常见连续信号的MATLAB表示
2021-2022年收藏的精品资料连续时间信号和系统时域分析及MATLAB实现资料
MATLAB课程设计任务书姓名:秦** 学号:2012****0330题目:连续时间信号和系统时域分析及MATLAB实现初始条件:MATLAB 7.5.0 ,Windows XP系统实验任务:一、用MATLAB实现常用连续时间信号的时域波形(通过改变参数,分析其时域特性)。
1、单位阶跃信号,2、单位冲激信号,3、正弦信号,4、实指数信号,5、虚指数信号,6、复指数信号。
二、用MATLAB实现信号的时域运算1、相加,2、相乘,3、数乘,4、微分,5、积分三、用MATLAB实现信号的时域变换(参数变化,分析波形变化)1、反转,2、使移(超时,延时),3、展缩,4、倒相,5、综合变化四、用MATLAB实现信号简单的时域分解1、信号的交直流分解,2、信号的奇偶分解五、用MATLAB实现连续时间系统的卷积积分的仿真波形给出几个典型例子,对每个例子,要求画出对应波形。
六、用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形。
给出几个典型例子,四种调用格式。
七、利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形。
目录1 MATLAB简介 (1)1.1 MATLAB设计目的 (1)1.2 MATLAB语言特点 (1)2常用连续时间信号的时域波形 (1)2.1单位阶跃信号 (1)2.2单位冲激信号 (2)2.3正弦信号 (3)2.4实指数信号 (4)2.5虚指数信号 (5)2.6复指数信号 (6)3 连续时间信号的时域运算 (7)3.1相加 (7)3.2相乘 (8)3.3数乘 (9)3.4微分 (10)3.5积分 (11)4.1反转 (12)4.2时移 (13)4.3展缩 (14)4.4倒相 (15)4.5综合变化 (16)5连续时间信号简单的时域分解 (17)5.1信号的交直流分解 (17)5.2信号的奇偶分解 (19)6连续时间系统的卷积积分的仿真波形 (20)7连续时间系统的冲激响应、阶跃响应的仿真波形 (23)7.1 IMPULSE()函数 (23)7.2 STEP()函数 (27)8连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形 (31)8.1 正弦信号的零状态响应 (31)8.2 实指数信号的零状态响应 (32)9小结 (34)1 MATLAB简介1.1 MATLAB设计目的深入研究连续时间信号和系统时域分析的理论知识。
实验- 基本信号在 MATLAB中的表示和运算
实验一基本信号在 MATLAB中的表示和运算一、[实验目的]1.学会常用连续信号的MATLAB表示方法;2.学会用MATLAB进行信号的基本运算,为信号分析和滤波器设计奠定基础;3. 通过信号的求导,观察信号在跳变点处的导数;4. 通过卷积积分运算,观察两个时限信号的卷积积分结果所具有的特点;5. 掌握信号相关与卷积的关系;6. 通过实验熟悉自相关和互相关性质在周期信号识别、延迟信号检测等场合中的应用。
三、[实验内容]1.验证实验原理中所述的有关程序;2.绘出下列信号的时域波形及其导数波形(注意在绘制导数波形图时,为便于观察结果,可调整坐标轴,如t=-3:h:4;并合理利用坐标轴调整函数axis)3.绘制如图所示信号及其积分波形。
4. 求如图所示函数f1(t)和f2(t )的卷积积分,并给出卷积结果的图形。
5. 编写信号相关的函数%Rxy为相关估计,消除步长的影响%tao为相关估计Rxy的序号向量%x为参加相关的信号,xt为信号 x的序号向量%y为需反转的信号,yt为 y的序号向量%dt为xt 或yt的步长(xt,yt的步长要一致)%信号反转可利用:ytf=fliplr(-yt);yf=fliplr(y);6.已知两信号x=rectpuls(t-0.5,1); y=rectpuls(t+0.5,1) ;调用自编函数[Rxy,tao]=my_xcorr(x,xt,y,yt,dt)计算 x 与 y 的时延差,即Rxy 取得最大值的时刻。
7. 已知频率为10Hz的余弦信号,分别求:(1)不带噪声的余弦信号的自相关;(2)分别求带有白噪声干扰的频率为 10Hz 的余弦信号和白噪声信号的自相关函数并进行比较,得出相应的结论。
主要信号如下:N=1000;Fs=500; %数据长度和采样频率n=0:N-1; t=n/Fs; %时间序列x=cos(2*pi*10*t); %频率为10Hz的余弦信号xz=cos(2*pi*10*t)+0.6*randn(1,length(t)); %带有白噪声干扰的频率为10Hz 的余弦信号noise_sig=randn(1,length(x)); %产生一与 x长度一致的随y=cos(2*pi*20*t); %频率为20Hz的余弦信号xy=x+y; 频率为10Hz, 20Hz的余弦信号的叠加信号…..调用 MATLAB 提供的函数[Rxx,tao]=xcorr(x,Lags,'unbiased')完成三个自相关运算。
实验七连续信号与系统复频域分析的MATLAB实现1
实验七 连续信号与系统复频域分析的MATLAB 实现一、实验目的1. 掌握连续时间信号拉普拉斯变换的MATLAB 实现方法;2. 掌握连续系统复频域分析的MATLAB 实现方法。
二、实验原理1. 连续时间信号的拉普拉斯变换连续时间信号的拉普拉斯正变换和逆变换分别为:⎰∞∞--=dt e t f s F st )()(⎰∞+∞-=j j stds e s F j t f σσπ)(21)(Matlab 的符号数学工具箱(Symbolic Math Toolbox )提供了能直接求解拉普拉斯变换和逆变换的符号运算函数laplace()和ilaplace ()。
下面举例说明两函数的调用方法。
(1)拉普拉斯变换例1.求以下函数的拉普拉斯变换。
)()()2()()()1(221t te t f t e t f t t εε--==解:输入如下M 文件:syms tf1=sym('exp(-2*t)*Heaviside(t)'); F1=laplace(f1) %求f1(t)的拉普拉斯变换 f2=sym('t*exp(-t)*Heaviside(t)'); F2=laplace(f2) 运行后,可得如下结果:F1 = 1/(s+2) F2 = 1/(s+1)^2 (2)拉普拉斯逆变换例2.若系统的系统函数为1]Re[,231)(2->++=s s s s H 。
求冲激响应)(t h 。
解:输入如下M 文件:H=sym('1/(s^2+3*s+2)');h=ilaplace(H) %求拉普拉斯逆变换运行后,可得如下结果:h=exp(-t)-exp(-2*t) 2. 连续系统的复频域分析 若描述系统的微分方程为∑∑===Mj j j Ni i i t f b t ya 0)(0)()()(则系统函数为)()()()()(00s A s B sa sb s F s Y s H Ni ii Mj jj===∑∑== 其中,∑∑====Mj j j Ni i i s b s B s a s A 0)(,)(。
