初三中考数学一次函数的应用
一次函数的应用
(3)设货车从甲地出发 x 小时后再与轿车相遇,根据轿车(x-4.5)小时 行驶的路程+货车 x 小时行驶的路程=300 千米列出方程,解方程即可.
考点聚焦
归类探究
回归教材
例 1 [2013·山西] 某校实行学案式教学,需印制若干份数学 学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用 y(元)与印刷份数 x(份)之间的关系如图 11-1 所示:
考点聚焦
归类探究
回归教材
(1)填空:甲种收费方式的函数关系式是__y_甲__=__0_.1_x_+___6; 乙种收费方式的函数关系式是___y_乙_=__0_._1_2_x.
段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段 函数的分界点;(2)针对每一段函数关系,求解相应的函数解析式; (3)利用条件求未知问题.
考点聚焦
归类探究
回归教材
探究三 利用一次函数解决其他生活实际问题
命题角度: 函数图象在实际生活中的应用.
例 3 甲、乙两地相距 300 千米,一辆货车和一辆轿车先后 从甲地出发向乙地,如图 11-3,线段 OA 表示货车离甲地距 离 y(千米)与时间 x(小时)之间的函数关系;折线 BCD 表示轿车 离甲地距离 y(千米)与 x(小时)之间的函数关系.请根据图象解 答下列问题:
度上升和下降阶段 y 与 x 之间的函数关 系式.
图 11-4
考点聚焦
归类探究
回归教材
解:(1)由图象知,服药后 3 小时血液中药物浓度最高. (2)当 0≤t≤3 时,函数为正比例函数,设关系式为 y=kx(k≠0),
中考数学复习指导:一次函数在实际生产生活中的应用举例
一次函数在实际生产生活中的应用举例运用函数知识解决简单的实际问题,体会函数是解决实际问题的数学模型和方法,既是新课程标准的要求,也是中考命题的热点,近几年的中考试题对一次函数的考查力度呈加大趋势,热点问题集中在一次函数的实际应用上,应该引起同学们的关注.现就应用一次函数知识在生活、生产实际中解决实际问题举几例说明.1在日常生活中的应用一次函数在我们的日常生活中应用十分广泛.例如,当我们购物、租车、住宿、缴水电费时,会为我们提供两种或多种优惠方案,这些问题往往可利用一元一次函数解决.例1为加强公民的节水意识,某市制定如下的用水标准:每月每户用水未超过7 m3时,每立方米收 1.0元并加收0.2元污水处理费;超过7 m3时,超过部分每立方米收 1.5元并加收0.4元污水费,设某户每月的用水为x m3,应交水费y元.(1)写出y与x之间的函数关系式.(2)若某单元所在小区共有50户,某月共交水费541.6元,且每户用水均未超过10 m3,这个月用水未超过7 m3的用户最多可能有多少户?解(1)由题意可知,当0≤x≤7时,y=1.2x.当x>7时,y=1.9(x-7)+7×1.2=1.9(x-7)+8.4.所以y与x之间的函数关系式为(2)设月用水量未超过7 m3共有x户.因为月用水7 m3的应交水费8.4元,用水10 m3的应交水费(5.7+8.4)元,根据题意,得(50-x)(5.7+8.4)+8.4x=541.6.解得x≈28. 67.若x=29时,交费的最大额数为29×8.4+21×14.1=539.7<541.6.所以x=28(户).即月用水量未超过7 m3的用户最多有28户.2在市场经济中的应用随着市场经济体制的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,,都已进入我们的生活.同时与这一系列经济活动相关的数学,利息与利率,统计与概率,运筹与优化等,都将在数学课程中呈现出来.例2某镇组织20辆汽车装运完A、B、C三种脐橙共100 t到外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B,种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.解(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有6x+5 y+4(20-x-y)=100.整理,得y=-2x+20.(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、-2x +20、x ,根据题意,得42204x x,解得4≤x ≤8.因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种,方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车.(3)设利润为W(百元),根据题意,得W =6x ×12+5(-2x +20)×16+4x ×10=-48x +1 600.