优秀教案:勾股定理第1课时

合集下载

17.1勾股定理(第一课时)教案

17.1勾股定理(第一课时)教案

商丘市乡村中小学、幼儿园教师优质课评选17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超2016年6月21日17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

本节课试图通过数学活动,对学生所学知识进行内化与迁移,以发展思维。

同时对勾股定理的学习,对比我国数学家和西方数学家对勾股定理的研究,对学生进行爱国主义的教育,以落实素质教育的目标。

一、教学目标:知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理。

了解利用拼图验证勾股定理的方法。

数学思考:在勾股定理的探索过程中,让学生经历“观察—猜想—归纳—验证”,培养合情推理能力,体会数形结合和从特殊到一般的思想。

解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,感受数学文化,激发学生的爱国热情,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二、重点、难点1.重点:探索和证明勾股定理。

经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。

2.难点:勾股定理的证明。

经历用不同的拼图方法证明勾股定理。

3.突破方法:发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计一. 教材分析《勾股定理》是初中数学八年级下册第17.1节的内容,它是数学史上重要的定理之一。

本节内容通过引入直角三角形三边的关系,引导学生探究并证明勾股定理,进而运用该定理解决实际问题。

教材内容安排合理,由浅入深,既注重理论证明,又强调实际应用,有利于培养学生的探究能力和实践能力。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本知识,直角三角形的相关概念,以及一些基本的证明方法。

但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和空间想象力。

同时,学生需要通过实例感受勾股定理在实际生活中的应用,提高学习兴趣和积极性。

三. 教学目标1.理解勾股定理的定义和意义,掌握勾股定理的表达式。

2.学会运用勾股定理解决直角三角形相关问题。

3.了解勾股定理在实际生活中的应用,提高学习的实践能力。

4.培养学生的逻辑思维能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:勾股定理的证明和应用。

2.证明过程中涉及到的逻辑推理和空间想象力。

3.将勾股定理应用于解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生探究勾股定理。

2.运用多媒体辅助教学,展示勾股定理的证明过程。

3.采用案例教学法,让学生感受勾股定理在实际生活中的应用。

4.小组讨论,培养学生的团队合作能力。

六. 教学准备1.多媒体教学设备。

2.勾股定理相关教案、PPT、学习资料。

3.直角三角形模型或图片。

4.练习题及答案。

七. 教学过程1.导入(5分钟)通过展示直角三角形模型或图片,引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍勾股定理的定义和表达式,让学生初步了解勾股定理。

3.操练(15分钟)分组讨论,让学生尝试证明勾股定理。

在讨论过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对学生证明过程中的共性问题,进行讲解和总结,让学生掌握勾股定理的证明方法。

18.1《勾股定理》(第1课时) 优质课评选教案

18.1《勾股定理》(第1课时) 优质课评选教案

课题:18.1《勾股定理》(第1课时)授课老师:吴秀燕教材:人教版八年级下册64—66页【教学目标】1、知识与技能:经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系。

2、过程与方法:通过探究勾股定理,让学生体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。

3、情感态度与价值观:通过对勾股定理历史的了解,激发学生学习兴趣和求知欲望,培养学生的合作交流意识和探索精神。

【教学重点、难点】重点:勾股定理的探究。

难点:勾股定理的证明过程。

教具学具:纸板、剪刀、三角板、多媒体课件。

【教学方法与手段】通过启发探究、由浅入深、由特殊到一般的教学方法。

借助多媒体课件来完成教学。

引导学生通过自主探索、合作交流的学习方式,经历数学知识的形成与应用过程。

【教学过程设计】一、情境引入创设情境:几个学生周末玩电脑游戏过程中遇到一个关于三角形的问题而无法过关进入下一个环节:问题是这样的:已知直角三角形两条直角边长分别为6和8,那么斜边的长是多少呢?学生思考后揭示今天的课题——直角三角形三条边的数量关系。

二、实践探究1、特例观察推出结论学生观察出这类地板砖可以看成由多个全等的等腰直角三角形拼成。

提出问题:以等腰直角三角形三条边为边长的三个正方形面积有什么关系?学生通过数格子或割补等方法可以得出:两个黄色正方形的面积之和等于红色正方形的面积,再由正方形的面积等于边长的平方归纳出:等腰直角三角形斜边的平方等于两条直角边的平方和。