信号与系统实验一连续时间信号分析实验报告
实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。
三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。
(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。
程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。
电路、信号与系统(2)实验指导书
描述线性时不变离散系统的差分方程为
编写求解上述方程的通用程序。
[建模]
将方程变形可得(用MATLAB语言表示)
a(1)*y(n)= b(1)*u(n)+…+ b(nb)*u(n-nb+1)- a(2)*y(n-1)-…- a(na)*y(n-na+1)
令us== [u(n),…, u(n-nb+1)]; ys=[y(n-1),…, y(n-na+1)]
x(n)={2,1,-1,3,1,4,3,7}(其中加下划线的元素为第0个采样点)在MATLAB中表示为:
n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,3,1,4,3,7];
当不需要采样位置信息或这个信息是多余的时候,可以只用x向量来表示。
(一)离散信号的MATLAB表述
[问题]
实验一连续时间信号与系统分析
一、实验目的
1、了解连续时间信号的特点;
2、掌握连续时间信号的MATLAB描述;
3、掌握连续LTI系统单位冲激响应的求解方法;
4、掌握连续LTI系统的零状态响应的求解方法。
二、实验内容
严格说来,只有用符号推理的方法才能分析连续系统,用数值方法是不能表示连续信号的,因为它给出的是各个样点的数据。只有当样本点取得很密时才可看成连续信号。所谓很密,是相对于信号变化的快慢而言的。以下均假定相对于采样点密度而言,信号变化足够慢。
elseif lu<lh nh=0; nu=lh-lu;
else nu=0; nh=0;
end
dt=0.1;
lt=lmax;
u=[zeros(1, lt), uls, zeros(1, nu), zeros(1, lt)];
第4章 信号与系统的MATLAB仿真
模型、传递函数模型和零-极点增益模型。其中sos表示二次分式,g为比
例系数,sos为L×6的矩阵,即
b01 b11 b21 1 a11 a21
sos
b0L b1L b2L 1 a1L a2L
(4-15)
1.ss2tf函数 格式:[num, den]=ss2tf(A,B,C,D,iu) 功能:将指定输入量iu的线性系统(A,B,C,D)转换为传递函数模型[num,den]。
生成上述三种信号
• t =-5:0.01:5; • subplot(2,2,1); • a=2 • y1=2.^t • plot(t, y1, 'r') • subplot(2,2,2); • a=2; • theat=pi/3; • y2=sin(2*pi*t+theat) • plot(t, y2) • subplot(2,1,2); • w=4; • y3=exp((a+j*w)*t); • plot(t, y3, ‘y')
3、sinc函数
产生sinc波形或sin(πt)/(πt)波形
sinc(t
)
1
sin(
t)
t
t 0 t0
例: t=linspace(-10,+10,200); x=sinc(t);
plot(t,x);
4.1.2 信号运算
1信号的相加与相乘 y(n)=x1(n)+x2(n) MATLAB实现:y=x1+x2
离散系统: 6.状态空间模型ss
连续系统:
H ( z)
g
L k 1
b0k b1k z1 b2k z2 1 a1k z1 a2k z2
x' Ax Bu
用MATLAB实现常用的连续时间信号及其时域运算
用MATLAB实现常用的连续时间信号及其时域运算信息与通信工程学院通信133班卢承慧一.引言1.要求:1.1用MATLAB语言产生连续时间信号1.2对连续时间信号进行时域运算2.任务:①绘制用于产生以下信号的通用程序,要求对于任意给定的参数都能实现所要求的信号。
调试并运行这些程序,具体产生由指导教师制定的信号并绘制信号波形。
a. f(t)=δ(t-t );b. f (t) = Au(t-t )。
②已知信号波形如图7.6所示,使用MATLAB语言求出下列信号的表达式并绘制出各信号波形。
a.f(-t);b.f(t-2);c.f(1-2t)。
图7.6任务②中的f(t)3.思考题编制一通用程序用于产生信号)()cos()(0t t u t Ae t f at -=-ω,要求对于任意给定的参数都能实现所要求的信号。
二.基本原理1.1连续时间信号如果在所讨论的时间间隔内,除若干个不连续点之外,对于任意时间值都可以给出确定的函数值,此信号就称为连续信号。
从严格意义上来讲,MATLAB 不能处理连续时间信号。
在MATLAB 中,使用连续时间信号在等时间间隔点的样值来近似表示连续时间信号的。
当取样时间间隔足够小时,这些离散的样值就能较好的近似出连续时间信号。
由于在MATLAB 中,矩阵的元素个数是有限的,因此MATLAB 无法表示无限序列。
MATLAB 的绘图命令有很多种,其中比较常用的绘制连续时间信号的绘图命令有“plot ”,“stairs ”,“ezplot ”等。
“plot ”适用于绘制平滑的曲线,而“stairs ”适合于绘制具有阶跃形式的图形,“ezplot ”只能用于符号函数的绘图。
1.2单位阶跃信号单位阶跃信号的波形图如图1所示,通常以符号u (t )表示⎩⎨⎧><=)0( 1)0( 0)(t t t u在跳变点t=0处,函数未定义,或在t=0处规定函数值u (0)=21。
图1用MATLAB 实现单位阶跃信号%t1:起始时刻;t2:终止时刻;t0:跳变时刻function u(t1,t0,t2)t=t1:0.01:t2; %步长值越小,图形越精确 n=length(t); tt=t0:0.01:t2; n1=length(tt);x=[zeros(1,n-n1),ones(1,n1)]; %产生单位阶跃信号 stairs(t,x),grid on title('单位阶跃信号')axis([t1 t2 -0.2 1.1]) %为方便波形顶部避开图 框,改变图框坐标1.3单位冲激信号单位冲激信号是持续时间无穷小、瞬间幅度无穷大、涵盖面积恒1的理想信号。
MATLAB 的可视化绘图和常用信号的MATLAB表示
