直齿圆柱齿轮的结构设计
直齿圆柱齿轮的结构设计
目录摘要 (2)一引言 (3)二齿轮的设计计算 (4)2.1 选择材料、热处理方法及精度等级 (4)2.2 齿面接触疲劳强度设计齿轮 (4)2.3主要参数选取及几何尺寸计算 (5)2.4 .齿轮结构设计 (5)三绘制齿轮图、零件图、三维造型 (7)四结束语 (8)五参考文献 (9)摘要齿轮是广泛应用于机械设备中的传动零件。
它的主要作用是传递运动、改变方向和转速。
根据齿轮的工况,合理的设计齿轮的结构,使得齿轮传动平稳有足够的强度。
通过强度计算、材料的选择、热处理方法精度选择、几何尺寸计算。
考虑齿面接触疲劳强度和齿根曲面疲劳强度得出齿轮的结构。
关键词:齿轮传动、齿轮精度、热处理、疲劳强度一引言随着我过工业的发展,齿轮是现代机械中应用最广泛的一种机械传动零件。
它的结构设计随着工业的需要而改变。
齿轮的结构设计与齿轮的几何尺寸、毛坯、材料、加工方法、使用要求及经济性等因素有关。
进行齿轮的结构设计时,必须综合地考虑上述各方面的因素。
通常是先按齿轮的直径大小,选定合适的结构形式,然后再根据荐用的经验数据,进行结构设计。
随着科技技术的不断进步,生产都向着自动化、专业化和大批量化的方向发展。
这就要求企业的生产在体现人性化的基础上降低工人的生产强度和提高工人的生产效率,降低企业的生产成本。
现代的生产和应用设备多数都采用机电一体化、数字控制技术和自动化的控制模式。
在这种要求下齿轮零件越发体现出其广阔的应用领域和市场前景。
特别是近年来与微电子、计算机技术相结合后,使齿轮零件进入了一个新的发展阶段。
在齿轮零部件是最重要部分,因需求的增加,所以生产也步入大批量化和自动化。
为适应机械设备对齿轮加工的要求,对齿轮加工要求和技术领域的拓展还需要不断的更新与改进。
二齿轮的设计计算2.1 选择材料、热处理方法及精度等级齿轮传动的承载能力主要取决于轮齿的材料和几何尺寸,因此,选择适宜的材料及热处理方法是齿轮设计的一个重要环节。
选择轮齿的材料及热处理方法:1)使材料具有较好的抗失效性能,齿面具有足够的硬度和耐磨性,以使齿面有叫好的抗点蚀、胶合、磨损和抗塑性变形的能力;齿体具有较高的弯曲强度和冲击韧性,以保证在变载荷和冲击载荷下不致断齿。
直齿圆柱齿轮设计步骤
直齿圆柱齿轮设计1.齿轮传动设计参数的选择齿轮传动设计参数的选择:1)压力角α的选择2)小齿轮齿数Z1的选择3)齿宽系数φd的选择齿轮传动的许用应力精度选择压力角α的选择由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。
我国对一般用途的齿轮传动规定的压力角为α=20o。
为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。
但增大压力角并不一定都对传动有利。
对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。
小齿轮齿数Z1的选择若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。
另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。
但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。
不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。
闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。
为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z1≥17。
Z2=u·z1。
齿宽系数φd的选择由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。
圆柱齿轮齿宽系数的荐用值列于下表。
对于标准圆柱齿轮减速器,齿宽系数取为所以对于外捏合齿轮传动φa的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。
直齿圆柱齿轮的设计和加工工艺设计
题目:直齿圆柱齿轮的设计和加工工艺设计学院冀中职业学院学生姓名李朋辉学号2009040217专业机电一体化技术届别2009指导教师姜小丽职称二011年月诚信承诺本人慎重承诺和声明:我承诺在毕业论文(设计)活动中遵守学校有关规定,恪守学术规范,在本人毕业论文中为剽窃他人的学术观点、思想和成果,为篡改研究数据,如有违规行为发生,我愿承担一切责任,接受学校处理。
学生(签名):李朋辉2011年月日摘要现在齿轮传动是机械传动最常用的形式之一,它在机械、电子、纺织、冶金、采矿、汽车、航天等设备中得到广泛应用。