2、演算猜想深入探究揭示以上结论上早在2000多年前古希腊数学家毕达哥拉斯就推出来了,同时他还假设:任何直角三角形三条边之间的数量关系。

继续引导学生通过演算猜想进行探究。

出示课件并发放学具(网格中每一个小正方形的边长为1)学生以小组抢答的形式迅速说出正方形A 、B 的面积; 通过小组合作、交流探究发现正方形C 的面积求法多种,以小组为单位派代表进行总结;通过以上活动,学生计算探究出直角三角形三边之间的数量关系,归纳猜想命题1:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+ b 2= c 2。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

勾股定理(第1课时)教案

勾股定理(第1课时)教案

人教版八年级数学勾股定理(第1课时)教学案例一、教学目标本节是直角三角形相关知识的延续,同时也是学生理解无理数的基础,充分表达了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步使用勾股定理实行简单的计算和实际使用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及水平;进一步体会数学与现实生活的紧密联系.三、教学过程一、创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”相关的图形,即著名的“赵爽弦图”(板书课题)意图:紧扣课题,自然引入,激发起学生的求知欲和爱国热情.二、师生合作,探索发现勾股定理1.探究活动一:毕达哥拉斯的故事内容:①学生自主学习课本P22②PPT显示如下地板砖示意图,引导学生从面积角度观察图形③问题1:三个正方形的面积S1、S2、S3有什么关系?④学生通过观察,归纳发现⑤教师总结得出:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.2.探究活动二内容:由结论1我们自然产生思考:其他的直角三角形也有这个性质吗?①PPT 出示图1-2、图1-3及需要填写的表格②学生观察两图,完成填表:③你是怎样得到正方形C 的面积的?与同伴交流.④分析填表的数据,你发现了什么?学生通过度析数据,归纳出:命题1 假设直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.(因为正方形C 的面积计算是一个难点,为此设计了一个交流环节).3.探究活动三内容:问题3:赵爽弦图是如何证明命题1的?①学生自主研读课本P 23—P 24②学生用所发教具,分小组按课本要求拼出“赵爽弦图”③完成PPT 给出的导学内容④学生通过小组拼图,自主填空,证明得出勾股定理:直角三角形两直角边的平方和等于斜边的平方.假设用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.意图:探究三意在让学生在命题1的基础上,通过让学生动手拼一拼,算一算,说一说,体会数形结合,进一步通过“赵爽弦图”,证明得到勾股定理.三、勾股定理的简单应用1.应用的条件:(1)直角三角形.(2)知二求一:知道其中的两条边求另一条边.2.结论变形的介绍3.习题巩固:(1)基础巩固练习:协助学生巩固基础知识,学会用勾股定理建立方程(2)强化训练:防止学生死记公式222c b a =+,扩展学生的知识面,学会如何知一求二 四、课堂小结内容:教师提问:1. 勾股定理总结的是什么数量关系?2. 勾股定理有哪些应用?在学生自由发言的基础上,师生共同总结:知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.假设用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.方法: (1) 观察—探索—猜想—验证—归纳—应用;(2)“割、补、拼、接”法.思想: (1) 特殊—一般—特殊;(2) 数形结合思想.意图:通过畅谈收获和体会,意在培养学生口头表达和交流的水平,增强持续反思总结的意识.五、布置作业内容:布置作业:1.教科书练习题 2.长江作业本。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

18.1勾股定理(第一课时) 优质课评选教案

18.1勾股定理(第一课时) 优质课评选教案

课题:18.1勾股定理(第一课时)授课教师:刘健芬教材:义务教育课程标准实验教科书《数学》八年级下册(人民教育出版社)一、教学目标:【知识与能力目标】1、理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单的计算;2、培养学生动手操作、合作交流、逻辑推理的能力。