备注:(1)、按照要求独立完成实验项目内容,报告中要有程序代码和程序运行结果和波形图等原始截图。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号-张三-实验一)后,交至学习委员那里汇总后再交给老师,并由实验教师批阅记录后;实验室统一刻盘留档。
实验二 MATLAB 的可视化绘图和常用信号的MATLAB表示一、实验目的1、掌握MATLAB的可视化绘图技术;2、结合《信号与系统》的特点,编程实现常用信号及其运算。
二、实验原理对于以t为自变量的连续信号,在绘图时统一用plot函数;而对n为自变量的离散序列,在绘图时统一用stem函数。
三、程序示例见课本P48~53四、实验内容1、熟悉示例中给出的常用信号的表示。
2、完成课本 P59 M2-1 (1)、(2)、(4)P60 M2-6 (2)、(4)、(5);写实验报告(程序及波形)。
t = 0:0.01:10;y1 = (t>=0);figure;subplot(221);plot(t, y1, 'b');xlabel('图1');ylabel('u(t)');y2 = (t>=0);f=y2.*t;subplot(222);plot(t, f, 'b');xlabel('图2');ylabel('r(t)');grid on;t2 = 0:0.0001:0.2;y3 =cos(100*t2)+cos(3000*t2); subplot(223);plot(t2, y3, 'b');xlabel('图3');k = 0:1:5;y = (k==1);y=y*2;figure;subplot(221);stem(k, y, 'r');xlabel('图1 2δ(k-1)');y1 = (k>=-2);y2=(k>=5);f=y1-y2;subplot(222);stem(k, f, 'r');xlabel('图2 u[k+2]-u[k-5]'); y3 = (k>=0);y=k.*y3;subplot(223);stem(k, y3, 'r');xlabel('图3 ku[k]');grid on;五、实验总结应注意以下几点:①在向量与向量相乘时要用点乘(.*),数字与向量、数字与数字之间用普通乘法(*)。
实验一 连续时间信号的Matlab表示与计算
实验一连续时间信号的Matlab表示与计算一、实验目的1、初步学习MATLAB语言,熟悉MATLAB软件的基本使用。
2、掌握用MA TLAB描述连续时间信号方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。
二、实验原理连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点之外,信号都有确定的值与之对应。
严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
在MATLAB可视化绘图中,对于以t为自变量的连续信号,在绘图时统一用plot函数;而对n为自变量的离散序列,在绘图时统一用stem函数。
对于连续时间信号f(t),可用f、t两个行向量来表示。
例:t=-10:1.5:10;f=sin(t)./ t ;可以产生t= -10~10,间隔1.5的序列以及t tf)sin(=的值。
用命令:plot(t,f)可得如下图形,显然显示效果较差,这是因为t的间隔过大,只要改变为:t=-10:0.5:10;可得图1.2。
图1.1 图1.21. 信号的时域表示方法MATLAB提供了大量用以生成基本信号的函数,比如最常用的指数信号、正弦信号等就是MATLAB的内部函数,即不需要安装任何工具箱就可以调用的函数。
1.1单位阶跃信号u(t)function y=heaviside(t) %阶跃信号y = (t>=0); % y = 1 for t > 0, else y = 01.2单位冲激信号δ(t)function chongji(t1,t2,t0) %冲激信号δ(t- t 0),t 1和t 2分为起始时间和终止时间dt=0.01;t=t1:dt:t2;n=length(t);x=zeros(1,n);x(1,(t0-t1)/dt+1)=1/dt;stairs(t,x); %以阶梯方式绘画axis([t1,t2,0,1.1/dt]) 或function y = delta(t)dt = 0.01;y = (u(t)-u(t-dt))/dt;1.3指数信号指数信号atAe 在MATLAB 中可以用exp 函数表示,其调用形式为:y=A*exp(a*t)例如图1-3所示指数衰减信号的MATLAB 源程序如下(取A=1,a=-0.4):%program7_1 Decaying expponential signalA=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;1.4正弦信号正弦信号)cos(ϕω+t A o 和)sin(ϕω+t A o 分别用MATLAB 的内部函数cos 和sin 表示,其调用形式为:)*cos(*phi t A o +ω)*sin(*phi t A o +ω 例如图1-4所示MATLAB 源程序如下(取A=1,πω20=,6/πϕ=):%program7_2 Sinusoidal signalA=1;w0=2*pi;phi=pi/6;t=0:0.01:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on;图1-3 单边指数衰减信号 图1-4 正弦信号 除了内部函数外,在信号处理工具箱(Signal Processing Toolbox )中还提供了诸如抽样 函数、矩形波、三角波、周期性矩形波和周期性三角波等在信号处理中常用的信号。
信号分析实验一内容
实验一连续时间信号的时域和频域分析一. 实验目的:1. 熟悉MATLAB 软件平台。
2. 掌握MATLAB 编程方法、常用语句和可视化绘图技术。
3. 编程实现常用信号及其运算MATLAB 实现方法。
4. 编程实现常用信号的频域分析。
二. 实验原理:1、连续时间信号的描述:(1)向量表示法连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点之外,信号都有确定的值与之对应。
严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
矩阵是MATLAB 进行数据处理的基本单元,矩阵运算是MATLAB 最重要的运算。
通常意义上的数量(也称为标量)在MATLAB 系统中是作为1×1 的矩阵来处理的,而向量实际上是仅有一行或者一列的矩阵。
通常用向量表示信号的时间取值范围,如t = -5:5,但信号x(t)、向量t 本身的下标都是从1 开始的,因此必须用一个与向量x 等长的定位时间变量t,以及向量x,才能完整地表示序列x(t)。
在MATLAB 可视化绘图中,对于以t 为自变量的连续信号,在绘图时统一用plot 函数;而对n 为自变量的离散序列,在绘图时统一用stem 函数。
