易错题1函数在区间内有极值点求参数取值范围的方法

合集下载

已知函数的值域(或最值)求参数的取值范围

已知函数的值域(或最值)求参数的取值范围

已知函数的值域(或最值)求参数的取值范围顺德容山中学 马崇元已知函数的值域(或最值)求参数的取值范围,是高考的一个亮点,在近年的高考和各地的高三模拟试题中经常出现,下面谈谈此类问题的解法.一. 利用函数的单调性如果题中所给函数的单调性易判断出来,我们可利用单调性建立方程组或不等式,从而加以求解.例1.(2008年天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3}解:由log log 3a a x y +=可得xa y 3=,利用其在[,2]x a a ∈上是单调减函数可得23max 23min ,22a aa y a a a y ====,则由题目条件可得2max min ,a y a y ≤≥解得选B . 例2.(2008年深圳模拟试题)已知函数f(x)=x 11-. (1)是否存在实数a 、b(a <b),使得函数f(x)的定义域和值域都是[a 、b]?若存在,请求出a 、b 的值;若不存在,请说明理由.(2)若存在实数a 、b ()a b <,使得函数f(x)的定义域是[a 、b],值域是[ma 、mb](m ≠0),求实数m 的取值范围.解:(1)不存在实数a 、b ()a b < 满足条件.事实上,若存在实数a 、b ()a b < 满足条件,则有x ≥a >0.故f(x)=⎪⎪⎩⎪⎪⎨⎧<<-≥-10,111,11x xx x (i)当a 、b ∈(0,1)时,f(x)=11-x 在(0,,1)上为减函数,所以⎩⎨⎧==,)(,)(a b f b a f 即⎪⎪⎩⎪⎪⎨⎧=-=-.11,11a bb a由此推得a =b ,与已知矛盾,故此时不存在实数a 、b(a <b)满足条件. (ii)当a 、b ∈[1,+∞)时,f(x)=x 11-在[1,+∞)上为增函数,所以⎩⎨⎧==,)(,)(b b f a a f即⎪⎪⎩⎪⎪⎨⎧=-=-.11,11b ba a 于是a 、b 为方程x 2-x +1=0的实根.而此时方程无实根,故此时也不存在实数a 、b(a <b)满足条件(iii)当a ∈(0,1),b ∈[1,+∞)时,显然1∈[a ,b],而f(1)=0,所以0∈[a ,b],矛盾.综上可知,不存在实数a 、b(a <b)满足条件.(2)若存在实数a 、b(a <b)满足f(x)定义域是[a 、b],值域是[ma 、mb](m ≠0),易得m >0,a >0.仿(1)知,当a 、b ∈(0,1)或a ∈(0,1),b ∈[1,+∞)时,满足条件的实数a 、b 不存在.只有当a 、b ∈[1,+∞)时,f(x)=x 11-在[1,+∞)上为增函数,有⎩⎨⎧==,)(,)(mb b f ma a f 即⎪⎪⎩⎪⎪⎨⎧=-=-.11,11mb bma a 于是a 、b 为方程mx 2-x +1=0的两个大于1的实根. ∴⎪⎩⎪⎨⎧>-±=>-=∆,12411,041m m x m 只须⎪⎩⎪⎨⎧>-->->,2411,041,0m m m m 解得0<m <41,所以m 的取值范围为0<m <41.例3.(广东省2008届第一次六校(广州深圳中山珠海惠州)联考)设bx ax x f +=2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。

压轴高考数学复习导数大题精选10题附详细解答

压轴高考数学复习导数大题精选10题附详细解答

高考压轴导数大题例1.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.例3已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.(1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;例4.已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0).求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.例5设3=x 是函数()()()R x e b ax x x f x ∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()x e a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立, 求a 的取值范围例6已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围。

