岩土弹塑性力学

合集下载

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

岩土弹塑性力学

岩土弹塑性力学

. 20
q 洛德参数与受力状态
m (I1 )、q (J 2 )、 (J 3 )与 1 、 2 、
关系
2
主偏应力方程, S3J2SJ30
三角恒等式模拟,si3 n4 3sin1 4si3 n0
1 2 3
2 3
q
s s s
i i i
n n n
2
3
2
3
m m m
.
21
q 岩土本构模型建立
q 岩土塑性力学与传统塑性力学不同点
Ø球应力与偏应力之间存在交叉影响;
Ø考虑等向压缩屈服
Ø屈服准则要考虑剪切屈服与体积屈服,剪切屈服中要考虑平均 应力;
v
p Kp
q Ks
p
q
Gp Gs
Kp,Ks,Gp,Gs——弹塑性体积模量,剪缩模量,压硬模量,
弹塑性剪切模量
. 16
q 岩土塑性力学与传统塑性力学不同点
q 岩土塑性力学及其本构模型发展方向 q 岩土材料的试验结果
q 岩土材料的基本力学特点
q 岩土塑性力学与传统塑性力学不同点
q 岩土本构模型的建立
. 3
q 岩土塑性力学的提出
Ø材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
. 4
q 岩土塑性力学的提出
Ø塑性力学与弹性力学的不同点: • 存在塑性变形 • 应力应变非线性 • 加载、卸载变形规律不同 • 受应力历史与应力路径的影响
. 9
q 岩土塑性力学及其本构模型发展方向
Ø 建立和发展适应岩土材料变形机制的、系统的、严 密的广义塑性力学体系
Ø 理论、试验及工程实践相结合,通过试验确定屈服 条件及其参数,以提供客观与符合实际的力学参数

岩土弹塑性力学教学课件(共13章)第3章_应变状态

岩土弹塑性力学教学课件(共13章)第3章_应变状态

§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因

岩土塑性力学简介(3)

岩土塑性力学简介(3)

•σ1、σ2、σ3为三个塑性势函数:
6
岩土塑性力学简介
3 塑性位势理论(续)
d ijp d1 1 2 d2 d3 q 3 ij ij ij
d1 d1p , d2 d 2p , d3 d 3p
di求法:等向强化模型的三个主应变屈服面
v ij p v q ij p q
1
2

ij

p
3

p v p q p
v
ij
q
ij

ij

p v p q p
v
ij
q
ij

ij
不完全等向硬化
等向硬化
硬化模量为:A=1
8
岩土塑性力学简介
3 塑性位势理论(续) •屈服面与塑性势面的关系:
(1)塑性势面确定塑性应变增量的方向,屈服面确定 塑性应变增量的大小; (2)屈服面必须与塑性势面相应,如塑性势面为q, 则相应的塑性应变与硬化参量为qp ,屈服面为q方向 上的剪切屈服面fq(ij ,qp),即qp的等值线; (3)三个分量屈服面各自独立,体积屈服面只与塑性 体变有关,而与塑性剪变无关; (4)由dq、d引起的体变是真正的剪胀 ; (5)屈服面与塑性势面相同,是相应的一种特殊情况。
2

12
Q d qp d q
1 Q d p d q
d与只有在势面为圆形时相等
1
岩土塑性力学简介
3 塑性位势理论(续) •举例:米赛斯,屈瑞斯卡,统一剪切破坏条件 3.3 传统塑性位势理论剖析
•岩土界的四点共识:
(1)不遵守关联流动法则; (2)不具有塑性应变增量方向与应力唯一性假设; (3)岩土材料应考虑应力主轴旋转; (4)莫尔-库仑类剪切模型产生过大剪胀;剑桥模 型不能很好反映剪胀与剪切变形;

岩土塑性力学简介(3)