【过程与方法目标】让学生经历“观察-猜想-归纳-验证”的数学思想的形成过程,并体会数形结合和从特殊到一般的数学思想方法。

【情感态度与价值观】激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

二、教学重点和难点:【教学重点】勾股定理的发现、验证和简单应用。

【教学难点】用面积法、拼图法证明勾股定理。

三、教学方法与手段:【教学方法】引导探索法(让学生分小组讨论)【学法指导】自主探索、合作交流的研讨式学习方式【教具准备】多媒体课件,三角尺【学具准备】三角尺、剪刀和边长分别为a、b的两个连体正方形纸片四、教学过程教学过程设计活动1 创设情境→激发兴趣2002年在北京召开的第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案. 它象一个转动的风车,挥舞着手臂,欢迎来自世界各国的数学家们.(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?会徽教师出示照片及图片.学生观察图片发表见解.教师作补充说明:这个图案是我国汉代数学家赵爽用来证明勾股定理的“赵爽弦图”加工而来,展现了我国古代对勾股定理的研究成果,是我国古代数学的骄傲.教师应重点关注:(1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣;(2)学生对勾股定理的了解程度.通过欣赏图片,了解历史,介绍与勾股定理有关的背景知识,激发学生学习兴趣,自然引出本节课的课题.(板书课题)活动2 观察特例→发现新知毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面图18.1-1(2)你能找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?教师展示图片,提出问题.学生独立观察图形,分析思考其中隐藏的规律.学生通过直接数等腰直角三角形的个数,或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.教师引导学生,由正方形的面积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.通过讲传说故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.通过层层设问,引导学生发现新知.并且让学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

《17.1勾股定理》教学设计(第1课时)

《17.1勾股定理》教学设计(第1课时)

《17.1 勾股定理》教学设计(第1课时)一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:假如直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就能够求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从专门的等腰直角三角形动身,到网格中的直角三角形,再到一样的直角三角形,表达了从专门到一样的探探究、发觉和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探究去发觉图形的性质,提出一样的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,关于勾股定理的研究确实是一个突出的例子.教学中能够介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的奉献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探究并证明勾股定理.二、目标和目标解析1.教学目标(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定明白得决一些简单问题.2.目标解析(1)学生通过观看直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.明白得赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,明白我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的运算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个专门的结论.在正方形网格中比较容易发觉以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一样直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观看网格背景下的正方形的面积关系,然后摸索没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发觉和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计1. 创设情境复习引入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2021年在北京召开了第24届国际数学家大会.右图确实是大会会徽的图案.你见过那个图案吗?它由哪些我们学过的差不多图形组成?那个图案有什么专门的意义?前面我们学习了有关三角形的知识,我们明白,三角形有三个角和三条边.问题1三个角的数量关系明确吗?三条边的数量关系明确吗?师生活动教师引导,学生回答。