(2)符号运算表示法符号对象(Symbolic Objects 不同于普通的数值计算)是Matlab 中的一种特殊数据类型,它可以用来表示符号变量、表达式以及矩阵,利用符号对象能够在不考虑符号所对应的具体数值的情况下能够进行代数分析和符号计算(symbolic math operations),例如解代数方程、微分方程、进行矩阵运算等。
符号对象需要通过sym 或syms 函数来指定, 普通的数字转换成符号类型后也可以被作为符号对象来处理.我们可以用一个简单的例子来表明数值计算和符号计算的区别: 2/5+1/3 的结果为0.7333(double 类型数值运算), 而sym(2)/sym(5)+sym(1)/sym(3)的结果为11/15, 且这里11/15 仍然是属于sym 类型, 是符号数。
连续时间信号和离散时间信号在MATLAB中的绘制
南京信息工程大学实验(实习)报告实验(实习)名称实验一实验(实习)日期 2019年3月19 指导教师院专业年级班次姓名学号一、实验目的(1)学会使用MA TLAB产生常见的连续时间信号和离散时间信号;(2)学会使用MA TLAB完成一些信号的基本运算;(3)熟悉MATLAB的基本操作,以及一些基本函数的使用,为后续的实验奠定基础。
二、实验内容1.利用MATLAB绘制单位冲击信号,单位阶跃信号,指数信号,单位矩形信号,抽样信号,正弦信号(分别取不同周期)(1)单位冲击信号代码:T=1000;t=linspace(0,10,T);t1=linspace(-5,5,T);f1=stepfun(t1,-1/T)-stepfun(t1,1/T);plot(t1,f1);grid on;axis([-5 5 -1 2])xlabel('t');ylabel('c(t)');title('单位冲击信号');(2)单位阶跃信号T=1000;t=linspace(-5,5,T);f1=stepfun(t,0);plot(t,f1);grid on;axis([-5 5 -1 2]);xlabel('t');ylabel('u(t)');title('单位阶跃信号');(3)指数信号T=1000;t=linspace(-5,5,T);xe=exp(t);subplot(2,1,1);plot(t,xe);grid on;axis([-5 3 -0.5 20]); xlabel('t');ylabel('x(t)');title('指数信号1');subplot(2,1,2);xe=exp(-t);plot(t,xe);grid on;axis([-3 3 -0.5 20]); xlabel('t');ylabel('x(-t)');title('指数信号2');(4)单位矩形信号T=1000;t=linspace(-5,5,T);xt=rectpuls(t,1);plot(t,xt);grid on;axis([-2 2 -0.5 1.5]); xlabel('t');ylabel('x(t)');title('单位矩形信号');(5)抽样信号T=10000;t=linspace(-100,100,T);xt=sinc(t/pi);plot(t,xt);grid on;axis([-100 100 -0.3 1.1]);(6)正弦信号w=100;T=12000;t=linspace(-1,10,T);xt=sin(w*t);subplot(3,1,1);plot(t,xt);grid on;axis([-0.2 0.2 -1.5 1.5]); xlabel('t');ylabel('x(t)');title('w=100');w2=50;T=12000;t=linspace(-1,10,T);xe=sin(w2*t);subplot(3,1,2);plot(t,xe);grid on;axis([-0.2 0.2 -1.5 1.5]); xlabel('t');ylabel('x(t)');title('w=50');w3=200;T=12000;t=linspace(-1,10,T);xr=sin(w3*t);subplot(3,1,3);plot(t,xr);grid on;axis([-0.2 0.2 -1.5 1.5]); xlabel('t');ylabel('x(t)');title('w=200');2.利用MATLAB绘制单位冲击序列,单位阶跃序列,实指数序列(1)单位冲击序列n=50;x=zeros(1,n);x(1)=1;xn=0:n-1;stem(xn,x);grid on;axis([-1 25 0 1.2]);xlabel('n');ylabel('c(n)');title('单位冲击序列');(2)单位阶跃序列n=50;x=ones(1,n);xn=0:n-1;stem(xn,x);grid on;axis([-5 25 0 1.2]);xlabel('n');ylabel('u(n)');title('µ¥Î»½×Ô¾ÐòÁÐ');(3)实指数序列n=0:20;a1=2;a2=-2;a3=0.5;a4=-0.5;xn1=a1.^n;xn2=a2.^n;xn3=a3.^n;xn4=a4.^n;subplot(2,2,1);stem(xn1);grid on;axis([0 20 0 600000]);xlabel('n');ylabel('xn1(n)');title('实指数序列xn1(n)[a>1]');subplot(2,2,2);stem(xn2);grid on;axis([0 20 -150000 300000]); xlabel('n');ylabel('xn2(n)');title('实指数序列xn2(n)[a<-1]');subplot(2,2,3);stem(xn3);grid on;axis([0 20 0 1.3]);xlabel('n');ylabel('xn3(n)');title('实指数序列xn3(n)[1>a>0]');subplot(2,2,4);stem(xn4);grid on;axis([0 20 -0.7 1.3]);xlabel('n');ylabel('xn4(n)');title('实指数序列xn4(n)[0>a>-1]');3.讨论题:已知连续信号,当抽样间隔分别取T=0.08, 0.16,和0.24时所对应的离散余弦信号的波形。
MATLAB与信号实验——连续LTI系统的时域分析
MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。
对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。
下面是一个关于连续LTI系统的时域分析的实验。
一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。