岩土塑性力学简介(3)

p p p d1 dv , d2 d q , d3 d
f v f v ( ij , vp ) 等向硬化模型时 p f q f q ( ij , q ) f f ( ij , p )
vp f v ij f v ( p, q, ) qp f q ij f q ( p, q, ) p f ij f ( p, q, )
(1)塑性应变增量方向与应力增量的方向有关,因 而无法用一个塑性势函数确定塑性应变总量的方向,
5
岩土塑性力学简介
3 塑性位势理论(续)
但可确定三个分量的方向,即以三个分量作势面; (2)采用三个线性无关的分量塑性势函数; (3)dk不要求都大于等于零; (4)塑性势面可任取,一般取p、q、 ,也可取 σ1、σ2、σ3 ;屈服面不可任取,必须与塑性势面相应, 特殊情况相同; (5)三个屈服面各自独立,体积屈服面只与塑性体 变有关,而与塑性剪变无关; (6)广义塑性力学不能采用正交流动法则。
n H ( p ) F ( p, q, ) p 2 1 p k
子午平面上不封闭,π平面上封闭
(2)体积屈服面类型 ①压缩型:右图(a)②压缩剪胀型: 右图(b)③软化型
4.4 硬化定律的一般形式
硬化定律是给定应力增量条件下会引起多大塑性应变的一
条准则,也是从某屈服面如何进入后继屈服面的一条准则, 目的为求d(A或h)
13
岩土塑性力学简介
4 加载条件与硬化定律(续)
d hd h 1 d ij d ij ij A ij
硬化定律以引用何种硬化参量而命名 A的一般公式:混合硬化模型 ( ij ij , H ) 0

关于岩土塑性力学的几点认识

关于岩土塑性力学的几点认识

关于岩土塑性力学的几点认识多数工程岩土都处于弹塑性状态因而岩土塑性在岩土工程的设计中至关重要。

早在1773年Coulobm就提出了土体破坏条件,其后推广为Mohr-Coulobm条件。

1857年研究了半无限体的极限平衡,提出了滑移面概念。

1903年Kotter建立了滑移线方法。

Fellenius(1929)提出了极限平衡法。

以后Terzaghi Sokolovskii又将其发展形成了较完善的岩土滑移线场方法与极限平衡法。

1975年W.F.Chen在极限分析法的基础上又发展了土的极限分析法,尤其是上限法。

国内学者沈珠江也在上述领域作过不少工作。

不过上述方法都是在采用正交流动法则的基础上进行的。

1957年,Drucker等人首先指出了平均应力与体应变会导致岩土材料的体积屈服,需在莫尔-库仑锥形空间屈服面上再加上一簇帽子屈服面,此后剑桥大学Roscoe等人提出了剑桥粘土的弹塑性本构模型开创了岩土实用计算模型。

自上世纪60年代至今,岩土本构模型始终处于百家争鸣、百花齐放的阶段没有统一的理论、屈服条件与计算方法。

上世纪70年代就发现采用一个塑性势面和屈服面很难使计算结果与实际吻合;采用正交流动法既不符合岩土实际情况还会产生过大的体胀。

由此双屈服面与多重屈服面模型非正交流动法则在岩土本构模型中应运而生。

但由于没有从塑性理论上搞清问题,澄清认识,导致年来的这种混乱状态延续至今。

岩土塑性与本构模型的发展,主要是围绕着两个方面:一是对经典塑性理论的修正与静力本构模型的完善:二是针对不同岩土不同工况发展了许多新型的本构模型。

国内学者作了大量的工作,新发展的广义塑性力学既适应岩土类摩擦材料,也适应金属,可以作为岩土塑性力学的理论基础。

新型模型中动力模型、复杂路径模型等正在逐渐走向实用。

软化损伤模型、非饱和土模型、结构性土模型、细观模型也在不断地发展与完善。

1. 岩土塑性基本理论的一些进展岩土塑性计算不同于弹性力学与传统塑性力学,主要在于理论不统一,屈服条件取决于建模者经验而不是完全由试验确定,由此导致计算结果不惟一。

岩土弹塑性力学研究生课程教学课件U10

岩土弹塑性力学研究生课程教学课件U10

塑性应变增量偏张量和 应力偏张量相似且同轴
{ { 本构方程数学表达
d ii
1 2
E
d ii
deij deiej deipj
deiej
1 2G
dsij
deipj dSij
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
m
xy y m
xz yz
zx zy z 0 0 m zx
zy z m
ij m ij eij
m
1 3
( x
y
z)
ii x y z
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
m
xy y m
xz yz
zx zy z 0 0 m zx
硕士研究生课程
岩土弹塑性力学
第十章 经典塑性理论
同济大学地下建筑与工程系
10.1 塑性全量理论 10.2 塑性增量理论 10.3 塑性位势理论
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
与Mises屈服条件相关连的流动法则
屈服条件
f
J2
2 s
0
Drucker公设确定方向
d
p ij
d f ij
d
J
2
ij
dsij
引入弹性应变