1. 已知函数21()22f x ax x =+,()g x lnx =.(Ⅰ)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围;(Ⅱ)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.2. 如果()0x f 是函数()x f 的一个极值,称点()()00,x f x 是函数()x f 的一个极值点.已知函数()()()00≠≠-=a x e b ax x f x a 且(1)若函数()x f 总存在有两个极值点B A ,,求b a ,所满足的关系;(2)若函数()x f 有两个极值点B A ,,且存在R a ∈,求B A ,在不等式1<x 表示的区域内时实数b 的范围.(3)若函数()x f 恰有一个极值点A ,且存在R a ∈,使A 在不等式⎩⎨⎧<<e y x 1表示的区域内,证明:10<≤b .3 已知函数3221()ln ,()3(,,R)32f x x x g x x ax bx c a b c ==-+-+∈.(1)若函数()()()h x f x g x ''=-是其定义域上的增函数,求实数a 的取值范围;(2)若()g x 是奇函数,且()g x 的极大值是3g ,求函数()g x 在区间[1,]m -上的最大值;(3)证明:当0x >时,12()1x f x e ex '>-+.4已知实数a 满足0<a ≤2,a ≠1,设函数f (x )=13x 3-12a +x 2+ax . (Ⅰ) 当a =2时,求f (x )的极小值;(Ⅱ) 若函数g (x )=x 3+bx 2-(2b +4)x +ln x (b ∈R )的极小值点与f (x )的极小值点相同.求证:g (x )的极大值小于等于5/4例1解(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是2044a b <-,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16. (II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点. 而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例3解(Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2x x θ==. 由(Ⅰ),只需分下面两种情况讨论.①当cos 0θ>时,随x 的变化'()f x 的符号及()f x 的变化情况如下表: x(,0)-∞ 0 cos (0,)2θ cos 2θ cos (,)2θ+∞ '()f x + 0 - 0 + ()f x ↗ 极大值↘ 极小值 ↗因此,函数()f x 在2x =处取得极小值f()2,且3cos 13()cos 2416f θθθ=-+.要使cos ()02f θ>,必有213cos (cos )044θθ-->,可得30cos θ<<由于30cos θ≤≤3116226ππππθθ<<<<或. ②当时cos 0θ<,随x 的变化,'()f x 的符号及()f x 的变化情况如下表: xcos (,)2θ-∞ cos 2θ cos (,0)2θ 0 (0,)+∞ '()f x+ 0 - 0 + ()f x 极大值 极小值因此,函数()0f x x =在处取得极小值(0)f ,且3(0)cos .16f θ= 若(0)0f >,则cos 0θ>.矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零.综上,要使函数()f x 在(,)-∞+∞内的极小值大于零,参数θ的取值范围为311(,)(,)6226ππππ⋃.例4解法一:(Ⅰ)由图像可知,在(),1-∞上()'0f x >,在()1,2上()'0f x <,在()2,+∞上()'0f x >,故()f x 在∞∞(-,1),(2,+)上递增,在(1,2)上递减, 因此()f x 在1x =处取得极大值,所以01x =(Ⅱ)'2()32,f x ax bx c =++由'''f f f (1)=0,(2)=0,(1)=5,得320,1240,5,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得2,9,12.a b c ==-=解法二:(Ⅰ)同解法一(Ⅱ)设'2()(1)(2)32,f x m x x mx mx m =--=-+又'2()32,f x ax bx c =++所以3,,232m a b m c m ==-= 32|3()2,32m f x x mx mx =-+ 由(1)5f =,即325,32m m m -+=得6,m =所以2,9,12a b c ==-=例5解(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-x ,由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a ,则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3-x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-x .令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点,所以x+a+1≠0,那么a ≠-4.当a <-4时,x 2>3=x 1,则在区间(-∞,3)上,f `(x)<0, f (x)为减函数;在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数;在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数.当a >-4时,x 2<3=x 1,则在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数;在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数;在区间(3,+∞)上,f `(x)<0,f (x)为减函数.(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)], 而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -1>0,f (3)=a +6,那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6].又225()()4x g x a e =+在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[a 2+425,(a 2+425)e 4], 由于(a 2+425)-(a +6)=a 2-a +41=(21-a )2≥0,所以只须仅须(a 2+425)-(a +6)<1且a >0,解得0<a <23. 故a 的取值范围是(0,23).例6解(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,.所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫ ⎪⎝⎭,,,,,. z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫ ⎪⎝⎭,. 1解:(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意. 当0a >时,()y f x =的对称轴方程为2x a =-,由于()y f x =在[1,)+∞上是单调增函数, 所以21a -≤,解得2a ≤-或0a >,所以0a >. 当0a <时,不符合题意.综上,a 的取值范围是0a ≥.(Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnx ax a x =+-+,即为方程2(12)0ax a x lnx +--=. b a 21 2 4 O 4677A ⎛⎫ ⎪⎝⎭,(42)C , (22)B ,设2()(12)H x ax a x lnx =+-- (0)x >, 原方程在区间(1,e e )内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e )内有且只有两个零点.1()2(12)H x ax a x '=+--22(12)1(21)(1)ax a x ax x x x +--+-==令()0H x '=,因为0a >,解得1x =或12x a =-(舍)当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数.()H x 在(1,e e )内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩ ∴22,211,1,2e e a e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩ 解得2121e e a e +<<-, 所以a 的取值范围是(21,21e e e +-) .2(1)x a x a e x a b ax e a x f ⋅--+⋅=))(()('2令()0f x '=得20x ax b -+= 240a b ∴-> 又 00a x ≠≠且204a b b ∴<≠且(2)20x ax b -+=在(1,1)-有两个不相等的实根. 即2401121010a b a a b a b ⎧∆=->⎪⎪-<<⎪⎨⎪++>⎪-+>⎪⎩ 得 22441b a a b ⎧>⎪<⎨⎪<-⎩110b b ∴-<<≠且(3)由①2()00f x x ax b '=⇒-+=(0)x ≠ ①当()220a xx ax b b f x a e x -+'==⋅⋅在x a =左右两边异号(,())a f a ∴是()y f x =的唯一的一个极值点 由题意知2110()a a e a b e e <<≠⎧⎨-<-<⎩且- 即 220111a a ⎧<<⎨-<<⎩ 即 201a <<存在这样的a 的满足题意 0b ∴=符合题意②当0b ≠时,240a b ∆=-=即24b a = 这里函数()y f x =唯一的一个极值点为(,())22a a f由题意12102()2a a a e b e e ⎧<≠⎪⎪⎨⎪-<-<⎪⎩且即 211222042a a e b e ⎧<<⎪⎨-<-<⎪⎩ 即 1122044b e b e <<⎧⎪⎨⎪-<<⎩01b ∴<<综上知:满足题意 b 的范围为[0,1)b ∈.3解:(1)()ln 1f x x '=+ ,2()23g x x ax b '=-+-,所以2()ln 231h x x x ax b =+-++, 由于()h x 是定义域内的增函数,故1()40x h x x a '=+-≥恒成立,即14x a x ≤+对0x ∀>恒成立,又144xx +≥(2x =时取等号),故(,4]a ∈-∞. (2)由()g x 是奇函数,则()()0g x g x +-=对0x ∀>恒成立,从而0a c ==, 所以323()3g x x bx =--,有2()23g x x b '=--. 由()g x 极大值为3g ,即3(0g '=,从而29b =-;因此32233()g x x x =--,即23323()22(g x x x x '=-+=--+, 所以函数()g x 在3(,-∞和3()+∞上是减函数,在33(上是增函数.由()0g x =,得1x =±或0x =,因此得到:当10m -<<时,最大值为(1)0g -=; 当30m ≤<32233()g m m m =-+; 当3m ≥时,最大值为343(g =.(3)问题等价于证明2()ln x xe ef x x x =>-对0x >恒成立;()ln 1f x x '=+,所以当1(0,)e x ∈时,()0f x '<,()f x 在1(0,)e 上单调减;当1(,)e x ∈+∞时,()0f x '>,()f x 在1(,)e+∞上单调增; 所以()f x 在(0,)+∞上最小值为1e -(当且仅当1e x =时取得) 设2()(0)x xe e m x x =->,则1()x x e m x -'=,得()m x 最大值1(1)e m =-(当且仅当1x =时取得), 又()f x 得最小值与()m x 的最大值不能同时取到,所以结论成立.4(Ⅰ) 解: 当a =2时,f ′(x )=x 2-3x +2=(x -1)(x -2).列表如下:x(-∞,1) 1 (1,2) 2 (2,+∞) f ′(x )+ 0 - 0 + f (x )单调递增 极大值 单调递减 极小值 单调递增所以,f (x )极小值为f (2)=23.(Ⅱ) 解:f ′(x )=x 2-(a +1)x +a =(x -1)(x -a ).g ′(x )=3x 2+2bx -(2b +4)+1x =2(1)[3(23)1]x x b x x -++-.令p (x )=3x 2+(2b +3)x -1,(1) 当 1<a ≤2时,f (x )的极小值点x =a ,则g (x )的极小值点也为x =a ,所以p (a )=0,即3a 2+(2b +3)a -1=0,即b =21332a a a --,此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+23312a aa+-=313222aa--.由于1<a≤2,故313222aa--≤32⨯2-14-32=54.(2) 当0<a<1时,f (x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,即p(1)=3+2b+3-1>0,故b>-52.此时g(x)的极大值点x=x1,有g(x1)=x13+bx12-(2b+4)x1+ln x1<1+bx12-(2b+4)x1=(x12-2x1)b-4x1+1(x12-2x1<0)<-52(x12-2x1)-4x1+1=-52x12+x1+1=-52(x1-15)2+1+110(0<x1<1)≤11 10<54.综上所述,g(x)的极大值小于等于54.。

(易错题)高中数学高中数学选修2-2第四章《定积分》检测卷(有答案解析)(4)

(易错题)高中数学高中数学选修2-2第四章《定积分》检测卷(有答案解析)(4)