《勾股定理(1)》名师教案

《勾股定理(1)》名师教案

17.1 勾股定理第一课时一、教学目标 1.核心素养:通过学习勾股定理,初步发展基本的几何直观和逻辑推理能力. 2.学习目标(1)观察以直角三角形的三边为边长的正方形面积的关系,发现勾股定理的结论.(2)能证明勾股定理.(3)应用勾股定理解决简单的问题.(4)了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就. 3.学习重点探索并证明勾股定理. 4.学习难点勾股定理的探索和证明. 二、教学设计 (一)课前设计 1.预习任务任务1:阅读教材P22-P24,思考:勾股定理的内容是什么?你还有哪些方法可以证明勾股定理?任务2:怎样利用勾股定理求线段的长?你能将此公式进行哪几种变形?2.预习自测1.求下图中的字母代表的正方形的面积:A=________,B=_________.第1题图 2.如图,求未知边=_________,=_________.205b预习自测1.225,2252.25,12(二)课堂设计1.知识回顾(1)正方形的面积怎样计算?(2)经过证明被确认为叫做定理.2.问题探究问题探究一、观察图形的面积关系,发现勾股定理的结论●活动一观察与思考:(1)等腰直角三角形三边关系如图1,三个正方形的面积有什么关系?由此联想到等腰直角三角形的三边有何数量关系?图1 图2(2)两条直角边分别为3、4个单位的直角三角形三边关系如图2,正方形A的面积为____个单位,正方形B的面积为_____个单位,正方形C的面积可以用“割”的方法,将正方形分割成4个直角边分别为_____、_____的全等直角三角形与1个边长为______的正方形面积之和;也可用“补”的方法,用1个边长为_____的正方形面积减去4个直角边分别为_____、____的全等直角三角形的面积),即正方形C的面积为________单位.通过计算可以发现两直角边分别为3、4个单位的直角三角形的三边关系为________.(3)两条直角边分别为任意整数个单位的直角三角形三边关系请你在下列方格图中,画一个直角边为整数的直角三角形,探究你所画的直角三角形是否也有上述性质?●活动二猜想结论:根据以上观察你发现直角三角形的三边有怎样的数量关系?命题:直角三角形的两直角边的平方和等于斜边的平方.符号表示:在Rt△ABC中,若BC=,AC=b,AB=c,则.问题探究二验证勾股定理●活动一大胆猜想,从的“式结构”来看,可以联想到正方形面积的“形结构”.如图3,构造出边长分别为、的正方形面积来证明.●活动二集思广益,证明勾股定理如图4,用“割”的方法,可得= (________)2 - 4×_______,化简整理得.如图5,用“补”的方法,可得= (________)2 +4×_______,化简整理得.●活动三感受我国数学家赵爽的证明教材P23—P24,P30,阅读我国古代数学家赵爽对勾股定理的研究,并完成课本拼图法证明勾股定理.勾股定理:如果直角三角形的两直角边分别为、,斜边为,则.●活动四反思过程,公式变形公式变形:b2 = c2-a2 →b=;a2 = c2-b2 →a =问题探究三勾股定理的简单应用●活动一初步运用,运用定理求线段长例1 在Rt△ABC中,∠C=90o,∠A、∠B、∠C的对边分别是、、.【知识点:勾股定理;数学思想:数形结合】(1)若=3,=5,求;(2)若=8,=17,求;(3)若∶ =1∶2,=5,求.详解:(1)∵,∴==;(2)略(3)由∶ =1∶2,可设,则=,解得=.∴=,=2.点拨:已知直角三角形的两边长,利用勾股定理求第三边长时,关键是弄清已知什么边,求什么边,灵活运用公式求解.●活动二变式应用例2 在Rt△ABC中,AB=4,AC=6,求BC的长.【知识点:勾股定理,二次根式的运算;数学思想:数形结合】详解:此题与上题相比,未指明哪个角为直角,即不清楚谁为斜边,所以应分两类进行计算.①当AC为斜边时,则,即==;②当BC为斜边时,则,即==.综上,BC的值为或.点拨:利用勾股定理解题时若未明确直角边、斜边,则应分类讨论进行计算. 3.课堂总结【知识梳理】(1) 勾股定理:如果直角三角形的两直角边分别为、,斜边为,则.(2) 公式变形:b2 = c2-a2 →b=; a2 = c2-b2 →a =【重难点突破】(1)勾股定理揭示了直角三角形三边的数量关系. 已知、、(为斜边)中的任意两边,能求出第三边,①已知、,则 =;②已知、,则=;③已知、,则.(2)运用勾股定理时应注意:①确定该三角形是直角三角形;②分清直角边和斜边,若未明确直角边、斜边,则应分类讨论.(3)勾股定理的发现、归纳、猜想和验证,体现了从特殊到一般的数学思想和数学结合思想.(4)面积法验证勾股定理的关键是,要找到一些特殊图形(如直角三角形、正方形、梯形)的面积之和等于整体图形的面积,从而达到验证的目的.4.随堂检测1.下列说法正确的是()A.若、是△ABC的三边长,则.B.若、是Rt△ABC的三边长,则.C.若、是Rt△ABC的三边长,∠A=90o ,则.D.若、是Rt△ABC的三边长,∠C=90o,则.【知识点:勾股定理;数学思想:数形结合】【参考答案】D .【解析】运用勾股定理时应注意:确定该三角形是直角三角形;并分清直角边和斜边,根据定理两直角边的平方和等于斜边的平方. 故选D.2.在Rt△ABC中,∠C=90o,∠A、∠B、∠C的对边分别是、、.(1)若=6,=8,则=_________ ;(2)若=9,=15,则=_________.【知识点:勾股定理,二次根式的运算;数学思想:数形结合】【参考答案】10;12【解析】根据勾股定理,C=;b=3.在Rt△ABC中,∠B=90o,AB=5,AC=10,则BC=_________.【知识点:勾股定理,二次根式的运算;数学思想:数形结合】【参考答案】【解析】根据勾股定理,BC=.4.直角三角形的两边分别为3、4,则第三边的长为_________.【知识点:勾股定理,二次根式的运算;数学思想:分类讨论】【参考答案】5或【解析】由于此题并未明确谁是直角边,所以应该分类讨论:①若3、4分别为直角边,则根据勾股定理可求斜边长为5;②若4为斜边,则根据勾股定理可求另一直角边为.。

勾股定理教案第一课时

勾股定理教案第一课时

勾股定理教案第一课时教案标题:勾股定理教案第一课时教案目标:1. 学生能够理解勾股定理的基本概念和原理。

2. 学生能够应用勾股定理解决简单的直角三角形问题。

3. 学生能够合作与交流,共同解决勾股定理相关问题。

教学资源:1. 教材:包含勾股定理相关内容的数学教材。

2. 幻灯片:用于展示勾股定理的基本概念和原理。

3. 白板和标记笔:用于解题演示和学生互动。

教学步骤:引入(5分钟):1. 引起学生兴趣:通过展示一些有趣的直角三角形图片,引起学生对勾股定理的好奇心。

2. 提出问题:引导学生思考,如果已知一个直角三角形的两条直角边的长度,如何求出斜边的长度?探究(15分钟):1. 概念讲解:使用幻灯片或白板,简明扼要地解释勾股定理的概念和原理,即直角三角形中,直角边的平方和等于斜边的平方。