《岩土弹塑性力学》课件

《岩土弹塑性力学》课件

02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。

第1章 岩土弹塑性力学

第1章 岩土弹塑性力学
应力球形张量 应力偏斜张量
1 平均正应力: m ( x y z ) 3
1 Kronecker 符号: ij 0
在弹性理论和经典塑性理论中:
i j i j
应力球张量只产生体应变,即受力体只发生体积变化而不发生 形状变化; 应力偏张量则产生剪变形,即只引起物体形状变化而不发生体 积大小的变化。
法则,即塑性应变增量方向沿着屈服 面的梯度或外法线方向
粘性本构关系
材料的应力或应变随时间而变化
常常和弹性或塑性性质同时发生,因此,材料的粘性本构 方程分为 粘弹性
粘塑性
粘弹塑性 在工程中,常称材料的粘性性质为流变 常称应力下变形随时间的不断变化为材料的蠕变 常称应变下应力随时坏 破坏力学
2 1 22
2 J 2 3 8
与应力偏张量有关
Lode 角及其参数:
Lode 角及其参数:
平面上应力在x、y轴上的投影为:
x OP cos 30 P P cos 30 ( 1 3 ) 1 2 2 3 3 2

1 2
( 1 3 )
斜面上的剪应力
2 2 2 v px p2 p y z N
2 主应力与应力主方向
斜面ABC为主微分面,面上只有正应力σ 投影到坐标轴上
p y m
p x l
p z n
p x xl yx m zx n p y xy l y m zy n p z xz l yz m z n
弹性
岩石力学性质 塑性 粘性
体力和面 力Fi,Ti
平衡
位移ui 相容性 (几何)
本构关系
应力ij 应变ij

岩土塑性力学原理——广义塑性力学

岩土塑性力学原理——广义塑性力学
岩土塑性力学是研究岩土材料在受力过程中弹性、塑性和破坏阶段的力学行为。它基于应力-应变关系、屈服条件与破坏条件、塑性位势理论等核心概念,描述了岩土材料从弹性变形到塑性流动再到最终破坏的全过程。与传统基于金属材料的塑性力学不同,岩土塑性力学考虑了岩土特有的体积屈服和剪胀性。其发展历史可追溯至19世纪中叶的Tresca准则和Coulomb破坏条件,后经Drucker等人的完善,特别是1950年代后Roscoe的临界状态土力学和剑桥模型的提出,标志着岩土塑性力学的正式建立。通过对岩土材料进行单向、三向固结压缩及三轴剪切等试验,揭示了岩土的塑性体变、剪胀性、应变软化等重要特性。这些试验结果不仅验证了理论的正确性,也为建立更符合实际的岩土本构模型提供了依据。未来,岩土塑性力学将朝着建立更系统、严密的广义塑性力学体系发展,结合理论、试验与工程实践,探索复杂加载条件、各向异性及动力加载下的岩土力学行为,为岩土工程设计与施工提供更科学、可靠的指导。Байду номын сангаас

清华大学 岩土材料弹塑型

清华大学 岩土材料弹塑型
剪切屈服面和体积屈服面iviiiii剪切屈服面体积屈服面剪切屈服区体积屈服区全部屈服区弹性区应力空间屈服曲面以应力分量作为变量时则屈服面为六维应空间内的超曲面若以主应力分量表示时则为主应力空间内一个三维曲面称为屈服曲面屈服面在平面上的迹线一般称为平面上的屈服曲线屈服面与子午平面指曲面母线与等倾线组成的平面的交线称为子午平面上的屈服曲线屈服曲线与屈服面子午平面上屈服曲线p平面上屈服曲线p平面屈服条件的普遍形式为常数时即得子午平面上的屈服曲线即在传统塑性理论中屈服条件与静水压力无关
岩土类材料最基本的力学特性


岩土的压硬性 岩土的等压屈服特性 剪胀性(包含剪缩性) 塑性应变增量的方向与应力增量的方向 有关 应变软化性质
岩土的压硬性




在一定范围内,岩土抗剪强度和刚度随压应力 的增大而增大,这种特性可称为岩土的压硬性。 岩土的抗剪强度不仅由粘结力产生,而且由内 摩擦角产生。 这是因为岩土由四项材料堆积或胶结而成,属 于摩擦型材料,因而它的抗剪强度与内摩擦角 及压应力有关 而金属材料不具这种特性,抗剪强度与压应力 无关。
塑性应变增量的方向与应力增 量的方向有关