二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。
这可以通过使用MATLAB中的lti函数来完成。
我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。
2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。
在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。
3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。
这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。
4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。
这可以帮助我们理解系统的行为,并验证我们的模型是否正确。
三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。
对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。
通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。
2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。
这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。
这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。
matlab表示
信号与系统分析一、典型信号的matlab 表示表示连续信号,需定义自变量的范围和取样间隔,如t=0:0.01:3 1. 实指数信号 y=k*exp(a*t)2. 正弦信号 k*sin(w*t+phi) k*cos(w*t+phi)3. 复指数信号 y=k*exp((a+i*b)*t)实部real(y) 虚部imag(y) 模abs(y) 相角angle(y) 共轭conj(y) 4. 抽样信号 Sat=sinc(t/pi)5. 矩形脉冲信号 y=rectpuls(t,width)周期方波信号 y=square(2*pi*f*t,duty) %产生频率为fHZ ,占空比为duty%的方波 6. 三角脉冲信号非周期三角波y=tripuls(t,width,skew) %斜度 skew ,最大幅度出现在t=(width/2)*skew 周期三角波 y=sawtooth(t,width)7. 单位阶跃信号 function y=uCT(t) y=(t>=0)阶跃信号符号函数 Heaviside() y=sym(‘Heaviside(t)’) %调用时必须用sym 定义 冲激信号符号函数 Dirac()二、Matlab 的符号运算 1. 定义符号变量syms 变量名 syms xsym(‘变量名’) x=sym(‘x ’) sym(‘表达式’) sym(‘x+1’)2. 化简符号运算结果 simple 或simplify3. 绘制符号表达式图形 ezplot(y,[a,b])三、连续信号的运算微分和积分运算(用符号表达式来表示) 1. 微分运算Diff(function,’variable ’,n) % variable 为求导变量,n 为求导阶数 例:syms a x y y=sin(a*x^2); dy=diff(y ,’x ’) 2. 积分运算int(function, ’variable ’,a,b) %a 为积分下限,b 为积分上限 3. 信号的反折 fliplr(x) 4. 卷积计算1) 符号运算计算卷积(求解积分的方法) 例:)(*)()(t u e t u et y tTt --=syms T t taoxt1=exp(-t); xt2=exp(-t/T);xt_tao=subs(xt1,t,tao)*subs(xt2,t,t-tao);yt=int(xt_tao,tao,0,t); yt=simplify(yt);2) 数值计算法求卷积 conv( )y = dt*conv(e,h)例:求e(t) = u(t)-u(t-1)和h(t) = u(t)-u(t-1)的卷积 t0 = -2; t1 = 4; dt = 0.01; t = t0:dt:t1; e = u(t)-u(t-1); h = u(t)-u(t-1);y = dt*conv(e,h); % Compute the convolution of x(t) and h(t) subplot(221)plot(t,e), grid on, title('Signal e(t)'), axis([t0,t1,-0.2,1.2]) subplot(222)plot(t,h), grid on, title('Signal h(t)'), axis([t0,t1,-0.2,1.2]) subplot(212)t = 2*t0:dt:2*t1; % the time range to the convolution of e and h.plot(t,y), grid on, title('The convolution of x(t) and h(t)'), axis([2*t0,2*t1,-0.1,1.2]), xlabel('Time t sec')四、连续LTI 系统的时域分析1. 系统响应的符号求解 dsolve(‘eq1,eq2,…’,’cond1,cond2,…’); %eqi 表示微分方程,condi 表示初始条件 例:eq=’D3y+2*D2y+Dy=0’;cond=’y(0)=1,Dy(0)=1,D2y(0)=2’; yzi=dsolve(eq,cond); %零输入响应 simplify(yzi);eq1=’D3y+4*D2y+8*Dy=3*Dx+8*x ’; eq2=’x=Heaviside(t)’;cond=’y(-0.01)=0,Dy(-0.01)= 0,D2y(-0.01)=0’; yzs=dsolve(eq1,eq2,cond);simplify(yzs.y); %零状态响应2. 零状态响应的数值求解1)y=lsim(sys,f,t)%sys 表示系统模型,由sys=tf(b,a)生成的系统函数对象 %f 输入信号向量,t 时间抽样点向量例:)()sin()(),()()()('''t u t t f t f t y t y t y π210665==++ ts=0;te=5;dt=0.01; sys=tf([6],[1,5,6]); t=ts:dt:te;f=10*sin(2*pi*t).*UT(t);y=lsim(sys,f,t);plot(t,y),grid on;xlabel(‘time ’),ylabel(‘y(t)’); title(‘零状态响应’); 2)y=conv(f,impul)3. 