2. 解题演示:选择一个简单的直角三角形问题,例如已知直角边长度分别为3和4,让学生观察解题过程并思考如何应用勾股定理求解斜边长度。

3. 学生实践:将学生分成小组,给予每组一些直角三角形问题,让他们尝试应用勾股定理求解。

鼓励学生合作与交流,共同解决问题。

总结(10分钟):1. 回顾勾股定理的概念和原理,确保学生对其有清晰的理解。

2. 鼓励学生分享他们的解题思路和答案,促进彼此之间的学习和交流。

3. 强调勾股定理在解决直角三角形问题中的重要性,并提醒学生在今后的学习中继续应用该定理。

作业(5分钟):布置一些练习题,要求学生在家中继续练习应用勾股定理解决直角三角形问题,并在下节课前完成。

教学扩展:1. 对于学习较快的学生,可以引导他们探究勾股定理的推导过程,深入了解其数学原理。

2. 对于学习较慢的学生,可以提供更多的练习机会,并提供辅助材料,如图形边长比较表格,帮助他们更好地理解和应用勾股定理。

教学评估:1. 在课堂上观察学生对勾股定理的理解和应用情况,及时给予指导和帮助。

2. 收集学生在小组合作中解决问题的表现,评估他们的合作能力和交流能力。

勾股定理第一课时优秀教案

勾股定理第一课时优秀教案

勾股定理第一课时优秀教案一、教学目标1. 知识目标:让学生掌握勾股定理的基本概念和公式,理解其重要性和应用价值。

2. 能力目标:培养学生观察、推理和归纳的能力,以及应用数学知识解决实际问题的能力。

3. 情感目标:通过探究勾股定理的历史背景和各种证明方法,让学生感受数学的魅力,培养他们的创新意识和科学精神。

二、教学重点和难点1. 教学重点:勾股定理的证明方法和应用。

2. 教学难点:理解勾股定理的证明思路,以及如何将定理应用到实际问题中。

三、教学过程1. 导入:通过讲述毕达哥拉斯发现勾股定理的故事,激发学生的学习兴趣。

同时,介绍中国的“勾三股四弦五”经典证明方法,让学生了解定理的历史渊源。

2. 新授:通过图示和证明方法的逐步演示,让学生理解勾股定理的证明思路。

利用数学模型和实际例子相结合的方式,加深学生对定理的理解。

同时,让学生了解勾股定理在实际问题中的应用,如建筑测量、计算机图形处理等。

3. 练习:提供一些与勾股定理相关的练习题,让学生巩固所学知识。

同时,鼓励学生尝试自己发现新的证明方法和应用实例。

4. 归纳:总结本节课的主要内容,强调勾股定理的重要性和应用价值。

同时,让学生分享自己在探究过程中的体会和收获。

5. 作业:布置一些与勾股定理相关的题目,要求学生独立完成,并要求他们在下一节课进行交流和讨论。

四、教学方法和手段1. 教学方法:采用讲解、演示、探究和实践相结合的方法,让学生全面了解勾股定理的相关知识。

2. 教学手段:利用多媒体教学工具,如PPT、视频等,展示证明过程和实际应用例子。

同时,引导学生通过观察、思考和实践来掌握定理及其应用。

五、课堂练习、作业与评价方式1. 课堂练习:提供一些与勾股定理相关的练习题,包括基础题和提高题两种类型,以满足不同层次学生的学习需求。

要求学生在课堂上完成基础题,并尝试解决提高题。

2. 作业:布置一些与勾股定理相关的题目,要求学生独立完成。

题目应涉及定理的各个方面和应用领域,以帮助学生全面掌握知识。

17.1《勾股定理》教案(第1课时)

17.1《勾股定理》教案(第1课时)

勾股定理
教学设计说明
“勾股定理”是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位.整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.
本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.。