一、选择题1.已知函数2(1),10()01x x f x x ⎧+-≤≤⎪=<≤则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78543.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 4.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 5.3204x dx -=⎰( )A .213 B .223 C .233 D .2536.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .437.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-8.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .929.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞10.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( )A .8B .6C .4D .211.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A .3B .23-C .π23-D .π33-12.已知t >0,若(2x ﹣2)dx=8,则t=( ) A .1B .﹣2C .﹣2或4D .4二、填空题13.已知0a >,6x x ⎫-⎪⎭展开式的常数项为15,则(0224a x x x dx -++-=⎰______.14.由直线2x y +=,曲线2y x =所围成的图形面积是________15.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________. 16.在下列命题中 ①函数1()f x x=在定义域内为单调递减函数; ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数;③若()f x 为奇函数,则()2()(0)aaaf x dx f x dx a -=>⎰⎰;④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的充分不必要条件;⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>. 其中正确命题的序号为___________________(写出所有正确命题的序号). 17.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 18.由直线0x =, 23x π=,0y =与曲线2sin y x =所围成的图形的面积等于________.19.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________. 20.已知平面区域(){}2,|04x y y x Ω=≤≤-,直线:2l y mx m =+和曲线2:4C y x =-有两个不同的交点,直线l 与曲线C 围成的平面区域为M ,向区域Ω内随机投一点A ,点A 落在区域M 内的概率为()P M ,若2(),12P M ππ-⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围是___________.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-.(1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积. 22.已知函数1()ln ()f x x b x b R x=--∈,且曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直. (Ⅰ)求b 的值;(Ⅱ)设2()g x x =,求证()()2ln 2g x f x >-.23.已知函数()xe f x x=.(1)若曲线()y f x =与直线y kx =相切于点P ,求点P 的坐标; (2)当a e ≤时,证明:当()0,x ∈+∞时,()()ln f x a x x ≥-.24.求曲线6y x =-和y =y =0围成图形的面积.25.在(11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据积分的性质将所求积分化为()0211x dx -++⎰⎰,根据微积分基本定理和定积分的求法可求得结果. 【详解】()()22321100011112100101111333x dx x x dx x x x --+=++=++=++-++=---⎰⎰, 1201x dx -⎰表示以原点为圆心,1为半径的圆在第一象限中的部分的面积,12014x dx π∴-=⎰,()()1122110143113412f x dx x dx x dx ππ--+∴=++-=+=⎰⎰⎰.故选:B . 【点睛】本题考查积分的求解问题,涉及到积分的性质、微积分基本定理和定积分的求解等知识,属于基础题.2.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题3.D解析:D【解析】由题意得()22130f x x a x =+-≥'在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即22max 13a x x ⎛⎫≥- ⎪⎝⎭,因为2213y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以2213131334,444y x a x =-<-=≥,选D. 点睛:已知函数单调性求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数单调区间取法,根据单调区间与定义区间包含关系,确定参数值或取值范围;(2)利用导数转化为导函数非正或非负恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.4.A解析:A 【解析】试题分析:'0x x y e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程5.C解析:C【解析】试题分析:画出函数图象如下图所示,可知()()323222002882344489128333x dx x dx x dx ⎛⎫-=-+-=-+--+=⎪⎝⎭⎰⎰⎰.考点:定积分的几何意义.6.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()2232328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.7.D解析:D 【解析】试题分析:根据题意画出区域,作图如下,由{x xy e y e-==解得交点为(0,1),∴所求面积为:()()1101|2x x x x S e e dx e e e e --=-=+=+-⎰ 考点:定积分及其应用8.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。

高中数学求参数取值范围题型与方法总结归纳

高中数学求参数取值范围题型与方法总结归纳

参数取值问题的题型与方法一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。

例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。

解:原不等式即:4sinx+cos2x<45-a -a+5,要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。

f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,∴45-a -a+5>3即45-a >a+2,上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 另解:a+cos2x<5-4sinx+45-a 即a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1],整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。

设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,∴f(x)在[-1,1]内单调递减。

∴只需f(1)>0,即45-a >a -2.(下同)例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =BAx x -,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.思路1: 从第一条想法入手,AP PB =BA x x -已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.解1:当直线l 垂直于x 轴时,可求得51-=PB AP ;当l与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l的方程为:3+=kx y ,代入椭圆方程,消去y得()045544922=+++kx x k,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得952≥k ,所以51592918112-<-+-≤-k ,综上 511-≤≤-PB AP . 思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式。

例说高考题中的利用导数求参数范围

例说高考题中的利用导数求参数范围

例说高考题中的利用导数求参数范围导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。

一 与二次函数的性质、单调性、不等式等相联系 求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >min)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <max)(恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(05湖北理)已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f ∙=)(在区间(-1,1)上是增函数,求t 的取值范围.解析:由向量的数量积定义,)(x f =2x (x -1)+(1+x )t =3x-+2x +tx +t∴)(x f '=23x -+x 2+t .若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x -x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5.即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。

例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围. 解析:注意到不等式的次数较高,应想到构造函数,求导.令)(x f =4x -22x ,则如果原不等式对任意的实数x 都成立等价于m in)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:因为)(x f 在R 上的极值只有一个,故此极小值即为最小值,即m in)(x f =)1(f = -1,∴m in)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法对于一个给定的函解析式,我们如果能大致作出其对应的函数图像,那么函数的许多性质都可以通过图像客观地反应出来。

因此,只要我们做出了函数图像,那么我们就可以根据图像找到极值点,从而求出函数的极值。

下面,我就从几个方面讨论一下,函数图象在求极值问题中的应用。

一、函数解析式中含有绝对值的极值问题。

我们给出问题的一般形式,设a≤x≤b,求函数的极值。

很容易判断该函数为分段函数,其对应的图像是折线,因此只要做出函数的图像那么就可以准确的找出函数的极值点。

例1设-2≤x≤3,求函数的最值。

解:若将函数示为分段函数形式。

作出函数图像根据图像我们可以判断:当x=0,;当x=3,,对此类型问题的思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图像来求解极值,那么过程就非常复杂。

那么是否有更简单的方法呢?经过对问题的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图像的拐点(使函数中某一个绝对值部分为零的点)因此我们只需将这些点求出来并代入函数解析式求出其所对应的值。

经过比较就得出了极值例如上题:f(-2)=7、f(-1)=4、f(0)=3、f(2)=5、f(3)=8、、=8,据此我们下面给出解决这一类问题更一般的方法。

=max {f(bi)、i=1、2、3……n },=min {f(-bi),i=1、2、3……n }.二、将极值问题转化为几何问题。

运用此方法解决极值问题关键在于深刻理解,挖掘解析式所蕴含的几何意义。

1.转化为求直线斜率的最值。

例2求函数的最值分析函数解析式非我们常见的函数模型。

通过分析我们发现该函数可以看做过点A (3、2)与B (sin 、-cos )两点直线的斜率。

而动点B的轨迹是y xo 3+=x y 3+-=x y 13+-=x y 13-=x y圆x2+y2=1。

因此我们就将问题转化为了求定点(3、2)与圆x2+y2=10上一点连线的斜率的最大值与最小值。

微专题(九)已知函数极值、最值求参数的值(或取值范围)