其中直齿圆柱齿轮是汽车及机械行业中重要的传动零件,其形状复杂,材质尺寸精度表面质量及综合机械性能很高。
本文主要介绍直齿圆柱齿轮的结构及设计和加工工艺。
目录概述…………………………………………………..第一章直齿圆柱齿轮的设计1.1齿轮基础知识……………………………………1.2直齿圆柱齿轮结构及零件图……………………1.3直齿圆柱齿轮材料及其参数合理选取…………第二章直齿圆柱齿轮的加工工艺2.1夹具及毛坯的选取………………………………2.2齿轮加工方法……………………………………2.3齿轮加工方案选择及使用要求…………………2.4直齿圆柱齿轮加工工艺过程……………………结束语………………………………………………..参考文献……………………………………………..概述齿轮是机械行业量大面广的基础零件,广泛应用于机床,汽车,摩托车,农机,建筑机械,航空,工程机械等领域,而对加工精度,效率和柔性提出越来越高的要求。
齿轮加工技术从公元前400—200年的手工业制作阶段开始经历了机械仿形阶段、机械返程加工阶段以及20世纪80年代至今的数控技术加工阶段。
第一章直齿圆柱齿轮的设计1.1齿轮的基础知识1.1.1齿轮机构的特点如下:(1)齿轮机构的优点有:1)齿轮机构传动比恒定,寿命长,工作可靠性高。
2)齿轮机构传递的功率和圆周速度分别可达100000k w、300m∕s。
直齿圆柱齿轮工艺及夹具设计
直齿圆柱齿轮工艺及夹具设计对于直齿圆柱齿轮的工艺设计,首先需要进行齿轮的结构设计,确定齿轮的模数、齿数、压力角等参数。
然后,根据齿轮的类型和尺寸,选择合适的加工工艺。
一般情况下,直齿圆柱齿轮的加工工艺包括车削、铣削和磨削等过程。
下面,我将分别介绍这些工艺的具体步骤。
1.车削加工:车削是直齿圆柱齿轮加工的主要方法之一、车削加工需要使用齿轮车削机,通过将刀具沿齿轮的螺旋线进行切削来加工齿轮齿面。
车削加工的关键是确定好刀具的进给量和切削速度,以保证齿轮齿面的质量和精度。
2.铣削加工:铣削是直齿圆柱齿轮加工的另一种常用方法。
铣削加工需要使用齿轮铣床,通过将刀具沿齿轮的齿廓进行切削来加工齿轮齿面。
铣削加工通常采用刀具分多次切削的方式,以提高加工效率和保证齿轮齿面的质量。
3.磨削加工:磨削是直齿圆柱齿轮加工的最后一道工序。
磨削加工需要使用齿轮磨床,通过将砂轮沿齿轮的齿廓进行磨削来加工齿轮齿面。
磨削加工可以大大提高齿轮的精度和光洁度,达到高精密要求。
除了工艺设计,夹具设计也是直齿圆柱齿轮加工中不可忽视的一环。
夹具的设计应根据齿轮的类型和尺寸来确定,以确保齿轮在加工过程中的稳定性和精度。
常见的齿轮夹具包括顶夹具、侧夹具和中心夹具等。
在夹具设计过程中,需要考虑夹紧力、夹紧方式、夹紧面形状等因素,以提高夹具的稳定性和工作效率。
综上所述,直齿圆柱齿轮的工艺及夹具设计对于保证齿轮加工质量和提高生产效率至关重要。
在工艺设计中,需要选择合适的加工工艺,并控制好加工参数,以确保齿轮的精度和光洁度。
在夹具设计中,需要根据齿轮的类型和尺寸,设计合理的夹具结构和夹紧方式,以提高夹具的稳定性和工作效率。
机械基础课程设计一级直齿圆柱齿轮减速器
机械基础课程设计说明书设计题目:一级直齿圆柱齿轮减速器班级学号学生姓名:指导老师:完成日期:所在单位:设计任务书1、题目设计用于带式输送机的机械传动装置——一级直齿圆柱齿轮减速器。
2、参考方案(1)V带传动和一级闭式齿轮传动(2)一级闭式齿轮传动和链传动(3)两级齿轮传动3、原始数据4、其他原始条件(1)工作情况:两班制,输送机连续单向运转,载荷较平稳。
(2)使用期限:5年。
(3)动力来源:三相交流(220V/380V)电源。
(4)允许误差:允许输送带速度误差5%±。
5、设计任务(1)设计图。
一级直齿(或斜齿)圆柱齿轮减速器装配图一张,要求有主、俯、侧三个视图,图幅A1,比例1:1(当齿轮副的啮合中心距110a≤时)或1:(当齿轮副的啮合中心距110a>时)。
(2)设计计算说明书一份(16开论文纸,约20页,8000字)。
目录一传动装置的总体设计 (3)二传动零件的设计 (7)三齿轮传动的设计计算 (9)四轴的计算 (11)五、箱体尺寸及附件的设计 (24)六装配图 (28)设计内容:一、传动装置的总体设计1、确定传动方案本次设计选用的带式输送机的机械传动装置方案为V带传动和一级闭式齿轮传动,其传动装置见下图。
2,选择电动机(1)选择电动机的类型按工作要求及工作条件选用三相异步电动机,封闭自扇冷式结构,电压380V,Y系列。