因为k =-48<0,所以W 的值随x 的增大而减小,要使利润W 最大,x 取最小值4,故选方案一.W 最大=-48×4+1 600=1 408(百元)=14.08(万元).3在工程问题中的应用下面这道题看似平常却是别有新意的好题,本题突破了传统的工程问题的模式,将工程问题与一次函数图像相联系,进一步加强了传统经典习题与现实生活的联系,在新的时代背景中更好地学习和掌握数学知识.例3某县在实施“村村通”工程中,决定在P 、Q 两村之间修筑一条公路,甲、乙两个工程队分别从P 、Q 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.如图1是甲、乙两个工程队所修道路的长度y(m)与修筑时间x (天)之间的函数图像,请根据图像所提供的信息,求该公路的总长.解由乙图像可知,A(12,840).设y乙=kx(0≤x ≤12),因为840=12k ,所以k =70.解得y乙=70x .当x =8时,y 乙=560,所以C(8,560).设y 甲=mx +n(4≤x ≤16),将B(4,360)、C(8,560)代入,得43608560m n m n,解得50160m n.所以y 甲=50x +160.当x =16时,y甲=50×16+160=960.由此可得乙修筑公路长840 m ,甲修筑公路长960 m .故该公路全长为1800 m .4在行程问题中的应用行程问题是一个常规的问题,而新课程下的行程问题,往往与图像、图形、表格等结合在一起,不仅考查了我们对知识的理解,而且考查了识图能力和数形结合的数学思想.例4甲、乙两人骑自行车前往A 地,他们距A 地的路程 5 (km)与行驶时间t(h)之间的关系如图2所示,请根据图像所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3)在什么时间段内乙比甲离A 地更近?解(1)由图像知,甲2.5 h 行驶50 km ,所以V甲=502.5=20(km/h).乙2h行驶60 km,所以V乙=602=30(km/h).(2)s甲=50-20t或s乙=60-30t.(3)当1<t<2.5时,s乙的图像在s甲的图像的下面,说明在同一时刻,s乙<s甲,即乙离A 地距离小于甲离A地距离,乙比甲离A地更近,以上四例说明,一次函数在我们的日常生活中应用十分广泛,内容十分丰富,上述题目联系实际和时代的热点,较为自然地考查了一次函数模型的实际问题,同时也考查了同学们利用函数思想和方程、不等式、最值等知识解决问题的能力,希望同学们能从中得到启示,善于运用数学去分析身边周围的现象,学会用数学知识分析和解决生产、生活中的一些实际问题.。
一次函数的应用
一次函数的应用一次函数的应用一、学习目标:1. 巩固一次函数的知识,灵活运用变量关系解决相关实际问题.2. 熟练掌握一次函数与方程,不等式的关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、重点、难点:运用一次函数与正比例函数的图象和性质解决实际问题。
各种数学思想的渗透和应用。
三、考点分析:利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
一次函数的概念、图象和性质是中考的必考内容,一次函数的应用是中考的热点内容。
中考对这部分内容的要求是结合具体情境体会一次函数的意义,根据已知条件确定一次函数的表达式;会画一次函数的图象,根据图象与表达式探索并理解其性质;根据一次函数的图象求二元一次方程组的近似解;利用一次函数解决实际问题。
利用一次函数解决实际问题的题型多样,填空、选择、解答、综合题都有,主要考查学生应用函数知识分析、解决问题的能力.典型例题此前我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决相关实际问题时更方便了.例1. 乘坐某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米的部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如计费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围。
思路分析:1)题意分析:本题考查一次函数与不等式的综合运用。
2)解题思路:注意审题。
注意考虑函数的取值范围,能灵活应用所学知识解决问题。
解答过程:(1)根据题意可知:y=4+1.5(x-2),∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5解题后的思考:一次函数的性质:当k>0,时y随x的增大而增大,当k<0时,y随x的增大而减小。
2024年中考数学一轮复习考点精讲课件—一次函数的应用
.
【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.