人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例

人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例
2.利用合作交流、讨论探究等学习方式,培养学生解决问题的能力,提高学生的团队协作精神。
3.教师引导学生运用数形结合的思想,将抽象的数学问题具体化,提高学生的数学思维能力。
(三)情感态度与价值观
1.激发学生对古代数学文化的兴趣,培养学生对数学的热爱,提高学生的学科素养。
2.通过赞美勾股定理的美,让学生感受数学的严谨、精确,树立正确的数学观念。
5.人文素养培养:教师在教学过程中注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。这种教学方式使学生在学习数学知识的同时,也能够提升自己的综合素质,培养自己的审美情趣。
本节课的案例亮点体现了教学的实用性、互动性和人文性,充分调动了学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示古代中国建筑中的勾股定理应用,如赵州桥、故宫等,让学生感受数学与实际生活的紧密联系。
2.创设有趣的问题情境,如“勾股定理是如何被发现的?”、“你能用勾股定理解决生活中的问题吗?”等,激发学生的好奇心,引发学生的思考。
3.教师总结并提出本节课的学习目标,引导学生明确本节课的学习内容。
(四)反思与评价
1.教师引导学生对所学知识进行总结,让学生明确勾股定理的定义、证明方法及其应用。
2.学生通过自我评价、同伴评价等方式,反思自己在探究过程中的表现,发现自身的不足,提高自我调控能力。
3.教师针对学生的学习情况,给予及时的反馈和评价,关注学生的成长过程,激发学生的学习动力。
在整个教学过程中,教师应以引导者、组织者、合作者的角色,关注学生的个体差异,充分调动学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。