(2)选择电动机的额定功率①带式输送机的性能参数选用表1的第 6组数据,即:表一工作机所需功率为: kW sm N Fv w 44.51000/7.132001000P =⨯==②从电动机到工作机的传动总效率为:212345ηηηηηη=其中1η、2η、3η、4η、5η分别为V 带传动、齿轮传动、滚动轴承、弹性套柱销联轴器和滚筒的效率,查取《机械基础》P 459的附录3 选取1η= 、2η=(8级精度)、3η=(球轴承)、4η=、5η=故22123450.950.970.990.9950.960.8609664143520.862ηηηηηη==⨯⨯⨯⨯=≈ ③ 电动机所需功率为kW sm N Fv d 33.6852.0*1000/7.1*32001000P ===η 又因为电动机的额定功d ed P P ≥(3) 确定电动机的转速 传动滚筒轴工作转速:min r/2.814007.1100060v 100060=⨯⨯=⨯⨯=ππD n 滚筒查《机械基础》P 459附录3, V 带常用传动比为i 1=2~4,圆柱齿轮传动一级减速器常用传动比范围为i 2=3~5(8级精度)。
项目四 绘制直齿圆柱齿轮零件图
如图所示为直齿圆柱齿轮零件,绘制其零件图。
学
习 通过完成此项目,掌握标准直齿圆柱齿轮轮齿部
目 标
分的名称、几何尺寸的计算;掌握单个和啮合的标
准直齿圆柱齿轮、锥齿轮及蜗轮蜗杆的规定画法;
初步掌握绘制直齿圆柱齿轮零件图的方法及步骤。
项目四 绘制直齿圆柱齿轮零件图
直齿圆柱齿轮
求模数m 查表2-4-1得m =2 mm。
实项施步目骤四 绘制直齿圆柱齿轮零件图
计算分度圆直径d和齿顶圆直径da
b.若通过测量齿顶圆直径求模数:当齿数为偶数时,直接测出齿顶圆直径,
如图(a) 所示;当齿数为奇数时,采用间接测量法,分别测出D1和H,然 后算出齿顶圆直径da=2H+D1,如图(b)所示。
为基准,轴向尺寸以齿轮对称面为基准。 (1)标注尺寸线及尺寸界线分别标注圆柱齿轮的定形、定位尺寸和
总体尺寸,如图所示。 (2)注写尺寸数字 齿轮的尺寸通过测量和计算得到,常使用的量
具有游标卡尺、千分尺和公法线千分尺等。
实项施步目骤项施步目骤四 绘制直齿圆柱齿轮零件图
(5)齿距、齿厚、槽宽:在分度圆上,相邻两齿对应齿廓之间的弧长称为齿
距,用p表示。在分度圆上,齿的两侧对应齿廓之间的弧长称为齿厚,用s表
示。
学项习资目料四 绘制直齿圆柱齿轮零件图
直齿圆柱齿轮各部分名称和代号
学项习资目料四 绘制直齿圆柱齿轮零件图
在分度圆上,齿槽的两侧对 应齿廓之间的弧长称 为齿槽宽,
用e表示。
在标准齿轮中,齿厚与槽宽
各为齿距的一半,即s=e=p/2, p=s+e。
(6)中心距:两啮合齿轮轴 线间的距离称为中心 距,用a表 示,如图所示。装配准确的标准 齿轮中心距为
直齿圆柱齿轮设计步骤
直齿圆柱齿轮设计1.齿轮传动设计参数的选择齿轮传动设计参数的选择:1)压力角α的选择2)小齿轮齿数Z1的选择3)齿宽系数φd的选择齿轮传动的许用应力精度选择压力角α的选择由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。
我国对一般用途的齿轮传动规定的压力角为α=20o。
为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。
但增大压力角并不一定都对传动有利。
对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。
小齿轮齿数Z1的选择若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。
另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。
但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。
不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。
闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。
为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z1≥17。
Z2=u·z1。
齿宽系数φd的选择由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。
圆柱齿轮齿宽系数的荐用值列于下表。
对于标准圆柱齿轮减速器,齿宽系数取为所以对于外捏合齿轮传动φa的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。
机械制造工艺学课程设计—齿轮设计