【数学中考一轮复习】 一次函数的最值应用(含答案)
专项训练一次函数的最值应用一、一次函数最值问题的基本模型1.如果n≤x≤m,那么y=kx+b有最大或最小值.当x=n时,y有最小值,当x=m时,y有最大值.当x=n时,y有最大值,当x=m时,y有最小值.2.如果x≥n,那么y=kx+b有最大或最小值.当x=n时,y有最小值;当x=n时,y有最大值.3.如果x≤m,那么y=kx+b有最大或最小值.当x=m时,y有最大值;当x=n时,y有最小值.4.如果n<x<m,x取值不定,那么y=kx+b既没有最大值也没有最小值.但是,如果x 取特殊值(如x取整数值),可参照前述三条求最值.二、一次函数最值应用的步骤1.审题,求一次函数的解析式;3.根据题意确定自变量的取值范围;4.结合增减性和自变量的取值范围确定函数的最值.类型一实际应用中直接求最值1.为迎接国庆节的到来,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍各种奖品的单价如下表所示如果计划一等奖买x件,买50件奖品的总钱数是w元.(1)求与x的函数关系式及自变量x的取值范围;(2)请你计算一下,如果购买这三种奖品所花的总钱数最少,最少是多少元?2.某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要原料0.25吨,每生产1吨乙产品需要原料0.5吨,受市场影响,该厂能获得的原料至多为1000吨,其他原料充足.求该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.4.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如表所示:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)10 8(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元分别写出当0≤x≤50和x>50时,y与x的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?5.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?类型二方案设计中的最值6.煤炭是陕西省的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如表(表中运费栏“元/t·km”表示每吨煤炭运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.7.某水果商从外地购进某种水果若干箱,需要租赁货车运回.经了解,当地运输公司有大、小两种型号货车,其运力和租金如表:(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果共340箱,所租用的8辆货车可一次将购进的水果全部运回,请给出最节省费用的租车方案,并求出最低费用.8.年初,武汉暴发新冠疫情,“一方有难,八方支援”,某地为助力武汉抗疫,紧急募集到一批物资运往武汉的A,B两县,用载重量为16吨的大货车8辆和载重量10吨的小货车10辆恰好一次性运完这批物资.运往A,B两县的运费标准如表:(1)如果安排到A,B两县的货车都是9辆,设前往A县的大货车为x辆,前往A,B两县的总运费为y元,求出y与x的函数关系式(写出自变量的取值范围);(2)在(1)的条件下,若运往A县的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.9.在抗击新冠肺炎疫情期间,市场上的消毒液和防护口罩热销.某药店推出两种优惠方案,方案①:购买1瓶消毒液,赠送1个口罩,方案②:消毒液和口罩一律按9折优惠.消毒液每瓶定价40元,口罩每个定价5元小明需买4瓶消毒液和若干个口罩(不少于4个),设购买口罩x 个,用优惠方案①购买费用为y 1元,用优惠方案②购买费用为y 2元. (1)请分别写出y 1,y 2与x 之间的函数关系式; (2)什么情况下选择方案②更优惠?(3)若要买4瓶消毒液和12个口罩,请你设计怎样购买最便宜.参考答案1.解:(1)w = 12x +10(2x-10)+5[50-x-(2x-10)]= 17x +200.由⎪⎪⎩⎪⎪⎨⎧-⨯≤--->--->->)102(105.1)]102(50[50)]102(50[01020x x x x x x x ,得10≤x <20.∴自变量的取值范围是10≤x <20,且x 为整数;(2)w =17x +200,∵k =17>0,∴w 随x 的增大而增大,减小而减小. ∵1≤0x <20,当x =10时,有w 最小值,最小值为w =17×10+200=370. 2.解: (1) y =0.3x +0.4(2500-x )=-0.1x +1000, 因此y 与x 之间的函数表达式为:y =-0.1x +1 000;⎧≤-+1000)2500(5.025.0x x又∵k =-0.1<0,∴y 随x 的减小而增大. ∴当x =1000时, y 最大,此时2500-x =1500, 因此,生产甲产品1000吨,乙产品1500吨时,利润最大.3,解:(1)设y 甲=k 1x ,根据题意得:5k 1=100,解得:k 1=20.∴у甲=20x. 