platinum particles changing their facet directions on the graphene sheets.23,24This reducing process might have contributed to the morphology of the platinum particles ʹdeposi-tion.The deposition of platinum particles is also confirmed by SEM images (Fig.3).From the top view of pure graphene (Fig.3(a)),the irregular wrinkles (bright lines)could be ob-served clearly on the surface,meanwhile,no crack could be found,which proving that the graphene is compact and flat.This suggests that it is both impermeable to gas and water resis-tant.The lamellar structure can be found even it is grinded to a powder.Fig.3(b)indicates that the platinum particles (bright dots)are deposited on the graphene sheets dispersedly.The gra-phene wrinkles are still formed but less than that of pure gra-phene film,which might be caused by preventing restacking of the graphene sheets from van der Waals forces when platinum particles deposited onto.The cross section of the film is a lay-er-by-layer structure as shown in the insert in Fig.3(a).The lay-ers are stacked together closely;they are separated however from each other with only few layers stacking while platinum particles are deposited on the sheets as shown in the insert in Fig.3(b).The layer-by-layer structure is still maintainedwhileFig.1XRD patterns of Pt/C,Pt/graphene,andgrapheneFig.2TEM images of (a)graphene and (b)Pt/grapheneInsert is the SAED pattern of Pt/graphene.2881Acta Phys.⁃Chim.Sin .2012V ol.28the spaces between sheets are increased,suggesting the parti-cles are acting as holders between layers hence resulting in a less layer-stacking film with a larger surface area,which is to its application ʹs advantage.3.2Electrochemical properties and durabilityThe electrochemical properties were characterized by cyclic voltammetry in 0.5mol ·L -1sulphuric acid system.Prepared Pt/graphene and Pt/C catalysts exhibit the typical Pt peaks of hy-drogen under-potential deposition and oxidation of hydrogen around 0-0.3V in Fig.4(a,b).These peaks are similar to the published work 25which indicates that the Pt-oxides formation and reduction appear at the same potentials for Pt/graphene and Pt/C.The peaks also indicate that the platinum particles are active when supported by graphene,agreeing well with the refer-ence.26The electrochemical surface area (ECSA)is calculated according to the equation:20ECSA =Q H[Pt]⋅210where,Q H is the peak area of hydrogen adsorption-desorption,and [Pt]is the platinum loading.ECSA is calculated as 30.2and 28.0m 2·g -1for Pt/graphene and Pt/C,respectively.It indi-cates that the numbers of platinum active sites of Pt/graphene and Pt/C are in the same order of magnitude.The ECSA value of Pt/C agrees well with the published data.27It suggests that the number of active sites is not affected when the feature of catalyst support changes into layer structure.The oxygen reduction reaction behavior was investigated by RDE method.Fig.5(a)shows the result of ORR polarization ofPt/graphene.The variation of the ORR current density (i )changes significantly with the RDE rotating speed (ω)in the diffusion region.The relationship between i -1vs ω-1/2can be ex-pressed by the Koutecky-Levich equation:281i =1i k +1i di d =K ω1/2=0.62nFD 23O 2ν-16C O 2ω1/2where,i is the total ORR current density,i k is the kinetic cur-rent density (in the activation region),i d is the diffusion limited current density (in the high ORR reduction potential)where the current is a plateau and its value changes with the RDE ro-tating speed (ω)(Fig.5(b)).K is the Levich ʹs slope which con-tains the following parameters:n the number of electron trans-ferred in ORR,F the Faraday constant,C O 2the bulk concentra-tion of oxygen (1.03×10-3mol ·L -1),D O2the diffusion coeffi-cient of oxygen in the bulk solution (2.1×10-5cm 2·s -1),and v the kinematic viscosity of the solution (1.07×10-2cm 2·s -1).29Fig.3SEM images of (a)graphene and (b,c)Pt/grapheneInserts are the cross sections of (a)graphene and (b)Pt/graphene.Fig.4Cyclic voltammetry curves of (a)Pt/graphene and (b)Pt/C Fig.5(a)ORR polarization curves and (b)Koutecky-Levichplots of Pt/graphene2882WANG Wan-Li et al.:Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reductions No.12The calculated n