机械制造工艺学课程设计题目:直齿圆柱齿轮设计姓名(学号):)教学院:专业班级:指导教师:完成时间:教务处制目录引言 (1)1.齿轮零件结构分析 (1)1.1 齿轮零件图分析 (1)1.2 齿轮零件结构分析 (2)1.2.1零件表面组成 (2)1.2.2确定主要表面与次要表面 (2)1.2.3零件结构工艺性分析 (2)2.毛坯的确定 (2)2.1毛坯的确定原则 (2)2.2毛胚的选择原则 (2)3.选择定位基准 (3)3.1以内孔和端面定位 (3)3.2以外圆和端面定位 (3)4.拟定齿轮的工艺路线 (3)4.1确定加工方案 (3)4.1.1齿坯加工方案的选择 (3)4.1.2齿形加工 (4)4.2划分加工阶段 (4)4.3选择定位基准 (4)4.4加工工序安排 (4)5.确定加工尺寸和切削用量 (4)5.1背吃刀量的选择 (4)5.2进给量的选择 (5)5.3切削速度的选择 (5)6.设计工序内容 (5)6.1确定工序尺寸 (5)6.2选择设备工装 (6)7.夹具设计 (6)7.1机床夹具的定位误差 (6)7.1.1心轴 (6)7.1.2定位套 (7)7.2机床夹具的对刀装置 (7)7.2.1确定插床夹具对刀块位置尺寸的步骤 (8)7.2.2精度校验 (8)7.3机床夹具的选择原则 (8)9.附件 (9)参考文献 (10)致谢词 (10)引言机械制造工艺学课程设计是我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的。
这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。
就我个人而言,我希望能通过这次课程设计,了解并认识一般机器的生产工艺过程,巩固和加深已学过的技术基础课和专业课的知识,理论联系实际,对自己未来将从事的工作惊醒一次适应性训练,从中锻炼自己分析问题、解决问题的能力。
为今后的工作打下一个良好的基础。
直齿圆柱齿轮传动设计
直齿圆柱齿轮传动设计首先,设计直齿圆柱齿轮传动需要确定齿轮的参数。
齿轮的参数包括模数m、齿数z、齿宽b、压力角α等。
模数决定了齿轮的尺寸,一般根据传动功率、转速等参数进行估算。
齿数z决定了齿轮的传动比,一般根据传动机构的要求确定。
齿宽b根据齿轮的载荷大小进行估算。
压力角α一般选取20°、22.5°、25°等常用的值。
确定了这些参数后,可以根据齿轮的几何特征进行齿轮的绘制。
接下来,需要计算直齿圆柱齿轮的传动比。
传动比一般定义为输入轴的转速与输出轴的转速之比,可以根据齿轮参数和传动机构的要求进行计算。
传动比的计算公式为:传动比=输出轴齿轮齿数/输入轴齿轮齿数在计算传动比时,还需要考虑两个齿轮的模数是否相等,如果不相等,需要进行修正。
修正公式为:修正传动比=传动比×(模数2/模数1)其中,模数1为输入轴齿轮的模数,模数2为输出轴齿轮的模数。
当修正传动比计算完成后,可以根据实际需求进行调整。
然后,需要进行齿轮的强度校核。
齿轮的强度校核是为了保证齿轮在正常工作状态下不会产生破坏。
常用的齿轮强度计算理论有力学强度设计法和面强度设计法。
力学强度设计法主要考虑齿轮的破坏形式为齿面弯曲破坏,通过计算齿面弯曲强度和弯曲疲劳强度来进行判断。
面强度设计法主要考虑齿轮的破坏形式为齿面所受的接触压力引起的疲劳破坏,通过计算齿面强度和疲劳寿命来进行判断。
最后,需要进行齿轮传动的精度校核。
直齿圆柱齿轮传动的精度校核主要有几何精度校核和运动精度校核。
几何精度校核包括齿轮齿宽误差、齿轮齿距误差和齿轮齿高误差等方面。
运动精度校核主要包括齿轮传动的轻载配合误差和重载配合误差两方面。
通过对齿轮传动的精度校核,可以保证齿轮传动的正常运行和传动精度。
综上所述,直齿圆柱齿轮传动的设计过程包括齿轮参数的选择、传动比的计算、齿轮的强度校核和精度校核。
在设计过程中,需要根据传动机构的要求和实际情况进行参数选择和计算,并进行强度和精度的校核。
直齿圆柱齿轮设计步骤
直齿圆柱齿轮设计1.齿轮传动设计参数的选择齿轮传动设计参数的选择:1)压力角α的选择2)小齿轮齿数Z1的选择3)齿宽系数φd的选择齿轮传动的许用应力精度选择压力角α的选择由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。
我国对一般用途的齿轮传动规定的压力角为α=20o。
为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。
但增大压力角并不一定都对传动有利。
对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。
小齿轮齿数Z1的选择若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。
另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。
但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。
不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。
闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。