勾股定理公开课优质课教学设计一等奖及点评

勾股定理公开课优质课教学设计一等奖及点评

勾股定理(第1课时)人教版《义务教育教科书·数学》(八年级下册第十七章17.1)义务教育教科书数学八年级下册(人民教育出版社)17.1勾股定理(第1课时)教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系,把形的特征(三角形中有一个角是直角)转化成数量关系:三边之间满足等式:a2+b2=c2,它搭建起了几何图形和数量关系之间的一座桥梁,从而发挥了重要的作用.勾股定理体现了数形结合的思想方法,具有科学创新的重大意义.勾股定理启发了人类对数学的深入思考,促成了在三角学、解析几何学、微积分学的建立,使数学的几何学和代数学两大门类结合起来,对数学进一步的发展拓宽了道路.没有勾股定理,就难以建立起整个数学的大厦.因此,勾股定理不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一.勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,体现了从特殊到一般的探索的过程,由具体的关系归纳出抽象的猜想,学生亲手实践赵爽的面积证法,证明猜想、发现定理,并以此引导学生探索、发现、证明定理的思路.通过对勾股定理的探究和发现,培养学生学习数学的热情和自信心.我国对勾股定理的研究和其他国家相比是比较早的,在国际上得到肯定.通过对勾股定理历史和我国古代研究勾股定理成就的介绍,以及赵爽证明勾股定理的巧妙弦图,培养学生的民族自豪感,品味数学文化.在直角三角形中,已知任意两边长,就可以求出第三边长.勾股定理常用来求解线段长度或距离问题,这是勾股定理最基础的应用.基于以上分析,确定本节课的教学重点:探索并证明勾股定理.二、目标和目标解析1.目标(1)经历勾股定理的探究、证明过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定理解决一些简单问题.2.目标解析目标(1)要求学生通过观察以直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.理解赵爽弦图的意义及其证明勾股定理的思路,能通过面积不变的关系和对图形面积的不同算法证明勾股定理.了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的计算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个特殊的结论.在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难.因此,在教学中先引导学生观察网格背景下的正方形的面积关系,然后思考正方形的面积和直角三角形边的关系,再将这种关系表示成边长之间的关系,归纳出结论.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,小组合作在此发挥了很大的优势,学生间的互助、交流有利于学生自然、合理地发现和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学支持条件分析借助PPT动画,动态地演示从网格中的等腰直角三角形,到网格中的一般直角三角形的变化过程,启发学生考虑用割补法求正方形的面积.在学生拼图验证猜想后,播放视频动画再现赵爽弦图的剪拼过程,形象、直观.利用软件的迭代功能,制作出漂亮的勾股树,品味数学之美.教学流程:1、创设情境,导入新课→2、师生互动,探究规律→3、动手实践,验证猜想→4、观察欣赏,感知文化→5、运用定理,巩固新知→6、畅谈收获,归纳小结→7、布置作业,温故新知.五.教学过程设计环节一:情景引入同学们,2002年国际数学家大会在我国的北京召开,下图就是这一届大会会徽的图案.请你仔细的观察这副图案,说一说,它是由哪些基本图形组成的?生:四个直角三角形和正方形组成的师:直角三角形与正方形是我们生活当中比较常见的基本图形,我们已经学过直角三角形两角之间的关系,两个锐角互余,今天这节课来研究直角三角形三边之间的特殊关系评析:本节课由国际数学学家大会的会徽导入,激发学生的兴趣,引入新课教师引导学生发现会徽图案是由直角三角形、正方形组成.引出本节内容是研究直角三角形三边之间的某种特殊关系.环节二:师生互动,探究规律问题1:相传2500多年前,毕达哥拉斯从地砖图案中发现了直角三角形三边之间的某种数量关系.我们也来观察一下这副示意图,我把地砖的颜色给隐藏,可以清楚的发现图中每个小三角形都是等腰直角三角形,假设每个小等腰直角三角形的面积为1.问题1:图中三个正方形A,B,C的面积分别是多少?三个面积之间有什么等量关系?接下来,在网格图中画出一个任意的直角三角形,像刚才的示意图一样,以这个直角三角形的三边为边长向外作出三个正方形,分别记为A,B,C,假设图中每个小正方形的面积为1.问题1:正方形A的面积为?正方形B的面积为?正方形C的面积呢?追问:如何求正方形C的面积呢?师:通过古希腊数学家在朋友家做客,发现朋友家的地板砖三边之间的数量关系,通过图中观察正方形内的三角形是什么三角形?生:等腰直角三角形师:假设每个小的等腰直角三角形的面积为1,请同学们思考A、B、C三角形的面积各位多少?生:正方形A与B的面积为2,正方形C的面积为4师:继续思考正方形A、B、C面积之间有怎样的等量关系?生:正方形A的面积+正方形B的面积=正方形C的面积师:这个结论在等腰直角三角形的前提下成立,反问在一个任意的直角三角形当中是否还成立呢?生:猜想成立问题2:三个正方形A , B ,C 面积之间有什么关系?S A +S B =S C下面,我把这幅示意图中的三个正方形推开,把这个直角三角形的三边记为a ,b ,c ,直角三角形三边之间有什么关系呢?得出猜想:如果直角三角形的两条直角边长分别为a ,b ,斜边长为 c ,那么a 2+b 2=c 2.问题:c 的平方可以表示为什么图形的面积?师:给出任意的直角三角形以各个边向外作正方形A 、B 、C ,假设每个小正方形面积都为1,思考正方形A 、B 、C 的面积为多少?生:正方形A 的面积为16,正方形B 的面积为9 正方形C 的面积为25师:请学生解释一下正方形C 的面积为什么为25?生:正方形A 的面积+正方形B 的面积=正方形C 的面积师:这个规律刚刚是在等腰直角三角形当中得到的,这个三角形是一般的直角三角形,这个结论还能用吗?生:不能师:如何来求正方形C 的面积呢?请同学们思考一下 C BA b a c生:使用割的办法来求正方形C的面积,把正方形C切割成4个直角三角形+一个正方形得到正方形C的面积为25师:请思考一下还有没有其他办法?生:补上4个小的直角三角形,通过大的正方形的面积减去4个直角三角形的面积师:这两种方法都可以求出正方形C的面积,统称为“割补法”师:通过正方形A、B、C的面积数据,有什么等量关系?你们能得出什么结论?生:正方形A的面积+正方形B的面积=正方形C的面积师:把直角三角形的三边记为a、b、c,能否由上面的等式推出直角三角形三边之间的等量关系?生:因为S A+S B=S C,所以a2+b2=c2师:那个同学能够用文字语言来表达一下呢?生:直角三角形两直角边的平方和等于斜边的平方师:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2,这个结论是在网格图当中得到,去掉网格,这个结论还成立吗?评析:由地砖中存在的特殊示意图导入,发现围成等腰直角三角形的三个正方形面积之间存在特殊的数量关系.在正方形的网格图中进一步研究这个示意图,由特殊的直角三角形过渡到一般的直角三角形,面积之间也存在特殊的数量关系.问题1中,教师提出问题,让学生自己独立观察图形,分析数据,思考其中隐含的规律.得出结论:在等腰直角三角形的前提条件下,从这幅示意图中可以得出小正方形A,B的面积之和等于大正方形C的面积.学生很容易通过数格子的方法答出正方形A和正方形B的面积.难点是求由斜边所作的正方形C的面积.环节三:动手实践,验证猜想拼图活动:请同学们拿出课前老师分发的四个直角三角形,拼一拼,摆一摆,看能否得到一个含有边长为c的正方形.请同学上台展示他们的拼图结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1 勾股定理第1课时直角三角形三边的关系
社旗县二初中丁云锋
2012年10月
14.1勾股定理直角三角形三边的关系
教学目标:
知识与技能:掌握勾股定理及其简单应用,理解定理的一般探究方法
过程与方法:探索勾股定理的活动,让同学们经历观察、归纳、猜想和验证的数学发现过程,发展数形结合的数学思想。