values of the Pt/graphene and Pt/C are3.86and3.90,respectively.This result indicates that the ORR onthe Pt/graphene electro-catalyst proceeds via a four-electrontransfer process.The kinetic current density i k is obtained byextrapolation of the Koutecky-Levich plots toω-1/2to zero.Thevalues are listed in Table1.It is found that i k value of Pt/gra-phene is lower than that of Pt/C.This is an indication that theORR kinetic rate on Pt/graphene might be lower than that of Pt/C,even the reaction pathway is the same on both electrodes.The low kinetic rate on Pt/graphene might be due to the inhibi-tion of the oxygen diffusion on its surface.Grapheneʹs layerstructure that platinum particles embedded into it might im-pede the access of the platinum active sites to oxygen.Howev-er,the carbonʹs spherical structure encourages the oxygen diffu-sion.Tafel slopes(b)and current density in activation regionof Pt/graphene and Pt/C are listed in Table1.The larger Tafelslope and the lower current density of Pt/graphene than thoseof Pt/C also prove the less activity of Pt/graphene for ORR,al-though Pt/graphene has almost the same platinum active sitesof hydrogen adsorption-desorption.The durabilities of both Pt/graphene and Pt/C were investi-gated under cyclic voltammetry for1000cycles in0.5mol·L-1sulphuric acid medium.The electrochemical surface area wascalculated every hundred cycles.Fig.6shows the normalizedECSA of Pt/graphene and Pt/C variation as a function of cy-cling number.Obvious degradations in ECSA values are foundas30.20m2·g-1before cycles and15.05m2·g-1after cycles of Pt/graphene while28.00m2·g-1before cycles and5.88m2·g-1 after cycles of Pt/C.The degradation of homemade Pt/gra-phene was slightly less than that in reference17where the de-crease of activity for ORR was about50%.17Meanwhile,thedecrease of Pt/C was79%,which was much bigger than that ofPt/graphene.Therefore,platinum on graphene was much morestable than that on carbon under the test condition.The degra-dation is mainly due to carbon corrosion.As to Pt/C,the car-bon support is spherical which encourages the aggregation of platinum particles,leading to a decrease in the platinum sur-face area.However,the better durability of Pt/graphene could be attributed to the grapheneʹs interesting electronic properties that there is an interaction between Pt particles and the gra-phene surface,this hindering the metallic phase coalescence.30 Moreover,it is more difficult for platinum particles to aggre-gate because the available particles are the surrounding ones in two dimensions,while the particles up or below are separated by graphene layers.The performance and durability of Pt/graphene in PEM fuel cell were also investigated.Fig.7(a)shows the performance in a single cell that the open circuit voltage based on Pt/graphene of0.975V and the maximum power density of158.65mW·cm-2at0.317V are observed.The initial performance based on Pt/graphene is poorer than that of Pt/C,which might be due to the inhibition of oxygen diffusion on its catalyst surface as de-scribed above.However,a higher stability is observed in Fig.7 (b).The decrease of voltage at400mA·cm-2as a function of time based on Pt/graphene is less than that of Pt/C,which might be caused by the greater durability of the Pt/grapheneTable1Electron transfer number,dynamic current density,exchange current density,Tafel slope,and current density ofPt/graphene and Pt/C at850mVPt/graphenePt/Cn3.863.90i k/(mA·cm-2)8.76611.387i0/(mA·cm-2)4.15×10-37.89×10-3b/(mV·dec-1)152123i850mV/(mA·cm-2)1.401.83Fig.6Normalized electrochemical surface area degradation ofPt/graphene and Pt/C Fig.7(a)Single cell performance and(b)stability ofPt/graphene and Pt/C2883Acta Phys.