连续系统冲激响应 y=impulse(sys,t) %sys 表示系统模型4. 连续系统阶跃响应 y=step(sys,t)五、信号的频域分析 1.傅立叶变换 1)符号运算求法 fourier( )和ifourier( )例:)()(t u e t f t 2-=的傅立叶变换ft=sym(‘exp(-2*t)*Heaviside(t)’); fw=fourier(ft)ezplot(abs(fw)); %或者fw_conj=conj(fw);Gw=sqrt(fw*fw_conj); phase=atan(image(fw)/real(fw));%或者angle(fw) ezplot(phase)211Ω+=Ω)(j F 的傅立叶反变换syms tfw=sym(‘1/(1+w^2’); ft=ifourier(fw,t) 2)数值计算求法[][][]Nk k N en f k F k TN M n j TM TN k ≤≤∆=∆∆=-⨯-∆--⨯-⨯02111111,)()()()()()(πωω例:求)(t G 82的傅立叶变换 1)数值计算dt=0.01; t=-4:dt:4;ft=(t+4)/2.*uCT(t+4)-t.*uCT(t)+(t-4)/2.*uCT(t-4); N=2000; k=-N:N;W=pi*k/(N*dt);F=dt*ft*exp(-j*t'*W); F=abs(F); plot(W,F),grid on; axis([-pi pi -1 9]);title('amplitude spectrum'); 2)符号计算ft=sym('(t+4)/2*Heaviside(t+4)-t*Heaviside(t)+(t-4)/2*Heaviside(t-4)'); Fw=simplify(fourier(ft));ezplot(abs(Fw),[-pi pi]);grid on;2. 系统的频率特性1) [H,w] = freqs(b,a):连续系统频率响应的函数2) 波特图:采用对数坐标的幅频特性和相频特性曲线,可显示频响间的微小差异 bode(sys)例:求11+=s s H )(的频率特性w=0:0.01:8*pi; b=[1]; a=[1 1]; H=freqs(b,a,w); subplot(211); plot(w,abs(H)); subplot(212); plot(w,angle(H)); figure(2); sys=tf(b,a); bode(sys);3. 连续时间LTI 系统的频域分析 例:551+Ω=Ω--=j j H t u t u t x )(),()()(,求系统的响应。
实验一 常用基本信号的MATLAB表示和运算
一.实验目的1.学会用MATLAB 表示常用连续信号的方法;2.学会用MATLAB 进行信号基本运算的方法; 二.实验原理与步骤 原理:1.信号的MATLAB 表示 (1)向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。
向量f 为连续信号f(t)在向量t 所定义的时间点上的样值。
例如:对于连续信号sin()()()t f t Sa t t==,同时用绘图命令plot()函数绘制其波形。
其程序如下: t2=-10:0.1:10; %定义时间t 的取值范围:-10~10,取样间隔为0.1,%则t2是一个维数为201的行向量 f2=sin(t2)./t2; %定义信号表达式,求出对应采样点上的样值 %同时生成与向量t2维数相同的行向量f2 figure(2); %打开图形窗口2Plot(t2,f2); %以t2为横坐标,f2为纵坐标绘制f2的波形 运行结果如下:(2)符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。
例如:对于连续信号sin()()()t f t Sa t t==,我们也可以用符号表达式来表示它,同时用ezplot()命令绘出其波形。
其MATLAB 程序如下: Syms t; %符号变量说明f=sin (t )/t; %定义函数表达式ezplot (f,[-10,10]); %绘制波形,并且设置坐标轴显示范围 运行结果如下:(3)常见信号的MATLAB 表示 单位阶跃信号:方法一:调用Heaviside(t)函数首先定义函数Heaviside(t)的m函数文件,该文件名应与函数名同名即Heaviside.m。
%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y=Heaviside(t)y=(t>0);%定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别。
信号处理matlab1
连续系统冲激响应和阶跃响应求解
MATLAB源程序设计如下:
wp1=650;wp2=850;ws1=700;ws2=800;rp=0.1;rs=50;Fs=2000;
wp=[wp1,wp2]/(Fs/2);ws=[ws1,ws2]/(Fs/2); %利用Nyquist频率频率归一化
例 设计一个在通带内的最大衰减为3 dB,在阻带内的最小衰 减为40 dB的4阶低通模拟椭圆滤波器原型。
MATLAB程序如下: n=4; rp=3; rs=40; [z, p, k]=ellipap(n, rp, rs); [b, a]=zp2tf(z, p, k); w=logspace(-1, 1); freqs(b, a)
sinc(t) y = rectpuls(t,width) y = tripuls(t, width,skew)
周期信号:正弦信号,周期方波
ex1. 产生一个幅度为2,频率为4Hz,相位为 p / 6 的正弦信号
A=2; f=4; phi=pi/6; w0=2*pi*f; t=0:0.01:1; x=A*sin(w0*t+ph字低通滤波器的幅度特性
冲激响应不变法
1. 冲激响应不变法设计IIR数字滤波器的基本原理:
h(n) ha (t) tnT
2.MATLAB信号处理工箱中的专用函数impinvar( ): 格式:[BZ,AZ] =impinvar(B,A,Fs) 功能:把具有[B,A]模拟滤波器传递函数模型转换成采样频率为Fs(Hz)的数字滤波器的 传递函数模型[BZ,AZ]。采样频率Fs的默认值为Fs=1。
连续时间信号在matlab中的表示
连续时间信号在matlab中的表示连续时间信号在Matlab中被表示为一个连续的函数。
下面我们来详细介绍一下如何用Matlab来表示连续时间信号。
一、连续时间信号的定义连续时间信号是定义在连续时间区间上的一种信号,可以用一个经过时间变化的函数来描述。
在Matlab中,我们可以用几个不同的工具箱来表示连续时间信号。
其中,Signal Processing工具箱和Control System 工具箱包含了用于处理和分析信号的函数。