情感、态度与价值观:发展学生的探究意识和合作交流的良好学习习惯,激发热爱祖国的思想感情,培养他们的民族自豪感。

教学重点、难点:
重点:掌握勾股定理及其简单应用
难点:用测量和拼图法说明勾股定理
教学过程:
(一)创设情境,导入新课
导语:同学们,中华民族有五千年悠久的历史,我们创造了灿烂的文化。

在数学方面,有大家熟悉的祖冲之对圆周率的贡献,以及刚刚接触过的杨辉三角等。

在平面几何方面,我们国家也有突出的成就,大家想不想了解呢?(板书课题——14.1 勾股定理直角三角形三边的关系)
(二)提出问题,引入探究
某楼房三楼失火,消防队员赶来灭火,了解到每层楼房
高3米,消防队员搬来一架6.5米长的梯子,要求梯子的底部离墙脚2.5米,请问消防队员能否顺利进入三楼灭火?
学生猜想。

那么怎样用数学的方法解决这个问题呢?学完本节课大家就能解决了。

活动一:探究等腰直角三角形三边之间的关系
出示课件图一,让学生完成表格,最后得出结论:等腰直角三角形两条直角边的平方和等于斜边的平方
猜想:一般的直角三角形的三边有这样的关系吗?
活动二:探究一般的直角三角形三边的关系
出示课件图二和图三,让学生小组合作完成表格,强调用分割法或拼图法求最大的,即以斜边为边的正方形的面积。

在学生充分探究的基础上得出结论:勾股定理直角三角形两条直角边的平方和等于斜边的平方。

几何语言:∵在Rt△ABC中,∠C=90°(已知)
∴a2+b2=c2(勾股定理)
做一做:在课本后边的网格中画一个直角三角形,使它的两条直角边分别为3cm和4cm,测量出斜边的长度,计算一下两条直角边的平方和以及斜边的平方,看看是否相等。

进一步验证勾股定理的正确性。

那么,如果改为∠B=90°,用几何语言该怎样描述呢?
向学生介绍勾股史话,特别是课本47页,我国古代数
学家赵爽在1700多年前用来证明勾股定理的弦图,作为2002年国际数学大会的会标。

(三)应用知识,解决问题
那么,勾股定理能用来做什么?怎么用呢?板书勾股定理的结论变形,介绍勾股定理的应用格式。

例题1 在Rt△ABC中,∠C=90°a、b、c分别是∠A、∠B、∠C的对边
(1)若a=3,b=4,求c的长。

(2)若a=5,b=12,求b的长。

(3)若a:b=3:4,c=15,求a、b的长。

学生在独立思考的基础上,小组合作探究完成。

找同学展示成果,规范解题格式。

例题2 一个直角三角形两边长分别是3和4,那么这个直角三角形的周长是多少?
注意提醒学生这里没有明确那一条边是斜边,应该怎样办呢?引导学生画出图形进行解答求出两个结
论。

再次提醒学生运用勾股定理时一定要认准斜边。

练一练:(1)在Rt△ABC中,∠A=90°,a=5,b=4,求c.
(2)在Rt△ABC中,∠B=90°,c=24,b=25,求a
(3)在Rt△ABC中,∠C=90°,a:c=5:13,b=12,
求a、c的长。

注意规范解题格式
例题3 出示课件例3,课本50页例题,让学生从实际问题中提炼出几何图形,运用所学知识解决。

回到开始提出的问题,让学生运用所学知识判断消防队员能不能进入三楼灭火。

(四)拓展运用
在Rt△ABC中,∠c=90°,CD⊥AB,AC=3,BC=4,求CD的长。

(五)课堂小结
说一说这节课你有哪些收获?还有什么疑惑?
作业:(1)查找勾股定理有关资料以及证明勾股定理的方法。

(2)课本55页第2、3题
板书设计
14.1勾股定理直角三角形三边的关系
等腰直角三角形三边的关系例题1
一般直角三角形三边的关系
勾股定理:直角三角形两条直角边的平方例题2
和等于斜边的平方
几何语言:Rt△ABC中,∠C=90°(已知)拓展应用所以a2+b2=c2(勾股定理)。

相关文档
最新文档