⁃Chim.Sin.2012V ol.28catalyst.This result indicates that graphene might be more suit-able for PEM fuel cell application than carbon.4ConclusionsThe40%(w)Pt/graphene composite prepared by sodium bo-rohydride chemical co-reduction was introduced as the electro-catalyst for oxygen reduction reaction.The electro catalytic ac-tivity and stability were evaluated.The results show that the layer structure of graphene maintains after reduction and the platinum particles with a particle size of8nm are dispersed on-to graphene.The activity for ORR based on Pt/graphene is low-er than that of Pt/C;however,better stability is observed in degradation test that the decrease of Pt/graphene is50%,which is less than that of Pt/C(79%).On both electrodes,the ORR proceeds via a four-electron process.The performance of a sin-gle cell is also tested.The improvement in durability is con-firmed by the delayed degradation of cell performance based on Pt/graphene.It might therefore be assumed that the gra-pheneʹs layer structure hinders the aggregation of platinum par-ticles.Meanwhile,the platinum particles act as holders,which against the folding of graphene sheets.This result might be use-ful for the design of the catalyst with carbon support to im-prove the long-term performance in PEM fuel cells.References(1)Wang,Y.;Shi,Z.;Huang,Y.;Ma,Y.;Wang,C.;Chen,M.;Chen,Y.The Journal of Physical Chemistry C2009,113(30),13103.doi:10.1021/jp902214f(2)Lu,X.J.;Dou,H.;Yang,S.D.;Hao,L.;Zhang,F.;Zhang,X.G.Acta Phys.-Chim.Sin.2011,27(10),2333.[卢向军,窦辉,杨苏东,郝亮,张方,张校刚.物理化学学报,2011,27(10),2333.]doi:10.3866/PKU.WHXB20111022 (3)Guo,P.;Song,H.;Chen,mun.2009,11(6),1320.doi:10.1016/j.elecom.2009.04.036(4)Liang,M.;Zhi,L.J.Mater.Chem.2009,19(33),5871.doi:10.1039/b901551e(5)Xu,K.;Shen,L.F.;Mi,C.H.;Zhang,X.G.Acta Phys.-Chim.Sin.2012,28(1),105.[徐科,申来法,米常焕,张校刚.物理化学学报,2012,28(1),105.]doi:10.3866/PKU.WHXB201228105(6)Yang,X.W.;He,Y.S.;Liao,X.Z.;Ma,Z.F.Acta Phys.-Chim.Sin.2011,27(11),2583.[杨晓伟,何雨石,廖小珍,马紫峰.物理化学学报,2011,27(11),2583.]doi:10.3866/PKU.WHXB20111123(7)Li,Y.;Tang,L.;Li,mun.2009,11(4),846.doi:10.1016/j.elecom.2009.02.009(8)Si,Y.;Samulski,E.T.Chem.Mater.2008,20(21),6792.doi:10.1021/cm801356a(9)Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S.G.Acta Phys.-Chim.Sin.2011,27(4),858.[李云霞,魏子栋,赵巧玲,丁炜,张骞,陈四国.物理化学学报,2011,27(4),858.]doi:10.3866/PKU.WHXB20110411(10)Castro Neto,A.H.;Kotov,V.N.;Nilsson,J.;Pereira,V.M.;Peres,N.M.R.;Uchoa,B.Solid State Commun.2009,149(27-28),1094.doi:10.1016/j.ssc.2009.02.040(11)Geim,A.K.Science2009,324(5934),1530.doi:10.1126/science.1158877(12)Neto,A.H.C.;Guinea,F.;Peres,N.M.R.;Novoselov,K.S.;Geim,A.K.Reviews of Modern Physics2009,81(1),109.doi:10.1103/RevModPhys.81.109(13)Rao,C.N.R.;Sood,A.K.;Subrahmanyam,K.S.;Govindaraj,A.Angewandte Chemie-International Edition2009,48(42),7752.doi:10.1002/anie.v48:42(14)Barbir,F.PEM Fuel Cells——Theory and Practice;ElsevierAcademic Press:Burlington,2005.(15)Baughman,R.H.;Zakhidov,A.A.;De Heer,W.A.Science2002,297(5582),787.doi:10.1126/science.1060928(16)Chen,H.;Müller,M.B.;Gilmore,K.J.;Wallace,G.G.;Li,D.Adv.Mater.2008,20(18),3557.doi:10.1002/adma.200800757 (17)Kou,R.;Shao,Y.;Wang,D.;Engelhard,M.H.;Kwak,J.H.;Wang,J.;Viswanathan,V.V.;Wang,C.;Lin,Y.;Wang,Y.;Aksay,I.A.;Liu,mun.2009,11(5),954.doi:10.1016/j.elecom.2009.02.033(18)Huffman,G.P.;Shah,N.;Wang,Y.;Huggins,F.E.Prepr.Pap.-Am.Chem.Soc.,Div.Fuel Chem.2004,49(2),731. (19)Kovtyukhova,N.I.Chem.Mater.1999,11(3),771.doi:10.1021/cm981085u(20)Fournier,J.;Faubert,G.;Tilquin,J.Y.;Cote,R.;Guay,D.;Dodelet,J.P.J.Electrochem.Soc.1997,144(1),145.doi:10.1149/1.1837377(21)Gasteiger,H.A.;Panels,J.E.;Yan,S.G.J.Power Sources2004,127(1-2),162.doi:10.1016/j.jpowsour.2003.09.013 (22)Carmo,M.;Paganin,V.A.;Rosolen,J.M.;Gonzalez,E.R.J.Power Sources2005,142(1-2),169.doi:10.1016/j.jpowsour.2004.10.023(23)Schniepp,H.C.;Li,J.L.;McAllister,M.J.;Sai,H.;Herrera-Alonso,M.;Adamson,D.H.;Prudʹhomme,R.K.;Car,R.;Saville,D.A.;Aksay,I.A.The Journal of Physical Chemistry B 2006,110(17),8535.doi:10.1021/jp060936f(24)McAllister,M.J.;Li,J.L.;Adamson,D.H.;Schniepp,H.C.;Abdala,A.A.;Liu,J.;Herrera-Alonso,M.;Milius,D.L.;Car,R.;Prudʹhomme,R.K.;Aksay,I.A.Chem.Mater.2007,19(18),4396.doi:10.1021/cm0630800(25)Climent,V.;Marković,N.M.;Ross,P.N.The Journal ofPhysical Chemistry B2000,104(14),3116.(26)Takenaka,S.;Matsumori,H.;Matsune,H.;Tanabe,E.;Kishida,M.J.Electrochem.Soc.2008,155(9),B929.(27)Cho,Y.H.;Park,H.S.;Cho,Y.H.;Jung,D.S.;Park,H.Y.;Sung,Y.E.J.Power Sources2007,172(1),89.doi:10.1016/j.jpowsour.2007.01.067(28)Wang,C.;Waje,M.;Wang,X.;Tang,J.M.;Haddon,R.C.;Yan,Y.Nano Lett.2003,4(2),345.(29)Chen,Z.;Waje,M.;Li,W.;Yan,Y.Angew.Chem.2007,119(22),4138.doi:10.1002/ange.200700894(30)Rochefort,A.;Yang,D.Q.;Sacher,E.Carbon2009,47(9),2233.doi:10.1016/j.carbon.2009.04.0132884。