微专题(九)已知函数极值、最值求参数的值(或取值范围)
′(x)<0,即f(x)单调递减;当x>2时,
f′(x)>0,即f(x)单调递增.
∴f(x)只有极小值,且在x=2时,f(x)取得极小值f(2)=4-
4ln 2,无极大值.
(2)∵f′(x)=a+x2x, ∴当a>0,x∈(0,+∞)时,f′(x)>0,即f(x)在x∈(0,+∞)上单调递 增,没有最小值;
微专题(九) 已知函数极值、 最值求参数的值(或取值范围)
已知函数极值求参数的值(或取值范围)时,通常是利用函 数的导数在极值点处的函数值等于零建立关于参数的方程;也
可以求出参数的极值(含参数),利用极值列方程;或根据极值 的情况,列出关于参数的不等式(或组).
已知函数最值求参数的值(或取值范围),通常是求出函数 最值(含参数),然后根据最值列方程或根据最值的情形列关于 参数的不等式(或组)求解.
[例] [2019·云南统测]已知常数a≠0,f(x)=aln x+2x. (1)当a=-4时,求f(x)的极值; (2)当f(x)的最小值不小于-a时,求实数a的取值范围.
解析:(1)由已知得f(x)的定义域为x∈(0,+∞),f′(x)=
a x
+2=a+x2x.
当a=-4时,f′(x)=2x-x 4.
当a<0时,由f′(x)>0得,x>-a2,∴f(x)在-a2,+∞上单调递增; 由f′(x)<0得,0<x<-a2,∴f(x)在0,-a2上单调递减. ∴当a<0时,f(x)的最小值为f-a2=aln-a2+2-a2. 根据题意得f-a2=aln-a2+2-a2≥-a,即a[ln(-a)-ln2]≥0. ∵a<0,∴ln(-a)-ln 2≤0,解得-2≤a<0, ∴实数a的取值范围是[-2,0).

极值点偏移四种题型的解法及例题

极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。

在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。

而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。

本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。

1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。

在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。

但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。

比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。

举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。

解:求导得 $f'(x)=3x^2-6x$。

令导数为零,得到 $x=0$ 或 $x=2$。

根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。

但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。

也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。

这就是极值点偏移的思想。

2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。

当我们遇到优化问题时,常常需要求解函数的极值点。

而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。

举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。

解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。

则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。

问题转化为求 $x+y$ 的最大值。

函数极值与最值问题的解决方法

函数极值与最值问题的解决方法

函数极值与最值问题的解决方法在数学中,函数极值与最值问题一直是学习者们面临的难题。

解决这类问题需要运用一些特定的方法和技巧。

本文将探讨一些常见的解决方法,帮助读者更好地理解和应用。

一、导数法导数法是解决函数极值与最值问题的一种常用方法。

对于给定的函数,我们可以通过求导数来找到其极值点。

具体步骤如下:1. 求出函数的导函数。

2. 解方程f'(x) = 0,找出导函数的零点,即可能的极值点。

3. 利用二阶导数的符号判断这些零点的性质。

若f''(x) > 0,则该点为极小值点;若f''(x) < 0,则该点为极大值点。

4. 将极值点带入原函数,求出函数的极值。

举个例子,考虑函数f(x) = x^3 - 3x^2 + 2x + 1。

首先,求导得到f'(x) = 3x^2 -6x + 2。

然后,解方程f'(x) = 0,得到x = 1和x = 2/3。

接着,计算二阶导数f''(x) =6x - 6,发现f''(1) = 0,f''(2/3) = -2。

因此,x = 1是极小值点,x = 2/3是极大值点。

最后,将这两个点带入原函数,求得f(1) = 2和f(2/3) = 4/27,即函数f(x)在x = 1处取得极小值2,在x = 2/3处取得极大值4/27。

二、区间法区间法是一种直观且易于理解的解决函数极值与最值问题的方法。

它通过观察函数在不同区间的变化趋势来确定极值点的位置。

具体步骤如下:1. 找出函数的定义域。

2. 将定义域分成若干个区间。

3. 在每个区间内,计算函数的值,并找出最大值和最小值。

4. 比较各个区间的最大值和最小值,确定函数的最大值和最小值。

例如,考虑函数f(x) = x^2 - 4x + 3。

首先,求出函数的定义域为(-∞, +∞)。

然后,将定义域分成三个区间:(-∞, 1),(1, 3),(3, +∞)。

利用导数求参数的取值范围

利用导数求参数的取值范围

高考题中的利用导数求参数范围一 .与二次函数的性质、单调性、不等式等相联系求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >min)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <max)(恒成立即可”.这也是近两年高考考查与应用最多的一种.例1已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f •=)(在区间(-1,1)上是增函数,求t 的取值范围.解析:由向量的数量积定义,)(x f =2x (x -1)+(1+x )t =3x -+2x +tx +t若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x -x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5. 即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。

例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围. 解析:注意到不等式的次数较高,应想到构造函数,求导.令)(x f =4x -22x ,则如果原不等式对任意的实数x 都成立等价于m in)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:)(x f m in)(x f =)1(f = -1,∴m in)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。