塑性应变增量的方向与应力增量的方向 有关,而不像传统塑性位势理论中规定 的塑性应变增量方向只与应力状态有关, 而与应力增量无关。 当主应力值不变,主应力轴方向发生改 变时土体也会产生塑性变形,而基于传 统塑性力学的本构模型不可能算出这种 塑性变形。
应变软化性质
Onset of Dilatancy Compaction
Measure of Porosity Volum etric Strain
v
本构关系

塑性状态下,应力一应交关系是非线性 的,而且还与应力路径、应力历史、加 载、卸载等状态有关,因而简单地说成 应力一应变关系已不能完全反映实际情 况,所以称此为本构关系,这比弹性力 学中的线性关系复杂得多。

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。

岩土塑性力学简介(2)

岩土塑性力学简介(2)

3.2 传统塑性位势理论 •定义:
d ij d
p
d p
Q=0
dp dvp
Q
ij
d

ij
(假设)
p
塑性应变的分解
15
K
6
岩土塑性力学简介
2 屈服条件与破坏条件(续)
(1)二次曲线——辛克维兹条件
(a)双曲线:
(b)抛物线:
F

d m a
m
2


b
2 2
1 0
2
F (
d ) a
2
0
(c)椭圆:
m d F a


b
2 2
1 0
(2)g(30o)=1, r(30o)=rc; g(-30o)=k, r(-30o)=rl K由实验得到或近似用:k= rl/rc=(3-sin)/(3+sin)
9
岩土塑性力学简介
2 屈服条件与破坏条件(续)
(3) =±30o时:
d g ( ) d 0
莫尔-库仑线→双剪 应力角隅模型→Lade 曲线→Matsouka →清 华→后工
辛克维兹式系数已作修正
7
岩土塑性力学简介
2 屈服条件与破坏条件(续) 2.2.5 岩土材料的统一破坏条件(14种条件):
F p
2
1 p k
n
0
概括了前面所述的所有破坏条件
2.2.6 Hoek—Brown条件(适用岩体):
F 1
3

m c
3
s
2 c
10
岩土塑性力学简介

清华大学-岩土材料弹塑型

清华大学-岩土材料弹塑型
p2 2 2
p沿坐标轴方向分量为 pi 或X、Y、Z
p pi { p1, p2 , p3} {X , Y , Z} σ n ij n j
第一区域OA段内 :压密
应力一应变曲线向上弯 ;随着变形的增 加,产生同样大小的应变所需增加的应 力越来越大 ;
由于岩石中原有的孔隙和裂缝被逐步压 紧闭合而产生的现象 ;
对于致密的岩石这个区域就没有或很小。 在几十兆帕的围压下进行压缩试验,一 般就没有这段曲线。
第二个区域AB段 :弹性ቤተ መጻሕፍቲ ባይዱ
应力与应变之间接近于直线关系,它的
间没有一一对应关系,因而假设应变增量主轴 与应力主轴重合; 1950年Hill 《The Mathematical Theory of Plasticity》 唯象 转入 细观塑性理论
岩土塑性理论发展历史
1773年库仑(Coulomb)提合的土质破坏条件, 其后推广为莫尔——库仑准则 ;
1857年朗肯(Rankine)研究了半无限体的极 限平衡,提出了滑移面概念。
有关 应变软化性质
岩土的压硬性
在一定范围内,岩土抗剪强度和刚度随压应力 的增大而增大,这种特性可称为岩土的压硬性。
岩土的抗剪强度不仅由粘结力产生,而且由内 摩擦角产生。
这是因为岩土由四项材料堆积或胶结而成,属 于摩擦型材料,因而它的抗剪强度与内摩擦角 及压应力有关
而金属材料不具这种特性,抗剪强度与压应力 无关。
在变形的第I、II、III区域,随着变形增大应力 也增大,即称为稳定阶段;在变形的第IV区域, 随变形增大应力减低,即,称为非稳定阶段。
由于出现塑性变形,使卸载曲线的斜率有所降 低,这种现象称为弹塑性耦合,这种现象在非 稳定阶段更为显著。
简化理想化的曲线

岩土塑性力学原理PPT.