为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z1≥17。
Z2=u·z1。
齿宽系数φd的选择由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。
圆柱齿轮齿宽系数的荐用值列于下表。
对于标准圆柱齿轮减速器,齿宽系数取为所以对于外捏合齿轮传动φa的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。
直齿圆柱齿轮传动设计
2 × 1.5 × 3.98 × 105 3.5 + 1 = 189.8 × 2.5 × 0.87 × = 1004.35MPa 50 × 722 3.5 σ H < [σ H ]
接触疲劳强度足够。 接触疲劳强度足够。
5. 轮的实际圆周速度
v=
π d1n1
60 × 1000=来自π × 72 × 960
(2)闭式传动(硬齿面):主要失效形式为 闭式传动(硬齿面): 轮齿折断;次要失效形式为齿面的疲劳点蚀 疲劳点蚀。 轮齿折断;次要失效形式为齿面的疲劳点蚀。
设计顺序:弯曲疲劳强度设计 设计顺序:弯曲疲劳强度设计m→选Z1 设计m
(17~24)→几何尺寸的计算→接触疲劳强 17~24) 几何尺寸的计算→ 度验算; 度验算; (3)开式传动:主要失效形式为齿面的磨损; 开式传动:主要失效形式为齿面的磨损 齿面的磨损; 次要失效形式为轮齿折断 轮齿折断。 次要失效形式为轮齿折断。
K β = 1.19 (查图 查图11-10) )
3)计算载荷系数K )计算载荷系数 (查表11-7) ) K A = 1 查表
将模数圆整为标准值, 将模数圆整为标准值,取m=3 mm =
4)查取复合齿形系数YFS )查取复合齿形系数 YFS1 = 4.25, YFS 2 = 3.98 (查图 查图11-9) ) 5)计算大、小齿轮的[σ F ] 并进行比较 )计算大、
由次可见,若中心距 和其他条件不变 和其他条件不变, 由次可见,若中心距a和其他条件不变, 仅改变两轮齿数z 和模数m, 仅改变两轮齿数 1、z2和模数 ,则无论 如何组合,对接触疲劳强度无影响。 如何组合,对接触疲劳强度无影响。
2 KT1 Y FS1Yε bd 1 m
图11-13 (b)的小齿轮齿根弯曲应力为 ) 2 KT1 σ ' F1 = Y FS 1Yε bd 1 ' m'
标准直齿圆柱齿轮
标准直齿圆柱齿轮直齿圆柱齿轮是一种常见的机械传动装置,其结构简单、传动效率高,被广泛应用于各种机械设备中。
本文将从直齿圆柱齿轮的定义、结构、工作原理、制造工艺以及应用领域等方面进行介绍。
一、定义。
直齿圆柱齿轮是一种以圆柱面为齿轮齿面的齿轮,其齿轮齿面与齿轮轴线平行,齿轮齿面为直线。
直齿圆柱齿轮通常由两个或多个齿轮组成齿轮传动系统,通过齿轮的啮合传递动力和运动。
二、结构。
直齿圆柱齿轮通常由齿轮轮毂、齿、齿顶、齿根、齿面等部分组成。
齿轮的结构设计需要考虑齿轮的模数、齿数、齿轮厚度、齿轮硬度等参数,以保证齿轮的强度、耐磨性和传动精度。
三、工作原理。
直齿圆柱齿轮传动是通过齿轮的啮合来传递动力和运动的。
当齿轮轴转动时,齿轮的齿与相邻齿轮的齿啮合,通过齿面的啮合来传递动力,实现齿轮的旋转运动。
直齿圆柱齿轮传动具有传递功率大、传动效率高、传动比稳定等特点。
四、制造工艺。
直齿圆柱齿轮的制造工艺通常包括齿轮设计、齿轮加工、热处理、齿面加工、齿轮组装等环节。
齿轮的制造需要严格控制齿轮的几何尺寸和表面质量,以保证齿轮的传动精度和使用寿命。
五、应用领域。
直齿圆柱齿轮广泛应用于各种机械设备中,如汽车变速箱、工程机械、农业机械、船舶、风力发电机组等。
直齿圆柱齿轮传动系统具有传动功率大、传动效率高、传动比稳定等优点,被广泛应用于各种重载、高速、高精度的机械传动系统中。
六、结语。
直齿圆柱齿轮作为一种常见的机械传动装置,具有结构简单、传动效率高等优点,被广泛应用于各种机械设备中。
通过本文的介绍,相信读者对直齿圆柱齿轮有了更深入的了解,希望能对读者有所帮助。
齿 轮 传 动 设 计 示 例(直齿圆柱齿轮)
齿轮传动设计示例
设计一输送机用一级闭式直齿圆柱齿轮传动,已知输入功率P=9.2kW,n1=970r/min,i=4.76,运转平稳,对称布置,单向工作,单班工作,预期寿命5年(每年300天计)。
计算示例1
一对闭式标准直齿圆柱齿轮传动,已知n 1=970r /min ,z 1=20,i =3,m =6mm ,b =120mm ,载荷系数K =1.2,大齿轮的齿根弯曲疲劳应力σF2=49.7MPa ,且Y Fa1Y Sa1= 4.48,Y Fa2Y Sa2=4.18,试:(1)计算小齿轮的齿根弯曲疲劳应力σF1 (2)按齿根弯曲疲劳强度计算传递的功率P 。
解:(1)因为
2
21