设y 乙=k 2x +100,根据题意得:20k 2+100=300,解:k 2=10. ∴y 乙= 10x +100;(2)①y 甲<y 乙,即20x <10x-100,解得:x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x-100,解得:x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即 20x >10x +100,解得:x >10,当入园次数大于10次时,选择乙消费卡比较合算.4,解:(1)由表格可得,40×10=400(元), 答:小刚购买苹果40千克,应付400元; (2)由题意可得,当0≤x ≤50时, y 与x 的关系式是y =10x ,当x >50时,y 与x 的关系式是y =10×50—8(x-50)=8x +100, 即当x >50时,y 与x 的关系式是y =8x +100;(3)小刚若一次性购买80千克所付的费用为:8×80-100=740(元),分两次共购买80千克(每次都购买40千克)所付的费用为:40×10×2=800(元),800—740=60(元),答:小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40 千克)所付的费用少60元.5.解:(1)依题意得:y =4x +3(50-x ) =x +150;(2)依题意得:⎩⎨⎧≤-+≤-+,②,①17)50(4.03.019)50(2.05.0x x x x解不等式①得:x ≤30,解不等式②得:x ≥28, ∴不等式组的解集为28≤x ≤30.∵y =x +150, y 是随2的增大而增大,且28≤x ≤30,∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,y 最小=28+150=1786,解:(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨. 依题意得:y =200×0.45x +150×a ×(1000-x )=90x-150ax + 150000a =(90-150a )x + 150000a ,依题意得⎩⎨⎧≤-≤8001000600x x ,解得200≤x ≤600.故函数关系式为y =(90-150a )x +150000a , (200≤x ≤600) ; (2)当0<a <0.6时,90-150a >0,∴当x =200时,y 最小=(90-150a )×200+150000a =120000a +18000. 此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨, ∴当x =600时,y 最小=(90-150a )×600+150000a =60000a +54000. 此时,1000-x =1000-600=400.当a =0.6时,y =90000,答:当0<a <0.6时,运往A 厂200吨, B 厂800吨时,总运费最低,最低运费(120000a +18000)元.当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费(60000a +54000)元.当a =0.6时,运费90000元.7.解:(1)由题意可得,y =400x +320(8-x )=80x +2560. 即y 与x 的函数关系式为y =80x +2560;(2)由题意可得,45x +35(8-x )≥340,解得,x ≥6, ∵y =80x +2560,∴k =80,y 随x 的增大而增大. ∴当x =6时, y 取得最小值,此时y =3040,8-x =2.答:最节省费用的租车方案是大货车6辆,小货车2辆,最低费用是3040元.8.解:(1)设前往A 县的大货车为z 辆,则前往A 县的小货车为(9-x )辆;前往B 县的大货车为(8-x )辆,前往B 县的小货车为(1+x )辆,根据题意得:y =1080x +750(9-x )+120(8-x )+950(1+x )=80x +17300 (0≤x ≤8); (2)由题意得,16x +10(9-x )≥120,解得x ≥5. 又∵0≤x ≤8,∴5≤x ≤8且为整数.∵y =80x +17300,且80>0,∴y 随x 的增大而增大, ∴当x =5时,y 最小,最小值为y =80×5+17300=17700.货车前往B县.最少运费为17700元.9.解:(1)由题意得:y1=40×4+5(x-4)=5x+140;y2=40×0.9×4+5×0.9x=4.5x+144;(2)当y1>y2时,5x+140>4.5x+144,解得x>8,答:当x>8时,选择方案②更优惠;(3)方案①:y1=5×12+140=220(元);方案②:y2=4.5×12+144=198(元);方案③:先按方案①买4瓶消毒液,送4个口罩,剩下8个口罩按方案②购买,总价为:40×4+5×0.9×8=196(元),∵200>198>196,∴方案③最省钱.答:购买4瓶消毒液和12个口罩用方案③最优惠.。
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。
中考数学复习方案 第11课时 一次函数的应用
解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.
基
础
知
识
巩
固
高
频
考
向
探
究
对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.