高中数学函数极值点的求解技巧

高中数学函数极值点的求解技巧

高中数学函数极值点的求解技巧在高中数学中,函数是一个非常重要的概念,而函数的极值点更是我们经常需要求解的问题之一。

本文将介绍一些常见的函数极值点求解技巧,并通过具体的题目来说明这些技巧的应用。

一、函数极值点的定义和性质首先,我们来回顾一下函数极值点的定义和性质。

对于函数f(x),如果在某个点x=a处,f(x)的值比它的邻近点都大(或都小),那么我们称x=a为函数f(x)的极大值点(或极小值点)。

而极大值点和极小值点统称为函数的极值点。

函数极值点的求解是通过对函数求导来实现的。

对于函数f(x),如果在某个点x=a处,f'(a)=0且f''(a)≠0,那么x=a就是函数f(x)的极值点。

其中,f'(x)表示f(x)的导数,f''(x)表示f(x)的二阶导数。

二、求解函数极值点的技巧1. 使用导数判定法导数判定法是求解函数极值点最常用的方法之一。

根据导数判定法,我们可以通过求解函数的导数来确定函数的极值点。

例如,考虑函数f(x)=x^3-3x^2+2x+1,我们需要求解它的极值点。

首先,我们求解f(x)的导数f'(x):f'(x)=3x^2-6x+2然后,令f'(x)=0,解得x=1或x=2/3。

接下来,我们需要判断x=1和x=2/3是否为函数f(x)的极值点。

为了判断极值点的性质,我们需要计算f''(x)。

计算得到f''(x)=6x-6。

然后,我们将x=1和x=2/3代入f''(x)中,得到f''(1)=0和f''(2/3)=-2。

根据导数判定法,如果f''(a)>0,那么x=a是函数的极小值点;如果f''(a)<0,那么x=a是函数的极大值点。

而当f''(a)=0时,无法判断x=a的极值性质。

高三数学二轮复习冲刺:已知极值点(极值个数)求参数的通性通法

高三数学二轮复习冲刺:已知极值点(极值个数)求参数的通性通法

已知极值点(极值个数)求参数的通性通法一.基本原理题型1:已知极值点求参数的值.1.已知函数()f x 有极值点0x ,求参数的值或范围,一般有两种情况:(1)由()00f x '=可以解出参数的值,这类题较为简单,只需由()00f x '=求出参数的值,再代回()f x '去研究()f x 的单调性,确认()f x 在0x x =处取得极值即可.(2)由()00f x '=不能解出参数的值,这类题一般需要对参数进行分类讨论,研究函数的单调性,当()f x '的表达式较为复杂时,可能需要用到二阶导数,甚至三阶导数.当我们知道函数的具体极值点是极大值还是极小值求参数时,也可以利用下面高观点方法,当然,这个方法仅供有兴趣的同学了解,并非通法,它在解决一些问题时要方便一些.2.极值第二充分条件:若0)(],[0'0=⇒∈∃x f b a x ,且0)(0''≠x f ,则若0)(0''<x f ,则)(x f y =在0x 处取得极大值;若0)(0''>x f ,则)(x f y =在0x 处取得极小值.证明:将函数)(x f 在0x x =处二阶泰勒展开可得:200''00'0)(2)())(()()(x x x f x x x f x f x f -+-+=由于)(x f 在0x x =存在极值,故0)(0'=x f 且对x 求导数可得)('x f ))((2)()(00''0''x x x f x f x f -+=由0)(0'=x f 代入上式可知:))((2)(00'''x x x f x f -=显然,若0)(0''<x f ,则0x x <时0)('>x f ,0x x >时0)('<x f ,故0x x =为)(x f 的极大值点,证毕.注:此证明方法仅供需要弄清结论原理的读者使用,若不需,则可直接记住结论内容就行.3.极值第二充分条件:若)(x f 在0x x =处具有直到n 阶的连续导数,且0)()()(0)1(0''0'==⋅⋅⋅==-x fx f x f n ,但0)(0)(≠x fn ,则:当n 为偶数时,)(0x f 为函数)(x f 的极值,当n 为奇数时,)(0x f 不是函数)(x f 的极值.题型2:已知极值个数求参数的范围这类问题的形式就是已知),(a x f 存在几个极值点,求参数a 的取值范围.这类问题实质是考察导函数的变号零点个数,注意:是“变号”零点.通常情况下,这类问题可通过求导后讨论导函数的零点个数来完成,首选分离参数的方法解决,若不行,再将导函数作为一个新的函数来讨论其零点个数.二.典例分析题型1.已知极值点求参数的值例1.若函数()322f x x ax bx a =--+在1x =处有极值10,则a b -=()A.6B.15-C.6-或15D.6或15-解析: ()322f x x ax bx a =--+,2()32f x x ax b ∴=-'-,又1x =时()f x 有极值10∴232010a b a b a --=⎧⎨--+=⎩,解得411a b =-⎧⎨=⎩或33a b =⎧⎨=-⎩,当3,3a b ==-时,22()3633(1)0f x x x x =-+=-≥',此时()f x 在1x =处无极值,不符合题意经检验,4,11a b =-=时满足题意,15a b ∴-=-,故选:B 例2.(2021年乙卷第10题)1.设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A.a b <B.a b>C.2ab a <D.2ab a >分析1:分类讨论若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.依题意,x a =为函数()()()2f x a x a x b =--的极大值点,当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D点评:按照传统的解法,此题应该先求一阶导数)('x f ,再分析)('x f 在a x =处何时出现左负右正,引入分类讨论,而对于多数中等水平学生而言,分类讨论是他们痛处,所以我们有必要思考如何避免上述做法.分析2:第二充分条件依题,2')())((2)(a x a b x a x a x f -+--=再次求导)(4)(2)(''a x a b x a x f -+-=由于a x =为极大值点,故0)(''<a f ,代入上式可得:2a ab >,故选D.点评:二阶导方法显然更加具有实用性,不用分类讨论,步骤也很明确,考试必备的好帮手.小结:已知0x x =为函数)(x f 的极大值或极小值,求参数问题.第一步:求二阶导数;第二步:若0)(0''<x f ,则)(x f y =在0x 处取得极大值;若0)(0''>x f ,则)(x f y =在0x 处取得极小值.例3.已知函数()()21ln 12f x x x ax a x =-+-,其中a ∈R .(1)若2a =,求()f x 在1x =处的切线方程;(2)若()1f 是()f x 的极大值,求a 的取值范围.解析:(1)若2a =,则()2ln f x x x x x =-+,所以()ln 121ln 22f x x x x x '=+-+=-+,故()10f '=,又()10f =,所以()f x 在1x =处的切线方程0y =.(2)解法1:由题意,()()ln 0f x x ax a x '=-+>,()1f x a x ''=-,()21f x x'''=-,所以()11f a ''=-,若1a =,则()()110f f '''==,()110f '''=-≠,所以()1f 不是()f x 的极值,不合题意;若1a >,则()10f '=,()10f ''<,所以()1f 是()f x 的极大值,满足题意;若1a <,则()10f '=,()10f ''>,所以()1f 是()f x 的极小值,不合题意;综上所述,a 的取值范围是()1,+∞.解法2:由题意,()()ln 0f x x ax a x '=-+>,()1f x a x''=-①当0a ≤时,()0f x ''>,所以()f x '在()0,+∞上单调递增,又()10f '=,所以()01f x x '=⇔>,()001f x x '<⇔<<,从而()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()1f 是()f x 的极小值,不合题意;②当0a >时,()100f x x a ''>⇔<<,()10f x x a''<⇔>所以()f x '在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,且()10f '=,若01a <<,则11a >,可知当01x <<时,()0f x '<,当11x a<<时,()0f x '>,所以()f x 在()0,1上单调递减,在11,a ⎛⎫⎪⎝⎭上单调递增,故()1f 是()f x 的极小值,不合题意;若1a =,则11a=,()0f x '≤恒成立,从而()f x 在()0,+∞上单调递减,故()f x 无极值,不合题意;若1a >,则101a <<,可知当11x a<<时,()0f x '>,当1x >时,()0f x '<,所以()f x 在1,1a ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,故()1f 是()f x 的极大值,满足题意;综上所述,a 的取值范围是()1,+∞.