121Sa Fa Sa Fa F F Y Y Y Y =σσ 则 MPa Y Y Y Y F Sa Fa Sa Fa F 3.537.4918
.448
.4222111=⨯==
σσ
(2) 因为7.4920312018
.42.12222112
11
2212132212
=⨯⨯⨯⨯⨯===T z m mz d b Y Y KT z m Y Y KT Sa Fa d Sa Fa F φσ
得T 1= 107010 N .mm
有 T 1=9.55x 106P /n 1 = 9.55x 106P /970=107010 则 P =10.7 kW
二、设计一输送机用一级闭式斜齿圆柱齿轮传动,已知输入功率P=9.2kW,n1=970r/min,i=4.76,运转平稳,对称布置,单向工作,单班工作,预期寿命5年(每年300天计)。
直齿圆柱齿轮设计
计入载荷系数K后,得最大接触应力σH和小齿轮 分度圆直径d1分别为:
式中:“+”号用于外啮合,“-”号用于内啮合。 许用接触应力[σH]( HP )——代入两齿轮
中的小者计算。
( HP )
❖ 斜齿圆柱齿轮用下式代入上式:
节点处的载荷: 综合曲率半径: 接触线的长度:
Fn
Hale Waihona Puke Ftcost cos b
σF≤〔 σF 〕; ❖ 提高轮齿的抗疲劳折断能力方法: ❖ 增大齿根过渡曲线半径; ❖ 降低表面粗糙度值; ❖ 减轻加工损伤(如磨削烧伤、滚切拉伤); ❖ 采用表面强化处理(如喷丸、辗压)。
2. 齿面失效 (1)点蚀
❖ 点蚀是润滑良好的闭式传动常见的失效形式。 开式传动没有点蚀现象。
❖ 避免疲劳点蚀失效,可计算齿面接触疲劳强度 : σH≤〔 σH 〕;
• 提高齿面接触疲劳强度措施有:
❖ 提高齿面硬度和降低表面粗糙度值;
❖ 在许可范围内采用大的变位系数和,以增大综 合曲率半径;
❖ 采用粘度较高的润滑油;
❖ 减小动载荷。
(2)齿面胶合
❖ 防止或减轻齿面胶合的主要措施有: ❖ 采用角度变位齿轮传动以降低啮合开始和终了
时的滑动系数; ❖ 减小模数和齿高以降低滑动速度; ❖ 采用极压润滑油; ❖ 选用抗胶合性能好的齿轮副材料; ❖ 材料相同时,使大、小齿轮保持适当硬度差; ❖ 提高齿面硬度和降低表面粗糙度值等。
滑油。
2. 设计计算准则
闭式传动的齿轮: ❖ 主要失效形式: ❖ 接触疲劳磨损; ❖ 弯曲疲劳折断; ❖ 胶合。 ❖ 一般只进行接触疲劳强度和弯曲疲劳强度计算。 ❖ 有短时过载时,应进行静强度计算。
闭式齿轮传动:
直齿圆柱齿轮设计
, 实 际 传 动 比 为
' n2 n2 n1 1440 0.286% 5% , ui ' 4.13 转速相对误差= n2 n2 349
符合要求。 确定 6)重合度计算 传动 端面重合度为 尺寸 1.88 3.2( 1 1 ) cos z1 z2
满足齿根弯 查得寿命系数 YN 1 YN 2 1.0 ,安全系数 SF 1.25
F 1
Y 1.0 290 N 1 F lim1 MPa 232 MPa SF 1.25 YN 2 F lim 2 1.0 200 MPa 160 MPa SF 1.25
由图查得寿命系数 Z N 1 1.0, Z N 2 1.05 取安全系数 SH 1.0, 由于是软齿, ZW =1.0 则
H1 =
Z N 1 Z w H lim1 1.0 1.0 700 MPa 700 MPa SH 1.0
H 2
Z N 1 Z w H lim1 1.05 1.0 540 MPa 567 MPa SH 1.0
2000 KT1 u 1 Z H Z E Z 2 ( ) d u [ ]H
2
3
2000 1.941 111.417 4.13 1 188.9 2.5 0.89 1.0 4.13 567
66.59mm
9)确定模数 m
m d1` 66.59 mm 2.895mm z1 23
1.
由材料表格比较选择:
选择 小齿轮用 40MnB,调质, 硬度 241~286HB,齿面硬度 260HB; 40 MnB 材 大齿轮用 ZG35SiMn,调质,硬度 200~250HB,吃面硬度取 小 齿 轮 调 质 处理 ZG35SiMn 大齿轮调质 处理 8 级精度
直齿圆柱齿轮传动PPT课件
Ft2
Fn
Fr2
二、标准直齿圆柱齿轮传动强度计算 (一)齿面接触疲劳强度计算
Hmax σ
1
L
2
Hmax
1
Fn L
112 122
E1
E2
赫兹理论
1 11
1 2
(u z 2 d 2 2 ) z1 d1 1
1
d
/ 1
2
sin
/
2
d
/ 2
2
sin /
1 2 u 1 d1 sin u
例2
已知:一对齿轮 [ F1]= 350MPa, [F2 ] = 300MPa,
F 1 = 320MPa, ① F 2 = ? ( Z1 = 23, Z2 = 71)
②这对齿轮的齿根弯曲强度是否够?