基
础
知
识
巩
固
∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里
初三数学中考复习《一次函数的应用》专项训练(含答案)
初三数学中考复习 一次函数的应用 专项训练1. 大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广生的业余文化生活,大剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.2. 小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. (1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元?3. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.4. 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?5. 胡老师计划组织朋友暑假去革命圣地两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.6. 科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?7. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?8. “十一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?9. 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量;(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x 的范围.10. 周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____km/h,H点坐标为__________________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?11. 根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.12. 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与小明的步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?13. 某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?14. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:A型客车B型客车载客量(人/辆) 45 28租金(元/辆) 400 250经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:车辆数(辆) 载客量(人) 租金(元)A型客车x 45x 400xB型客车13-x ____________ ______________ (2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?15. 为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购买商品房的政策性方案:人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)部分0.4超过30平方米部分0.9设一个3口之家购买商品房的人均面积为x平方米,缴纳房款y万元.(1)请求出y关于x的函数关系式;(2)若某3口之家欲购买120平方米的商品房,求其应缴纳的房款.16. 保障我国海外维和官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/吨)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案. 参考答案:1. 解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x≥4),按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x≥4) (2)因为y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当x =24时,两种优惠方案付款一样多.②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案①付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,当x >24时,y 1>y 2,优惠方案②付款较少2. 解:(1)由题意得y =20×4x+12×8×(22-x)+900,即y =-16x +3012 (2)依题意得4x≥35×8×(22-x),∴x≥12.在y =-16x +3012中,∵-16<0,∴y 随x 的增大而减小.∴当x =12时,y 取最大值,此时y =-16×12+3012=2820.答:当小李每月加工A 型服装12天时,月收入最高,可达2820元 3. 解:(1)因为购买大型客车x 辆,所以购买中型客车(20-x)辆.y =62x +40(20-x)=22x +800(2)依题意得20-x <x.解得x >10,∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22×11+800=1042(万元),此时需购买大型客车11辆,中型客车9辆,答:购买大型客车11辆,中型客车9辆时,购车费用最省为1042万元4. 解:(1)设线段AB 所表示的函数关系式为y =kx +b ,依题意有⎩⎪⎨⎪⎧b =192,2k +b =0,解得⎩⎪⎨⎪⎧k =-96,b =192.故线段AB 所表示的函数关系式为:y =-96x +192(0≤x≤2)(2)12+3-(7+6.6)=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=1(小时),3+1=4(时).答:他下午4时到家 5. 解:(1)甲旅行社的总费用:y 甲=640×0.85x=544x ;乙旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x-20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社6. 解:(1)设y =kx +b(k≠0),则⎩⎪⎨⎪⎧b =299,2000k +b =235,解得⎩⎪⎨⎪⎧k =-4125,b =299,∴y=-4125x +299(2)当x =1200时,y =-4125×1200+299=260.6(克/立方米),答:该山山顶处的空气含氧量约为260.6克/立方米7. 