岩土塑性力学原理PPT.
第四个等级就是,客户想买车,但是不知道买什么样的车。他拿不定主意是买十万块钱左右的,还是买十万块钱以下的,或是十万块钱以上的,他自己的购车目的还不明确。除了 价钱没确定,品牌也没确定,他未确定的因素还有很多,但是他想买车,有买车的需求,至于买什么样的车自己还没定位,究竟哪一款车适合自己他不知道,他现在正处于调研阶 段,这种客户属于第四个等级,他可能需要一个月以上的时间才能决定购买。 会引起情绪变化。 看到高兴时哈哈大笑,看到悲 决定是否面试一位应聘者之前,首先要看其工作经历是否符合要求。 同学们提出的问题,也是老师想搞明白的问题,我们大家一起研究好吗? 这位同学表演的精彩吗?大家回想一下,刚才那位同学为什么会肚子疼? 生:下车后,如果想到马路对面去,不要在车前、车后突然横穿马路,车子开走以后,看清有无车辆行驶,再穿行;乘坐小型车时,要系好安全带;乘坐摩托车时,要戴好头盔等 。 (3)经口引起中毒者,在昏迷不清醒时不得引吐,如神志清醒者,应及早引吐、洗胃、导泄或对症使用解毒剂。 (4) 不要在烈日高温下锻炼。 小提示6:核实岗位要求是否已发生变化。
定期跟踪保有客户。这些保有客户也是我们开发客户的对象,因为保有客户的朋友圈子、社交圈子也是我们的销售资源。
12
岩土材料的试验结果
(2)真三轴:
土受应力路径的影响
b 2 3 1 3
b=0常理试验; 随b增大,曲线变陡,出现软化, 峰值提前,材料变脆。
13
岩土材料的试验结果
应力应变曲线:
硬化型:
➢ 建立和发展适应岩土材料变形机制的、系统的、严密的广义塑性力学 体系
➢ 理论、试验及工程实践相结合,通过试验确定屈服条件及其参数,以 提供客观与符合实际的力学参数
➢ 建立复杂加荷条件下、各向异性情况下、动力加荷以及非饱和土情况 下的各类实用模型

岩土弹塑性力学

岩土弹塑性力学

的压缩试验结果
假定试样土粒本身体积不 变,土的压缩仅由于孔隙 体积的减小,因此土的压 缩变形常用孔隙比e的变化 来表示。 压力p与相应的稳定孔隙比 的关系曲线称为压缩曲线
土与岩石—样,其体应变不是 纯弹性的,与金属材料不同
在三轴情况下,随土性和应力路径不同,应力—应变曲线有两 种形式:一是硬化型,一般为双曲线;另一为软化型, —般为 驼峰曲线。
塑性阶段:研究材料在塑性阶段内的受力与变形,这阶 段内的应力应变关系要受到加载状态、应力水平、应力 历史与应力路径的影响。 差别:在应力与应变之间的物理关系不同,即本构关系 不同。 本质差别:在于材料是否存在不可逆的塑性变形
弹性阶段:应力与应变之间的关系是一一对应的,这种应力和 应变之间能建上一一对应关系的称全量关系
岩土塑性力学与经典塑性力学的不同点
(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑 平均应力与岩土材料的内摩擦。采用不同于金属材料的屈服 准则、破坏准则。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅考虑剪 切屈服,还要考虑体积屈服。表现在屈服面上,传统塑性力学 是开口的单一的剪切屈服面、而岩土塑性力学需考虑剪切屈服 面与体积屈服面,以及在等压情况下产生屈服。
2.岩土为多相材料,岩土颗粒中含有孔隙,因而在各向等 压作用下,岩土颗粒中的水、气排出,就能产生塑性体变,出 现屈服,而金属材料在等压作用下是不会产生体变的。这种持 性可称为岩土的等压屈服特性。
3 与金属材料不同.岩土的体应变还与剪应力有关,即剪应力 作用下,岩土材料会产生塑性体应变(膨胀或收缩),即岩土的 剪胀性(包含剪缩性)。反之,岩土的剪应变也与平均应力有关 ,在平均压应力作用下引起负剪切变形,导致刚度增大,这也 是压硬性的一种表现。

岩土弹塑性力学剖析

岩土弹塑性力学剖析

岩土弹塑性力学1 塑性屈服准则在组合应力状态下,材料所服从的屈服准则一般用下式表示:f ij 0 (1)函数 f 的特定形式是与材料有关的,其含有若干个材料常数。