F1
2
2KT1 bmd1
YF1
2
F2
YF2 YF1
F1
强度条件: F1[ ] F1 F2[ ] F2
☆ ①齿根整体折断——直齿,b较小时 ②局部折断——斜齿,制造、安装误差 或偏载,b较大时
(3)防止措施 :齿根弯曲应力小于许用值 ①减小应力集中 ②根部强化处理 ③增大支承刚度 ④增加轮齿芯部韧性 ⑤提高安装精度避免轮齿偏载
2、齿面点蚀
闭式、润滑良好
(1)部位:节线处靠近根部 (2)原因:
①一对齿啮合 ②相对滑动速度低、不易形成油膜 (3)防止措施:齿面疲劳强度计算 ①合理润滑 ②提高齿面硬度
二、分类 : 按工作条件分: 开 式: 敞开,润滑不良、易磨损; 半开式: 防护罩,润滑、密封不完善; 闭 式: 封闭箱体,润滑密封好。 三、基本参数
齿数Z;模数m;压力角α;分度圆d;系数
25圆柱齿轮结构及标准直齿圆柱齿轮的几何尺寸
圆柱齿轮结构及标准直齿圆柱齿轮的几何尺寸 一、齿轮各部分名称图所示为一直齿圆柱齿轮的一部分,相邻两齿的空间称为齿间。
齿间底部连成的圆称为齿根圆,直径用d f 表示。
连接齿轮各齿顶的圆称为齿顶圆,直径用d a 表示。
在任意直径为d 的圆周上,一个轮齿左右两侧齿廓的弧长称为该圆上的齿厚,用s 表示;而一齿间的弧长称为该圆上的齿槽宽,用e 表示;相邻两齿对应点之间的弧线长称为该圆上的齿距,用p 表示,p = e + s 。
二、主要参数 设K d 为任意圆的直径,z 为齿数,根据齿距的定义可得 z d p K K π= 或 z p d K K π= 上式中含有无理数“π”,为了便于设计、制造及互换使用,在齿轮上取一基准圆,使该圆周上的πp K 比值等于一些较简单的数值,并使该圆上的压力角等于规定的某一数值,该圆称为分度圆,其直径用d 表示,分度圆上的压力角以α表示之,我国采用20为标准值。
显然有分度圆直径z p d π=,π/p规定为标准值,用m来表示,称为模数,单位为mm。
于是我们把比值p和直径d分别为分度圆上的齿距=(mm)pπmd=(mm)mz模数是齿轮尺寸计算中的一个基本参数,模数愈大,则齿距愈大,轮齿也就愈大,轮齿的抗弯能力愈强。
齿轮模数已标准化,我国常用的标准模数见表。
1.752.25 2.75 (3.25) 3.5 (3.75)4.55.5 7注:①本表适用于渐开线圆柱齿轮。
对斜齿轮是指法向模数。
优先采用第一系列,括号内的数尽量不用。
②圆锥齿轮大端模数除了可在上表中选取外,还可选1.125、1.375等。
对于任一轮齿,其齿顶圆与分度圆间的部份称为齿顶,它沿半径方向的高度称为齿顶高,用ha表示;而齿根圆与分度圆间的部分称为齿根,它沿半径方向的高度称为齿根高,用hf表示;齿顶圆与齿根圆间沿半径方向的高度称为全齿高,用h表示,因此,h = ha + hf设计中,将模数m作为齿轮各部分几何尺寸的计算基础,因此,齿顶高可表示为ha=ha*m,齿根高可表示为hf =(ha*+c*)m,其中,ha*称为齿顶高系数,c* 称为顶隙系数。
齿轮设计---设计用于螺旋输送机的闭式直齿圆柱齿轮传动
设计用于螺旋输送机的闭式直齿圆柱齿轮传动,传递功率P 1=1.8kw ,转速n 1=250r/min ,齿数比u=2.3,两班制工作,寿命10年(每年按250天计算),小齿轮作悬臂布置。
1.选择齿轮类型、精度等级、材料及齿数(1)选用标准直齿圆柱齿轮传动,压力角为20o 。
(2)带式输送机为一般工作机器,参考表10-7,选用7级精度。
(3)材料选择。
由表10-1,选择小齿轮材料为40Cr (调质),齿面硬度280HBW ;大齿轮材料为45钢(调质),齿面硬度240HBW 。
(4)初选小齿轮齿数z 1=27,大齿轮齿数z 2=uz 1=2.3×27=62.1,取z 2=62。
2.按齿面接触疲劳强度设计(1)由式(10-11)试算小齿轮分度圆直径,即d 1t ≥√2K Ht T 1∅d u+1u (Z H Z E Z ε[σH])231)确定公式中的各参数值。
①试选K Ht =1.3。
②小齿轮传递的转矩T 1。
T 1=9.55×106P n 1=9.55×106×1.8250=6.876×104N ·mm③由表10-8选取齿宽系数∅d =0.6 ④计算区域系数Z HZ H =√2cosαsinα=√2cos200sin20o=2.5 ⑤由表10-6查得材料的弹性影响系数Z E =189.8MPa 1/2 ⑥由式(10-9)计算接触疲劳强度用重合度系数Z ε。
αa1=arccos z 1cosαz 1+2ℎa ∗=arccos 28×cos20028+2×1=28.712oαa2=arccos z 2cosαz 2+2ℎa ∗=arccos 65×cos20065+2×1=24.267oεα=z 1(tanαa1−tanα′)+z 2(tanαa2−tanα′)2π=z 1(tanαa1−tanα)+z 2(tanαa2−tanα)2π=28×(tan28.712o −tan20o )+65(tan24.267o −tan20o )2π=1.718Z ε=√4−εα3=√4−1.7183=0.872⑦计算接触疲劳许用应力[σH]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