题型2.已知极值点个数求参数的范围基本步骤:第1步求导,第2步令导函数为零后分离参数,第3步做出不含参数函数的图象后讨论合适出现满足题意的变号零点个数,即为参数范围.例4.已知函数()()3sin xf x e x a =-有极值,则实数a 的取值范围为()A.(B.()1,1-C.⎡⎣D.[]1,1-解析:()3(sin )3cos 3(sin cos )x x x f x e x a e x e x x a '=-+=+-3)]4xe x a π=+-,∵)4x π+≤,∴当a ≥()0f x '≤恒成立,a ≤()0f x '≥恒成立,当a <<时,()0f x '=有解,且在解的两侧()f x '的符号相反,即()f x 有极值.故选:A.例5.已知函数()313ln xa f x x a=-在其定义域()0,+∞内既有极大值也有极小值,则实数a 的取值范围是()A.()20,11,ee e ⎛⎫⋃ ⎪ ⎪⎝⎭B.()0,1C.2,e e ⎛⎫+∞ ⎪⎝⎭D.21,ee e ⎛⎫ ⎪ ⎪⎝⎭解析:因为()313ln x a f x x a =-,所以()2x f x x a '=-.因为函数()313ln xa f x x a=-在其定义域()0,+∞内既有极大值也有极小值,所以只需方程20x x a -=在()0,+∞有两个不相等实根.即2ln ln x a x =,令()2ln x g x x =,则()()221ln x g x x -'=.()g x 在()0,e 递增,在(),e +∞递减.∴2ln 0,a e ⎛⎫∈ ⎪⎝⎭,故选D.例6.已知函数()212f x axlnx x a =-+有且只有一个极值点,则实数a 构成的集合是()A.{0|a a >且1}a ≠B.{}0a a >C.{0a a <或1}a =D.{}0a a <解析:由题意,求得函数()f x 的导数()()'1ln f x a x x =+-,令()'0f x =,即()1ln 0a x x +-=.则10,1ln e x x a x x ⎛⎫=>≠ ⎪+⎝⎭且.设1()0,1ln x g x x x x e ⎛⎫=>≠ +⎝⎭且,得2ln ()(1ln )x g x x '=+.当()'0g x >时,得1x >;当()'0g x <时,得10x e <<或11x e<<,所以函数()g x 在区间10,e ⎛⎫ ⎪⎝⎭和1,1e ⎛⎫⎪⎝⎭上单调递减,在区间()1,+∞上单调递增.因为函数()212f x axlnx x a =-+有且只有一个极值点,所以直线y a =与函数1()0,1ln x g x x x x e ⎛⎫=>≠ ⎪+⎝⎭的图象有一个交点,所以a<0或1a =.当1a =时()()'1ln 0f x x x =+-<恒成立,所以()y f x =无极值,所以{}0a a <.故选D.例7.已知函数()e 1x f x t x x x ⎛⎫=-+ ⎪⎝⎭在区间()0,∞+上有且只有一个极值点,则实数t 的取值范围为___________.解析:由题意,函数()e 1x f x t x x x ⎛⎫=-+ ⎪⎝⎭,可得()22222(1)(1)(1)(1)[(1)]e 1e e 1x x x x x t x x t xf x t x x x x --⎛⎫'=--== ⎪⎝⎭----+,因为函数()f x 在区间()0,∞+上有且只有一个极值点,所以()0f x '=在区间()0,∞+上有且只有一个实数根,即方程2(1)[(1e )0]x x xt x --=+在区间()0,∞+上有且只有一个实数根,因为1x =时方程2(1)[(1e )0]x x xt x --=+的根,所以方程1e ()0x t x -+=在区间()0,∞+上没有实数根,即方程,0e 1xt x x =>+在区间()0,∞+上没有实数根,等价于y t =与()e 1x g x x =+的图象在()0,∞+上没有交点,又由()22(1)0(1)(1e e e )x x x x xg x x x +-⋅'==>++,所以()g x 在()0,∞+上单调递增,所以()()min 01g x g >=,且当x →+∞时,()g x ∞→+,所以1t ≤,即实数t 的取值范围是(,1]-∞.故答案为:(,1]-∞三.习题演练1.已知函数321()23f x x ax x =+-在区间(1,)+∞上有极小值无极大值,则实数a 的取值范围()A.12a <B.12a >C.12a ≤D.12a ≥解析:∵函数()32123f x x ax x =+-,∴()2'22f x x ax =+-,∵函数()32123f x x ax x =+-在区间()1,+∞上有极小值无极大值,∴()2'220f x x ax =+-=在区间()1,+∞上有1个实根,(],1-∞上有1个根.()2480'1210a f a ⎧∆=+>⎪⎨=-<⎪⎩,解得12a <.故选A.2.已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =()A.-1B.2C.-3D.4解析:()()()e xf x x a x b =--()2e x x ax bx ab =--+,所以()()()22e e x x f x x a b x ax bx ab '=--+--+()2e 2x x a b x ab a b ⎡⎤=+--+--⎣⎦因为函数()()()e xf x x a x b =--在x a =处取极小值,所以()()()2e 2e 0a af a a a b a ab a b a b '⎡⎤=+--+--=-=⎣⎦,所以a b =,()()2e xf x x a ∴=-,()()()()22e 222=e 2x xf x x a x a a x a x a '⎡⎤=+-+----⎡⎤⎣⎦⎣⎦,令()0f x '=,得=x a 或=2x a -,当()2x a ∈-∞-,时,()0f x ¢>,所以()f x 在()2a -∞-,单调递增,当()2x a a ∈-,时,()0f x '<,所以()f x 在()2a a -,单调递增,当()x a ∈∞,+时,()0f x ¢>,所以()f x 在()a ∞+,单调递增,所以()f x 在=2x a -处有极大值为()22e ==44a f a --,解得=2a ,所以=2b .故选:B3.若函数()2ln 21(0)y x ax a x a =+-+>在1x =处取得极大值,则实数a 的取值范围是______.解析:()()()()()1e 211e 2x xf x x a x x a '=+-+=+-,当0a ≤时,20x e a ->,当1x <-时,()0f x '<,当1x >-时,()0f x ¢>,则()f x 在(),1-∞-上单调递减,在()1,-+∞上单调递增,此时()f x 只有极小值,没有极大值,当102ea <<时,当ln 2x a <或1x >-时,()0f x ¢>,当ln 21a x <<-时,()0f x '<,()f x 在(),ln 2a -∞,()1,-+∞上单调递增,在()ln 2,1a -上单调递减,则()f x 在ln 2x a =处取得极大值()()21ln 2ln 2ef a a a =-≠,当12ea =时,()0f x '≥,当且仅当=1x -时取“=”,()f x 在R 上单调递增,()f x 没有极值,当12ea >时,当1x <-或ln 2x a >时,()0f x ¢>,当1ln 2x a -<<时,()0f x '<,()f x 在(),1-∞-,()ln 2,a +∞上单调递增,在()1,ln 2a -上单调递减,所以()f x 在1x =-处取得极大值()111e e f a -=-+=,得2e a =,综上得,2e a =.故答案为:2e4.已知函数()()22e 2xk f x x x kx =-+-,若1x =是函数()f x 在区间()0,∞+上的唯一极值点,则实数k 的取值范围是______.解析:函数()()22e 2xk f x x x kx =-+-,所以()()()()e 2e 1e x x x f x x kx k x k '--=-+=++,只需满足k e x g x +=)(在),0(+∞上恒无变号零点即可,由于x e 递增,故只需0)(≥x g 恒成立即可,综上:1k ≥-,故答案为:[)1,∞-+.5.(2016山东卷)设2()ln (21)f x x x ax a x =-+-,x R ∈(1)令()()g x f x '=,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值.求实数a 的取值范围.解法1:分类讨论(2)由(1)知,()'10f =.若0a ≤时,()'0f x <,()f x 单调递减.所以当()0,1x ∈时,()'0f x <,()f x 单调递减.当()1,x ∈+∞时,()'0f x >,()f x 单调递增.所以()f x 在1=x 处取得极小值,不合题意.②当102a <<时,112a >,由(Ⅰ)知()'f x 在10,2a ⎛⎫⎪⎝⎭内单调递增,可得当(0,1)x ∈时,()'0f x <,1(1,)2x a∈,()'0f x >,所以()f x 在(0,1)内单调递减,在1(1,)2a内单调递增,所以()f x 在1x =处取得极小值,不合题意。