根据材料塑性准则 是否与静水压力有关, 可以将材米分为两类: 与静水压力无关材料和与静水压力相关 材料,这两类材料一般分别称为无摩阻材料和摩阻材料。

通常情况下金属材料属于静 水压力无关材料,而土、岩石、混凝土等地质材料属于与静水压力相关材料。

与静水 压力不相关的材料是由剪切力控制着它的屈服, 在工程中一般采用 Tresca 准则和 von Mises 屈服准则, 而与静水压力相关的材料一般采用最大拉应力准则、 Mohr-Coulomb 准则和 Drucker-Prager 准则。

下面就开始讨论这些塑性屈服准则。

1.1 Tresca 屈服准则Tresca 准则于 1864 年提出,该屈服准则假定,当一点的最大剪应力达到极限值 则发生屈服。

以主应力表达这一准则, 则在屈服时三个主应力两两之差值绝对值的一 半中的最大值达到 k ,这上准则的数学表达式为:其中,为单轴加载屈服应力。

为了以图形表示二维空间中的屈服曲线形状, 假定一双轴应力状态, 其中仅 1和 为非零,在1轴和第一区间两轴角平分线间的应力顺序为1 2 0 ,所以,由式(2) 可以导出1 k 或 1 0 (4)2 1 max 1 2 11 2 , 23 , 3 1 k (2) 22如果材料常数 k 由单轴试验确定,则可以得下述关系k 02(3)在 1 2 坐标系中绘出服从Tresca 准则的屈服轨迹 (图1)。

利用主应力与应力不变量之间的关系,可将式(2)变换为1f (J2, ) 2 J2 sin( ) 2k 0 (0 60 ) (5)3式中,式中成为相似角或Lode 角。