二、信号的表示在Matlab中,我们使用函数来表示连续时间信号,其中最基本的函数是"plot"函数。
这个函数可以用来绘制一类特殊的连续时间信号,即连续时间的模拟信号。
下面是一个简单的例子来说明如何绘制一个sin(t)的连续时间信号:```t = linspace(0,10,1000); % 创建一个时间向量y = sin(t); % 创建信号向量plot(t,y); % 绘制信号```在上面的代码中,我们首先使用linspace函数创建了一个包含1000个元素的向量t,这个向量的范围是从0到10。
然后我们使用sin函数生成了一个与t同样大小的向量y,这个向量包含了sin(t)的值。
最后我们使用plot函数将信号在时间轴上绘制出来。
三、向量的表示在Matlab中,一个连续时间信号通常被表示为一个向量。
这个向量包含了在离散时间点上的信号值。
在Signal Processing工具箱和Control System工具箱中,有很多可以创建信号向量的函数。
比如,我们可以使用linspace函数来创建一个包含N个元素的等间隔时间向量。
另外一个常用的向量表示方法是采用时间采样,即在特定的时间间隔上对信号进行采样。
对于周期性信号,我们可以使用波形发生器来获取采样,并将采样结果存储在一个向量中。
四、信号的操作在Matlab中,我们可以对信号进行很多不同的操作。
比如,我们可以对信号进行加减乘除、傅里叶变换、卷积、滤波等等。
信号与系统Matlab实验作业
实验一典型连续时间信号和离散时间信号一、实验目的掌握利用Matlab画图函数和符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。
二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t=----的波形图。
f t e u t u t2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部和虚部的波形图。
t=0:0.01:10;f1='exp(0.4*t)*cos(8*t)';f2='exp(0.4*t)*sin(8*t)';figure(1)ezplot(f1,t);grid on;figure(2)ezplot(f2,t);grid on;3)画出教材P16图1-18,即抽样信号Sa(t)的波形(-20<t<20)。
t=-10:0.01:10;f='sin(t)/t';ezplot(f,t);grid on;4)用符号函数sign画出单位阶跃信号u(t-3)的波形(0<t<10)。
t=0:0.01:10;f='(sign(t-3)+1)/2';ezplot(f,t);grid on;5)单位冲击信号可看作是宽度为∆,幅度为1/∆的矩形脉冲,即t=t 1处的冲击信号为11111 ()()0 t t t x t t t otherδ∆⎧<<+∆⎪=-=∆⎨⎪⎩画出0.2∆=, t 1=1的单位冲击信号。
t=0:0.01:2;f='5*(u(t-1)-u(t-1.2))';ezplot(f,t);grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。
实验一MATLAB编程环境及常用信号的生成及波形仿真
实验⼀MATLAB编程环境及常⽤信号的⽣成及波形仿真实验⼀ MATLAB 编程环境及常⽤信号的⽣成及波形仿真⼀、实验⽬的1、学会运⽤Matlab 表⽰常⽤连续时间信号的⽅法2、观察并熟悉这些信号的波形和特性:3、实验内容:编程实现如下常⽤离散信号:单位脉冲序列,单位阶跃序列,矩形序列,实指数序列,正弦序列,复指数序列;⼆、实验原理及实例分析2、如何表⽰连续信号?从严格意义上讲,Matlab 数值计算的⽅法不能处理连续时间信号。
然⽽,可利⽤连续信号在等时间间隔点的取样值来近似表⽰连续信号,即当取样时间间隔⾜够⼩时,这些离散样值能被Matlab 处理,并且能较好地近似表⽰连续信号。
3、Matlab 提供了⼤量⽣成基本信号的函数。
如:(1)指数信号:K*exp(a*t)(2)正弦信号:K*sin(w*t+phi)和K*cos(w*t+phi)(3)复指数信号:K*exp((a+i*b)*t)(4)抽样信号:sin(t*pi)注意:在Matlab 中⽤与Sa(t)类似的sinc(t)函数表⽰,定义为:)t /()t (sin )t (sinc ππ=(5)矩形脉冲信号:rectpuls(t,width)(6)周期矩形脉冲信号:square(t,DUTY),其中DUTY 参数表⽰信号的占空⽐DUTY%,即在⼀个周期脉冲宽度(正值部分)与脉冲周期的⽐值。
占空⽐默认为0.5。
(7)三⾓波脉冲信号:tripuls(t, width, skew),其中skew 取值范围在-1~+1之间。
(8)周期三⾓波信号:sawtooth(t, width)(9)单位阶跃信号:y=(t>=0)常⽤的图形控制函数1)学习clc, dir(ls), help, clear, format,hold, clf控制命令的使⽤和M⽂件编辑/调试器使⽤操作;2)主函数函数的创建和⼦程序的调⽤;3)plot,subplot, grid on, figure, xlabel,ylabel,title,hold,title,Legend,绘图函数使⽤;axis([xmin,xmax,ymin,ymax]):图型显⽰区域控制函数,其中xmin为横轴的显⽰起点,xmax为横轴的显⽰终点,ymin为纵轴的显⽰起点,ymax为纵轴的显⽰终点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:常见连续信号的MATLAB 表示报告人: 姓名班级学号一、实验目的1、熟悉常见连续时间信号的意义、特性及波形;2、学会使用MATLAB 表示连续时间信号的方法;3、学会使用MATLAB 绘制连续时间信号的波形。
二、实验内容及运行结果1、运行以上5个例题的程序,保存运行结果。
2、已知信号()t f 的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。
<1)()t f -;<2)()2-t f ;<3)()at f <其中a 的值分别为21=a 和2=a ); <4)⎪⎭⎫ ⎝⎛+121t f 。
第一题例题1程序如下:>> t1=-10:0.5:10。
>> f1=sin(t1>./t1。
>> figure(1>>> plot(t1,f1>>> xlabel('取样间隔p=0.5'>。
>> title('f(t>=Sa(t>=sin(t>/t'>。
>> t2=-10:0.1:10。
>> f2=sin(t2>./t2。
>> figure(2>>> plot(t2,f2>>> xlabel('取样间隔p=0.1'>。
>> title('f(t>=Sa(t>=sin(t>/t'>。