答案导数小题---应用函数零点和极值点求参

答案导数小题---应用函数零点和极值点求参

导数小题---应用函数零点和极值点求参答案1.已知()2xf x x ae =-在R 上有两个零点,则a 的取值范围是( )A .2,e ⎛⎤-∞ ⎥⎝⎦ B .2,e ⎛⎫-∞ ⎪⎝⎭C .20,e ⎛⎤⎥⎝⎦D .20,e ⎛⎫ ⎪⎝⎭【答案】D 【解析】 【分析】通过讨论a 的符号得函数的单调性,从而结合函数零点的判定定理确定实数a 的取值范围. 【详解】①当0a ≤时,易知函数()2x f x x ae =-是增函数,故函数()2x f x x ae =-不可能有两个零点;②当>0a 时,令()20xf x ae'=-=得,2lnx a =;故()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上是增函数,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上是减函数, 且0(0)200a f ae =⨯-=-<,(),x f x →+∞→-∞,故若函数()2x f x x ae =-有两个零点,则2ln 0f a⎛⎫> ⎪⎝⎭,即22ln 20a->,解得2a e <,此时2ln1a >,故a 的取值范围是20a e<<; 故选:D. 【点睛】本题考查了导数的应用及函数的单调性的判断与应用,同时考查了函数零点的判定定理的应用,属于中档题.2.函数()x e f x ax x=-在R 上有三个零点,则a 的取值范围是A .2(,)2e eB .22(,)42e eC .2(,)2e +∞D .2(,)4e +∞【答案】D 【解析】 【分析】函数()xe f x ax x=-在R 上有三个零点,转化为函数x y e =与2y ax =由三个交点,先判断0a >,可得当0x <时,两图象必有一个交点,只需2,xe y a y x==的图象在y 轴右边由两个交点,利用导数研究函数的单调性与最值,结合图象可得结果. 【详解】当0a ≤时,函数()20xf x e ax =->恒成立,不合题意,所以0a >,作函数xy e =与2y ax =的图象如图,由图象可知,当0x <时,两图象必有一个交点, 故当0x >时,两图象有两个交点, 则2x e ax =有两个正根,即2xe a x=有两个正根,2,xe y a y x ==的图象在y 轴右边由两个交点,记()()()232,'x xe x e F x F x x x-==, ()F x 在()0,2上递减,在()2,+∞递增, 故()()2min24e F x F ==,故24e a >时,两图象有两个交点;故若函数()2xe xf x a =-有三个不同零点,则24e a >,a的取值范围是2,4e ⎛⎫+∞ ⎪⎝⎭,故选D.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.3.已知函数11,20()ln 1,0x x f x x x ⎧+--≤≤=⎨->⎩若()()g x f x kx =-恰有4个零点,则k 的取值范围是( ) A .210,e ⎛⎫ ⎪⎝⎭B .21,1e ⎛⎫⎪⎝⎭C .221,e e ⎛⎫⎪⎝⎭D .)20,e⎡⎣【答案】A 【解析】 【分析】由零点定义可知()f x kx =恰有4个不同交点,画出函数()f x 的图像;利用导数求得直线()f x kx =与()f x 相切时的斜率,再将直线()f x kx =绕原点旋转,即可判断出有4个交点时的斜率取值范围. 【详解】根据零点定义可知()()0g x f x kx =-=, 即()f x kx =恰有4个不同交点,画出函数11,20()ln 1,0x x f x x x ⎧+--≤≤=⎨->⎩的图像如下图所示:当0x >时,()ln 1f x x =-, 则1()f x x'=, 设()f x kx =与()ln 1f x x =-相切于(),m km ,由导数几何意义及切点在()ln 1f x x =-上,则满足1ln 1k m km m ⎧=⎪⎨⎪=-⎩解得221k e m e⎧=⎪⎨⎪=⎩,将直线()f x kx =绕原点旋转,当恰有4个交点时满足210k e<<, 即k 的取值范围为210,e ⎛⎫ ⎪⎝⎭, 故选: A 【点睛】本题考查了函数零点与方程根的关系,利用导数的几何意义求得相切的斜率,利用数形结合法求参数的取值范围,综合性强,属于难题. 4.(题文)已知函数无零点,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】 试题分析:若,则,由图象得函数没有零点,符合题意.若,对函数求导得,此时当时,在上为增函数,当取一个非常小的负数时显然函数值小于,当取大于的数时显然函数值为正,这样的话此单调函数在上有且只有一个零点;当时,当时,,当时,,这样函数在上的最小值为,若使函数无零点,应使,解得.综上,可得.故应选D. 考点:通过导数研究函数图象进而判断函数的零点问题. 5.已知函数有两个零点,则的取值范围为( ) A .B .C .D .【答案】C 【解析】 试题分析:,当时,,函数单调递增,至多有一个零点,不符合题意.当时,令,故函数在上单调递增,在上单调递减,需要最大值大于零,即,.故选C.考点:函数导数与零点问题.【思路点晴】这是一个典型的根据导数判断函数的单调区间,数形结合,用图象来判断零点个数的题目.具体的方法是这样,先求出定义域,然后求导、通分,观察导函数的分母,,这是一个一次函数,结合,那么就要对进行分类讨论,其中当时,,函数单调递增,至多有一个零点,不符合题意.当,利用导数判断函数图像先增后减有极大值也即是最大值,所以最大值要大于零,由此求得结果. 6.函数()(1)ln (1)f x x x a x =+--有三个零点,则实数a 的取值范围是 A .(0,2) B .(2,)eC .(,)e +∞D .(2,)+∞【答案】D 【解析】 【分析】问题转化为求()1y x lnx =+与()1y a x =-的交点问题,结合函数的图像求出a 的取值范围 【详解】函数()()()11f x x lnx a x =+--有三个零点,∴方程()()11x lnx a x +=-有三个根也就是()1y x lnx =+与()1y a x =-的图像有三个不同的交点 由()1y x lnx =+可得:11y lnx x +'=+,22111x y x x x'-=-=' 当()01x ∈,时,0y ''<,y '在()01,上单调递减, 当()1x ∈+∞,时,0y ''>,y '在()1+∞,上单调递增 y ∴'有极小值为20>()1y x lnx ∴=+在()0+∞,上是单调增函数,其图像如图所示而直线()1y a x =-过定点()10,,且函数()1y x lnx =+在1x =处的切线的斜率为: 1'|2x y ==,则要使()1y x lnx =+与()1y a x =-的图像有三个不同的交点, 实数a 的取值范围是()2+∞,故选D 【点睛】本题主要考查的是函数的图像及函数零点的判定定理,考查了学生的转化能力和数形结合思想,计算能力,综合性较强,有一定难度。