Tresca准则与无关,暗示不依赖于静水压力。

由于Tresca 准则与无关,故可将屈服面演绎成主应力空间的规则平行六面棱柱体 (图 2), 它就是 Tresca 准则屈服图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土塑性力学原理 ——广义塑性力学
郑颖人 院士
中国人民解放军后勤工程学院
2020年10月31日
1
主要内容
概论 应力-应变及其基本方程 屈服条件与破坏条件 塑性位势理论 加载条件与硬化规律 广义塑性力学中的弹塑性本构关系 广义塑性力学中的加卸载准则 包含主应力轴旋转的广义塑性力学 岩土弹塑性模型
13
岩土材料的试验结果
对应体
硬化型:变曲线
应力应 双曲线
变曲线:
对应体
软化型: 变曲线
驼峰曲线
压缩型: 压缩剪胀型:先缩后胀 压缩剪胀型:先缩后胀
相应地,可 把岩土材料 分为3类
压缩型:如松砂、正常固结土 硬化剪胀型:如中密砂、弱超固结土 软化剪胀型:如岩石、密砂与超固结土
14
岩土材料的基本力学特点
岩土系颗粒体堆积或胶结而成的多相体,算多相 体的摩擦型材料。 基本力学特性:
➢压硬性 ➢等压屈服特性 ➢剪胀性 ➢应变软化特性 ➢与应力路径相关性
15
岩土塑性力学与传统塑性力学不同点
➢球应力与偏应力之间存在交叉影响;
➢考虑等向压缩屈服
➢屈服准则要考虑剪切屈服与体积屈服,剪切屈服中要考虑平 均应力;
初始加载:
卸载与再加载:
e e0 ln p
e ek k ln p
11
岩土材料的试验结果
➢土的三轴剪切试验结果:
(1)常规三轴
土有剪胀(缩)性; 土有应变软化现象;
12
岩土材料的试验结果
(2)真三轴:
土受应力路径的影响
b 2 3 1 3
b=0常理试验; 随b增大,曲线变陡,出现软化, 峰值提前,材料变脆。
广义塑性理论为岩土本构模型提供了理论 基础,由试验确定屈服条件进一步增强了 岩土本构的客观性,从而把岩土本构模型 提高到新的高度
22
第2章 应力-应变及其基本方程
一点的应力状态 应力张量分解及其不变量 应力空间与平面上的应力分量 应力路径 应变张量分解 应变空间与应变平面 应力和应变的基本方程
➢塑性力学与弹性力学的不同点: • 存在塑性变形 • 应力应变非线性 • 加载、卸载变形规律不同 • 受应力历史与应力路径的影响
5
6
岩土塑性力学的提出
➢力学要解决的问题:
• 已知应力矢量(方向与大小)
• 求应变矢量 (方向与大小)
• 弹性力学:
E
(单轴情况 )
• 与弹性力学理论及材料宏观试验参数有关
➢ 建立复杂加荷条件下、各向异性情况下、动力加荷 以及非饱和土情况下的各类实用模型
➢ 引入损伤力学、不连续介质力学、智能算法等新理 论,宏细观结合,开创土的新一代结构性本构模型
➢ 岩土材料的稳定性、应变软化、损伤、应变局部化
(应力集中)与剪切带等问题
10
岩土材料的试验结果
➢ 土的单向或三向固结压缩试验:土有塑性体变
23
一点的应力状态
xx
z
z
zx zy
xz yz
xy
yx
y y
x xy xz
S ij yx
y
yz
zx zy z
24
一点的应力状态
➢ 应力张量不变量
主应力方程:
3 N
I1
2 N
I2
N
I30
I1 x y z
I
2
x
y
y
z
z x
2 xy
2 yz
2 zx
17
势面 屈服面
18
洛德参数与受力状态
19
洛德参数与受力状态
2
2 1
3 3
1
tg 1
3
纯拉时, 2 30, 1 s , 1, 30 ; 纯剪时, 2 0, 1 , 3 , 0 , 0 ; 纯压时, 1 2 0, 3 s , 1, 30 ;
20
洛德参数与受力状态
m (I1) 、q(J2 )、 (J3)与1、 2、 2关系
主偏应力方程, S3J2SJ30
三角恒等式模拟,sin
3
3 4
sin
1 4
sin3
0
1 2 3
2 3
q
sin
sin
sin
2
3
2
3
m m m
21
岩土本构模型建立
理论、实验(屈服面、参数)
要求符合力学与热力学理论,反映岩土实 际变形状况、简便
I
3
x
y
z
2
xy
yz zx
x
2 yz
2
y zx
2
z xy
II121(12
3 2
2
3
3
1
)
I31 2 3
应力张量第一 不变量 I1 ,是平均应力p的三倍。
25
应力张量分解及其不变量
应力张量
球应力张量 偏应力张量
应力球张量不变量:I1 、I 2 、 I3 f ( m)
d 1 F A ij
d ij ;
A F H
H
p ij
F ij
传统塑性力学
应用于岩土材料 并进一步发展
岩土塑性力学
8
塑性力学发展历史
1864年Tresca准则出现,建立起经典塑性力学;
19世纪40年代末,提出Drucker塑性公论,经典塑性 力学完善;
1773年Coulomb提出的土质破坏条件,其后推广为 莫尔—库仑准则;
• 塑性力学:
d p d Q hd Q 1 d Q
A
A F H F
H
p ij
ij
Q—塑性势函数、F—屈服函数;H—硬化函数。
7
岩土塑性力学的提出
➢传统塑性力学:基于金属材料的变形机制
①传统塑性位势理论: (给出应变增量的方向)
d
p ij
d
Q ij
d
F ij
②屈服条件与硬化规律: (给出应变增量的大小)
2

第1章 概 论
岩土塑性力学的提出 岩土塑性力学及其本构模型发展方向 岩土材料的试验结果 岩土材料的基本力学特点 岩土塑性力学与传统塑性力学不同点 岩土本构模型的建立
3
岩土塑性力学的提出
➢材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
4
岩土塑性力学的提出
1957年Drucker提出考虑岩土体积屈服的帽子屈服面;
1958年Roscoe等人提出临界状态土力学,1963年提出 剑桥模型。岩土塑性力学建立。
9
岩土塑性力学及其本构模型发展方向
➢ 建立和发展适应岩土材料变形机制的、系统的、严 密的广义塑性力学体系
➢ 理论、试验及工程实践相结合,通过试验确定屈服 条件及其参数,以提供客观与符合实际的力学参数
v
p Kp
q Ks
p
q
Gp Gs
Kp,Ks,Gp,Gs——弹塑性体积模量,剪缩模量,压硬模量,
弹塑性剪切模量
16
岩土塑性力学与传统塑性力学不同点
➢考虑摩擦强度; ➢考虑体积屈服; ➢考虑应变软化; ➢不存在塑性应变增量方向与应力唯一性; ➢不服从正交流动法则; ➢应考虑应力主轴旋转产生的塑性变形。
相关文档
最新文档