摘要 (2)
一引言 (3)
二齿轮的设计计算 (4)
2.1 选择材料、热处理方法及精度等级 (4)
2.2 齿面接触疲劳强度设计齿轮 (4)
2.3主要参数选取及几何尺寸计算 (5)
2.4 .齿轮结构设计 (5)
三绘制齿轮图、零件图、三维造型 (7)
四结束语 (8)
五参考文献 (9)
摘要
齿轮是广泛应用于机械设备中的传动零件。
它的主要作用是传递运动、改变方向和转速。
根据齿轮的工况,合理的设计齿轮的结构,使得齿轮传动平稳有足够的强度。
通过强度计算、材料的选择、热处理方法精度选择、几何尺寸计算。
考虑齿面接触疲劳强度和齿根曲面疲劳强度得出齿轮的结构。
关键词:齿轮传动、齿轮精度、热处理、疲劳强度
一引言
随着我过工业的发展,齿轮是现代机械中应用最广泛的一种机械传动零件。
它的结构设计随着工业的需要而改变。
齿轮的结构设计与齿轮的几何尺寸、毛坯、材料、加工方法、使用要求及经济性等因素有关。
进行齿轮的结构设计时,必须综合地考虑上述各方面的因素。
通常是先按齿轮的直径大小,选定合适的结构形式,然后再根据荐用的经验数据,进行结构设计。
随着科技技术的不断进步,生产都向着自动化、专业化和大批量化的方向发展。
这就要求企业的生产在体现人性化的基础上降低工人的生产强度和提高工人的生产效率,降低企业的生产成本。
现代的生产和应用设备多数都采用机电一体化、数字控制技术和自动化的控制模式。
在这种要求下齿轮零件越发体现出其广阔的应用领域和市场前景。
特别是近年来与微电子、计算机技术相结合后,使齿轮零件进入了一个新的发展阶段。
在齿轮零部件是最重要部分,因需求的增加,所以生产也步入大批量化和自动化。
为适应机械设备对齿轮加工的要求,对齿轮加工要求和技术领域的拓展还需要不断的更新与改进。
二齿轮的设计计算
2.1 选择材料、热处理方法及精度等级
齿轮传动的承载能力主要取决于轮齿的材料和几何尺寸,因此,选择适宜的材料及热处理方法是齿轮设计的一个重要环节。
选择轮齿的材料及热处理方法:1)使材料具有较好的抗失效性能,齿面具有足够的硬度和耐磨性,以使齿面有叫好的抗点蚀、胶合、磨损和抗塑性变形的能力;齿体具有较高的弯曲强度和冲击韧性,以保证在变载荷和冲击载荷下不致断齿。
2)齿体材料还要具有良好的工艺性,易于锻造、铸造、切削和热处理等性能,以达到所需要的精度等级及表面粗糙度。
齿轮材料为:45号钢,正火处理,HB=200
初选精度等级7级。
选择载荷系数K=1.6
选择齿宽系数φ=0.6
2.2 齿面接触疲劳强度设计齿轮
齿面接触疲劳强度计算是为了防止齿面疲劳点蚀。
疲劳点蚀是由于传动过程中齿面受接触应力反复作用所致。
令,称为节点区域系数。
齿面接触疲劳强度的校核
齿面接触疲劳强度设计
设齿宽系数,并将代入上式,则得齿面接触疲劳强度的设计
2.3主要参数选取及几何尺寸计算
模数 m=5 齿数 Z=40 α=20
分度圆直径 D=m*z
基圆直径 Db=d*cosα
齿顶高 Ha=m*Ha*
齿根高 Hf=(Ha*+C*)*m
齿全高 H=Ha+Hf
齿顶圆直径 Da=D+2*Ha
齿根圆直径 Df=D-2*Hf
2.4 .齿轮结构设计
齿轮采用锻造毛坯的腹板结构
因为齿顶圆直径d a<500mm,做成腹板式结构(下图),腹板上开孔的数目按结构尺寸大小及需要而定。
轴孔直径 d=φ*50
轮毂直径 D1=1.6*D
轮毂长度 L=B=φd*D 轮缘厚度取ξ=10mm 腹板厚度取C=40mm 腹板孔直径取D0=35mm 齿轮倒角 n=0.5*m
三绘制齿轮图、零件图、三维造型
四结束语
在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。
齿轮是工业生产中的重要基础零件,其加工技师和加工能力反映一个国家的工业水平。
实现齿轮加工数控倾和自动化、加工和检测的一体化是目前齿轮加工的发展趋势。
齿轮被广泛地应用于机械设备的传动系统中。
CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。
在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。
在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。
中国齿轮产品经过近10年的发展取得了长足的进步,不少产品已达到或接近国际先进水平,但仍有相当大一部分齿轮与变速箱产品,在振动噪声与疲劳寿命方面与国际先进水平差距明显,而这又与齿轮材料与热处理装备及工艺水平息息相关。
五参考文献
[1] 张建民等.机电一体化系统设计.北京:北京理工大学出版社,2006
[2] 陈庭吉.机械设计基础[M].北京:机械工业出版社,2006
[3] 孙岩等.机械设计课程设计[M].北京:北京理工大学出版社,2007
[4] 范思冲. 机械基础[M].北京:机械工业出版社,1999
[5] 李华敏等《齿轮机构设计与应用》(第一版)机械工业出版社。
2007。