解:(1)由题意得,当0<x≤1时,y =22+6=28;当x >1时,y =28+10(x-1)=10x +18.∴y=⎩⎪⎨⎪⎧28(0<x≤1)10x +18(x >1)(2)当x =2.5时,y =10×2.5+18=43,∴这次快寄的费用是43元8. 解:(1)设OA 段图象的函数表达式为y =kx ,∵当x =1.5时,y =90,∴1.5k =90,∴k=60,∴y=60x(0≤x≤1.5),∴当x =0.5时,y =60×0.5=30,故他们出发半小时时,离家30千米(2)设AB 段图象的函数表达式为y =k′x+b ,∵A(1.5,90),B(2.5,170)在AB上,∴⎩⎪⎨⎪⎧1.5k′+b =90,2.5k′+b =170,解得⎩⎪⎨⎪⎧k′=80,b =-30,∴y=80x -30(1.5≤x≤2.5) (3)∵当x =2时,y =80×2-30=130,∴170-130=40,故他们出发2小时时,离目的地还有40千米9. 解:(1)设y 1=k 1x +b 1,把(0,1200)和(60,0)代入到y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=1200,60k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-20,b 1=1200.∴y 1=-20x +1200,当x =20时,y 1=-20×20+1200=800(2)设y 2=k 2x +b 2,把(20,0)和(60,1000)代入到y 2=k 2x +b 2中,得⎩⎪⎨⎪⎧20k 2+b 2=0,60k 2+b 2=1000, 解得⎩⎪⎨⎪⎧k 2=25,b 2=-500,∴y 2=25x -500,当0≤x≤20时,y =-20x +1200,当20<x≤60时,y =y 1+y 2=-20x +1200+25x -500=5x +700,y≤900,则5x +700≤900,x≤40,当y 1=900时,900=-20x +1200,x =15,∴发生严重干旱时x 的范围为15≤x≤4010. 解:(1)由函数图象可以得出,小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H 的坐标为(32,20)(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=-20x +30,∵AB∥CD,∴设直线CD 的解析式为:y 2=-20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=-20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=-60,b 3=110,∴y 3=-60x +110,解方程组⎩⎪⎨⎪⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧x =1.75,y =5,∴点D 坐标为(1.75,5),30-5=25(km ),所以小芳出发1.75小时候被妈妈追上,此时距家25 km (3)将y =0代入直线CD 的解析式有:-20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:-60x +110=0,解得x =116,2-116=16(h )=10(分钟),故小芳比预计时间早10分钟到达乙地11. 解:(1)暂停排水需要的时间为:2-1.5=0.5(小时).∵排水时间为:3.5-0.5=3(小时),一共排水900 m 3,∴排水孔排水速度是:900÷3=300(m 3/h ) (2)当2≤t≤3.5时,设Q 关于t 的函数表达式为Q =kt +b ,易知图象过点(3.5,0).∵t =1.5时,排水300×1.5=450,此时Q =900-450=450(m 3),∴(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数表达式为Q =-300t +105012. 解:(1)s =⎩⎪⎨⎪⎧ 50t (0≤t≤20),1000(20<t≤30),50t -500(30<t≤60)(2)设小明的爸爸所走的路程s 与小明的步行时间t 的函数关系式为:s =kt +b ,则⎩⎪⎨⎪⎧25k +b =1000,b =250,解得,⎩⎪⎨⎪⎧k =30,b =250,则小明的爸爸所走的路程与小明的步行时间的关系式为:s =30t +250,当50t -500=30t +250,即t =37.5 min 时,小明与爸爸第三次相遇(3)30t +250=2500,解得t =75,则小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,∴小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需减少5 min13. 解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180.解得k =90,b =-90.所以y B 关于x 的函数解析式为y B =90x-90(1≤x≤6)(2)设y A 关于x 的解析式为y A =k 1x.根据题意得3k 1=180.解得k 1=60.所以y A =60x.当x =5时,y A =60×5=300(千克);x =6时,y B =90×6-90=450(千克).450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,B 种机器人比A 种机器人多搬运了150千克14. (1) 28(13-x) 250(13-x)(2) 解:设租车的总费用为W 元,则有:W =400x +250(13-x)=150x +3250.由已知得:45x+28(13-x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆,B型车5辆时,总的租车费用最低,最低为4450元15. 解:(1)当0≤x≤30时,y=3×0.4x=1.2x;当x>30时,y=3×0.9×(x -30)+3×0.4×30=2.7x-45(2)由题意知:该3口之家人均住房面积为:120÷3=40>30,在y=2.7x-45中,令x=40,则y=2.7×40-45=63.∴应缴纳的房款为63万元16. 解:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80(2)由(1)得y=-8x+2560,y随x的增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运20吨往A港口,乙仓库余下的物资全部运往B港口。
中考数学总复习训练 一次函数的实际应用含解析
一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
中考数学考点11一次函数的实际应用总复习(解析版)