第四讲 已知函数极值求参数范围或证明不等式(学生版)

第四讲 已知函数极值求参数范围或证明不等式(学生版)

全国卷·北清状元全过卷大学—北清状元导数的应用1导数日益成为解决问题必不可少的工具,利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题,是高考的热点和难点.解答题的热点题型有:(1)利用导数研究函数的单调性、极值、最值.(2)利用导数证明不等式或探讨方程的根.(3)利用导数求解参数的范围或值.模块一导数的应用模块二解析几何模块三立体几何第四讲已知函数极值(点)求参数范围或证明不等式求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点(1)极值点为单调区间的分界点(2)极值点是函数最值点的候选点()f x在0x x=处可导,那么x x=为()f x的一个极值点⇒()0'0f x=说明:①前提条件:()f x在x x=处可导②单向箭头:在可导的前提下,极值点⇒导数0=,但是导数0=不能推出x x=为()f x的一个极值点,例如:3y x=在()0,0处导数值为0,但0x=不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x=在()0,0处不可导,但是0x=为函数的极小值点)(1)筛选:令()'0f x=求出()'f x的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性:通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。

函数的极值知识点及例题解析

函数的极值知识点及例题解析

函数的极值知识点及例题解析1. 知识点函数的极值是函数在定义域内所能达到的最大值和最小值。

在求函数的极值时,需要先找出函数的驻点和临界点,然后使用一定的方法进行判断和计算。

1.1 驻点函数的驻点是指函数的导数等于零的点。

驻点可能是函数的极值点,也可能是函数的拐点。

可以通过计算函数的导数,然后将导数等于零的点带入函数进行判断。

1.2 临界点函数的临界点是指函数的定义域内的奇点或导数不存在的点。

临界点可能是函数的极值点,也可能是函数的间断点。

可以通过计算函数的导数,然后将导数不存在或等于无穷大的点带入函数进行判断。

2. 例题解析2.1 例题一已知函数 f(x) = x^3 - 3x^2 + 2x + 1,求函数的极值点。

解析:首先需要求函数的导数 f'(x) = 3x^2 - 6x + 2。

然后找出导数等于零的点,即驻点。

令 f'(x) = 0,解得 x = 1 或 x = 2/3。

将驻点带入原函数,得到 f(1) = 2 和 f(2/3) = 8/27。

所以函数的极小值点为 (1, 2) 和 (2/3, 8/27)。

2.2 例题二已知函数 g(x) = e^x - 2x,求函数的极值点。

解析:首先需要求函数的导数 g'(x) = e^x - 2。

然后找出导数等于零的点,即驻点。

令 g'(x) = 0,解得 x = ln(2)。

将驻点带入原函数,得到 g(ln(2)) = 2 - 2ln(2)。

所以函数的极值点为 (ln(2), 2 - 2ln(2))。

以上是函数的极值知识点及例题解析的内容。

希望对你有帮助!。

由极值求参数的值的方法

由极值求参数的值的方法

由极值求参数的值的方法方法一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

基准1求函数y=3+√(2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

求解:由算术平方根的性质,言√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的值域为{y∣y≥3}.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过轻易观测算术平方根的性质而获解,这种方法对于一类函数的值域的带发修行,简便清了,算是一种巧法。

练:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})方法二.反函数法当函数的反函数存有时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

指点:先求出来原函数的反函数,再算出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈r}。

评测:利用反函数法求原函数的定义域的前提条件就是原函数存有反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y1})方法三.分体式方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域基准3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

求解:由-x2+x+2≥0,所述函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域就是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

分体式方法就是数学的一种关键的思想方法。

练:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})方法四.判别式法若可以化成关于某变量的二次方程的分式函数或无理函数,需用判别式法求函数的值域。

利用导数求参数取值范围的几种类型(1)

利用导数求参数取值范围的几种类型(1)

利用导数求参数取值范围的几种类型学习目标:(1)学会利用导数的方法求参数的取值范围 (2)通过学习培养善于思考,善于总结的思维习惯学习重点:学会利用函数的单调性求参数的取值范围;学会利用不等式求参数的取值范围 学习难点:在求参数的取值范围中构造关于x 的函数 学习过程:类型1. 与函数单调性有关的类型例1. 已知0a >,函数3()f x x ax =-在[)1,x ∈+∞是一个单调函数。

(1) 试问函数()f x 在[)1,+∞上是否为单调减函数请说明理由; (2) 若函数()y f x =在[)1,+∞上是单调增函数,试求a 的取值范围。

解:(1)'2()3f x x a =-,若函数()f x 在区间[)1,+∞上单调递减,则'2()30f x x a =-≤在[)1,x ∈+∞上恒成立,即23x a ≤对[)1,x ∈+∞恒成立,这样的a 值不存在。

所以函数()f x 在区间[)1,+∞上不是单调减函数。

(2)函数()y f x =在区间[)1,+∞上是单调增函数,则'2()3f x x a =-0≥,即23a x ≤在[)1,x ∈+∞上恒成立,在此区间上233y x =≥,从而得03a <≤规律小结:函数在区间(a ,b)上递增'()0f x ⇔≥,递减'()f x ⇔0≤在此基础上再研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参数的值要是使'()f x 恒等于0,则参数的这个值应舍去,否则保留。

类型2. 与不等式有关的类型 例2. 设函数1()(01)ln f x x x x x=>≠且 (1) 求函数()f x 的单调区间;(2) 已知12axx >对任意(0,1)x ∈成立,求实数a 的取值范围解:(1)'22ln 1()ln x f x x x +=-,'1()0,f x x e==若则,列表如下:所以的单调增区间为,单调减区间为(3) 在12axx >两边取对数,得1ln 2ln a x x >由于01x <<所以1ln 2ln a x x>① 由(1)的结果知,当(0,1)x ∈时,1()()f x f e e≤=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档