运行结果如下:f(t)=Sa(t)=sin(t)/t取样间隔p=0.5f(t)=Sa(t)=sin(t)/t取样间隔p=0.1例题2程序如下:>> syms t>> f=sin(t>/t。
>> ezplot(f,[-10,10]>运行结果如下:sin(t)/tt例题3:程序如下:>> t=-1:0.01:4。
>> t0=0。
>> ut=stepfun(t,t0>。
>> plot(t,ut>>> axis([-1,4,-0.5,1.5]>运行结果如下:例题4:程序如下:>> t=-4:0.01:4。
>> t1=-2。
>> u1=stepfun(t,t1>。
>> t2=2。
>> u2=stepfun(t,t2>。
>> g=u1-u2。
>> plot(t,g>>> axis([-4,4,-0.5,1.5]>运行程序如下:例题五程序如下:>> t=-5:0.01:5。
>> f=sign(t>。
>> figure(1>。
plot(t,f>。
>> axis([-5,5,-1.5,1.5]> >> s=1/2+1/2*f。
>> figure(2>。
plot(t,s>。
>> axis([-5,5,-0.5,1.5]>运行程序如下:第二题绘制f(t>的波形图,程序如下:>> t=0:0.01:5。
%定义时间样本向量>> t1=-1。
%指定信号在t1=-1该时刻发生突变>> u1=stepfun(t,t1>。
%产生单位阶跃信号,u1 >> t2=1。
%指定信号在t2=1该时刻发生突变>> u2=stepfun(t,t2>%产生单位阶跃信号,u2 >> t3=-2。
%指定信号在t3=-2该时刻发生突变>> u3=stepfun(t,t3>。
%产生单位阶跃信号,u3>> u4=stepfun(t,t4>。
%产生单位阶跃信号,u4>> g=(u1-u2>+(u3-u4>。
%表示门函数,其中,u1-u2表示门宽为2的门信号,u3-u4表示门宽为4的门信号b5E2RGbCAP >> plot(t,g> %绘制门函数的波形>> axis([0,5,0,5]>%设定坐标轴范围0<x<5,0<y<5>> title('f(t>'>。
%备注波形的标题为f(t>>> xlabel('t'>。
%备注x 轴变量为t>> ylabel('f(t>'>%备注y 轴变量为f(t>运行结果如下:(1>f(-t>程序如下:>> t=-5:0.01:5。
%定义时间样本向量>> t1=-1。
%指定信号在t1=-1该时刻发生突变>> u1=stepfun(t,t1>。
%产生单位阶跃信号,u1f(t)t f (t )>> u2=stepfun(t,t2>。
%产生单位阶跃信号,u2>> t3=-2。
%指定信号在t3=-2该时刻发生突变>> u3=stepfun(t,t3>。
%产生单位阶跃信号,u3>> t4=2。
%指定信号在t4=2该时刻发生突变>> u4=stepfun(t,t4>。
%产生单位阶跃信号,u4>> g=(u1-u2>+(u3-u4>。
%表示门函数,其中,u1-u2表示门宽为2的门信号,u3-u4表示门宽为4的门信号p1EanqFDPw >> plot(t,g> %绘制门函数的波形>> axis([-5,0,0,5]>%设定坐标轴范围-5<x<0,0<y<5>> title('f(-t>'>%备注波形的标题为f(-t>>> ylabel('f(t>'>%备注y 轴变量为f(t>运行程序如下:<2)f(t-2>程序如下:f(-t)f (t )>> t=-5:0.01:5。
%定义时间样本向量>> t1=-1。
%指定信号在t1=-1该时刻发生突变>> u1=stepfun(t,t1>。
%产生单位阶跃信号,u1>> t2=1。
%指定信号在t2=1该时刻发生突变>> u2=stepfun(t,t2>。
%产生单位阶跃信号,u2>> t3=-2。
%指定信号在t3=-2该时刻发生突变>> u3=stepfun(t,t3>。
%产生单位阶跃信号,u3>> t4=2。
%指定信号在t4=2该时刻发生突变>> u4=stepfun(t,t4>。
%产生单位阶跃信号,u4>> g=(u1-u2>+(u3-u4>。
%表示门函数,其中,u1-u2表示门宽为2的门信号,u3-u4表示门宽为4的门信号DXDiTa9E3d>> plot(t+2,g> %绘制门函数的波形,t向右平移两个单位>> axis([0,5,0,5]> %设定坐标轴范围-5<x<0,0<y<5>> title('f(t-2>'> %备注波形的标题为f(t-2>运行结果如下:f(t-2)<3)f(at>当a=1/2时,f(1/2t>程序如下:>> t=-5:0.01:5。
%定义时间样本向量>> t1=-1。
%指定信号在t1=-1该时刻发生突变>> u1=stepfun(t,t1>。
%产生单位阶跃信号,u1>> t2=1。
%指定信号在t2=1该时刻发生突变>> u2=stepfun(t,t2>。
%产生单位阶跃信号,u2>> t3=-2。
%指定信号在t3=-2该时刻发生突变>> u3=stepfun(t,t3>。
%产生单位阶跃信号,u3>> t4=2。
%指定信号在t4=2该时刻发生突变>> u4=stepfun(t,t4>。
%产生单位阶跃信号,u4>> g=(u1-u2>+(u3-u4>。
%表示门函数,其中,u1-u2表示门宽为2的门信号,u3-u4表示门宽为4的门信号RTCrpUDGiT>> plot(2*t,g> %绘制门函数的波形,t增大一倍,>> axis([0,5,0,5]> %设定坐标轴范围-5<x<0,0<y<5>> title('f(1/2t>'> %备注波形的标题为f(1/2t>运行结果如下:f(1/2t)当a=2时,f(2t>的程序如下所示:>> t=-5:0.01:5。
%定义时间样本向量>> t1=-1。
%指定信号在t1=-1该时刻发生突变>> u1=stepfun(t,t1>。
%产生单位阶跃信号,u1>> t2=1。
%指定信号在t2=1该时刻发生突变>> u2=stepfun(t,t2>。
%产生单位阶跃信号,u2>> t3=-2。
%指定信号在t3=-2该时刻发生突变>> u3=stepfun(t,t3>。
%产生单位阶跃信号,u3>> t4=2。
%指定信号在t4=2该时刻发生突变>> u4=stepfun(t,t4>。
%产生单位阶跃信号,u4>> g=(u1-u2>+(u3-u4>。
%表示门函数,其中,u1-u2表示门宽为2的门信号,u3-u4表示门宽为4的门信号5PCzVD7HxA>> plot(1/2*t,g> %绘制门函数的波形,t缩小一倍>> axis([0,5,0,5]> %设定坐标轴范围-5<x<0,0<y<5>> title('f(2t>'> %备注波形的标题为f(2t>运行程序如图所示:f(2t)(4>f(1/2t+1>程序如下所示:>> t=-5:0.01:5。