一次函数的实际应用【命题趋势】在中考中.一次函数的实际应用常以解答题考查.并结合二次函数最值问题考查为主【中考考查重点】一、利用一次函数解决购买、销售、分配问题二、利用一次函数解决工程、生产、行程问题三、利用一次函数解决有关方案问题考点一:购买、销售、分配类问题1.(2021秋•柯桥区月考)在近期“抗疫”期间.某药店销售A.B两种型号的口罩.已知销售80只A型和45只B型的利润为21元.销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只.其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍.则该药店购进A型、B型口罩各多少只.才能使销售总利润y最大?最大值是多少?【答案】(1)A为0.15元.B为0.2元(2)A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元【解答】解:(1)设每只A型口罩销售利润为a元.每只B型口罩销售利润为b元.根据题意得:.解得.答:每只A型口罩销售利润为0.15元.每只B型口罩销售利润为0.2元;(2)根据题意得.y=0.15x+0.2(2000﹣x).即y=﹣0.05x+400;根据题意得..解得500≤x≤1000.∴y=﹣0.05x+400(500≤x≤1000).∵﹣0.05<0.∴y随x的增大而减小.∵x为正整数.∴当x=500时.y取最大值为375元.则2000﹣x=1500即药店购进A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元.2.(2021•南宁一模)自2020年12月以来.我国全面有序地推进全民免费接种新冠疫苗.现某国药集团在甲、乙仓库共存放新冠疫苗450万剂.如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后.剩余的新冠疫苗乙仓库比甲仓库多30万剂.(1)求甲、乙两仓库各存放新冠疫苗多少万剂?(2)若该国药集团需从甲、乙仓库共调出300万剂新冠疫苗运往B市.设从甲仓库调运新冠疫苗m万剂.请求出总运费W关于m的函数解析式并写出m的取值范围;其中.从甲、乙仓库调运新冠疫苗到B市的运费报价如表:甲仓库运费定价调运疫苗不超过130万剂时调运疫苗超过130万剂时135元/万剂不优惠优惠10%m元/万剂乙仓库105元/万剂不优惠(3)在(2)的条件下.国家审批此次调运新冠疫苗总运费不高于33000元.请通过计算说明此次调运疫苗最低总运费是否在国家审批的范围内?【答案】(1)甲仓库240万剂.乙仓库210万剂;(2)(3)是【解答】解:(1)设甲仓库存放新冠疫苗x万剂.乙仓库存放新冠疫苗y万剂.由题意.得:.解得:.答:甲仓库存放新冠疫苗240万剂.乙仓库存放新冠疫苗210万剂;(2)由题意.从甲仓库运m万剂新冠疫苗到B市.则从乙仓库运新冠疫苗(300﹣m)万剂到B市.∵300﹣m≤210.∴m≥90①若90≤m≤130时.此时甲仓库运费不优惠.乙仓库运费不优惠.则总运费W=135m+105(300﹣m)=30m+31500;②若130≤m≤240时.此时甲仓库运费优惠10%m元/万剂.乙仓库运费不优惠.则总运费W=(135﹣10%m)m+105(300﹣m)=﹣0.1m2+30m+31500;综上.总运费W关于m的解析式为:W=;(3)由(2)知.①当90≤m≤130时.∵30>0.∴W随着m的增大而增大的一次函数.当m=90时.可获得最低总运费.此时W=34200元;②当130≤m≤240时.W时关于m的二次函数.对称轴m=﹣=150.∵﹣0.1<0.∴当m=240时.W有最小值.最小值为32940.∵34200>32940.∴W最低为32940元.∵32940<33000.∴此次调运疫苗最低总运费是在国家审批的范围内.3.(2019春•增城区期末)为了让学生体验生活.某学校决定组织师生参加社会实践活动.现准备租用7辆客车.现有甲、乙两种客车.它们的载客量和租金如下表.设租用甲种客车x辆.租车总费用为y元.甲种客车乙种客车载客量(人/辆)6045租金(元/辆)360300(1)求出y与x之间的函数关系式;(2)若该校共有380名师生前往参加活动.确保每人都有座位坐.共有哪几种租车方案?(3)在(2)的条件下.带队老师从学校预支租车费2500元.试问预支的租车费用是否有结余?若有结余.最多可以结余多少元?【答案】(1)y=60x+2100.(0≤x≤7.且x为整数)(2)三种租车方案(3)100元【解答】解:(1)依题意得:y=360x+300(7﹣x)=60x+2100.(0≤x≤7.且x为整数)(2)依题意得:60x+45(7﹣x)≥380.解之.得.由(1)得0≤x≤7.∴x的取值范围为:.∵x为整数.∴x的值为 5.6.7.当x=5 时.7﹣x=7﹣5=2;当x=6 时.7﹣x=7﹣6=1;当x=7 时.7﹣x=7﹣7=0;∴共有三种租车方案:①租用甲种客车5 辆.乙种客车 2 辆;②租用甲种客车6 辆.乙种客车 1 辆;③租用甲种客车7 辆.乙种客车0 辆.(3)由(1)得y=60x+2100.∵k=60≥0.∴y随x的增大而增大.当x=5 时.y的值最小.其最小值y=360×5+300×2=2400.∴最多可结余:2500﹣2400=100(元).答:在(2)的条件下.带队老师从学校预支租车费2500元.预支的租车费有结余.最多可以结余100元.考点二:工程、生产、行程问题4.(2021春•江夏区期末)在2018春季环境整治活动中.某社区计划对面积为1600m2的区域进行绿化.经投标.由甲、乙两个工程队来完成.若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.并且在独立完成面积为400m2区域的绿化时.甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天.乙工程队施工y天.刚好完成绿化任务.求y关于x的函数关系式;(3)若甲队每天绿化费用是0.6万元.乙队每天绿化费用为0.25万元.且甲乙两队施工的总天数不超过25天.则如何安排甲乙两队施工的天数.使施工总费用最低?并求出最低费用.【答案】(1)甲、乙面积分别为80m2、40m2(2)y=﹣2x+40(3)x=15时.W最低=1.5+10=11.5【解答】解:(1)设乙队每天能完成绿化面积为am2.则甲队每天能完成绿化面积为2am2根据题意得:解得a=40经检验.a=40为原方程的解则甲队每天能完成绿化面积为80m2答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2(2)由(1)得80x+40y=1600整理的:y=﹣2x+40(3)由已知y+x≤25∴﹣2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(﹣2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时.W最低=1.5+10=11.55.(2021秋•金牛区期末)某模具厂引进一种新机器.这种机器同一时间只能生产一种零件.每天只能工作8小时.每月工作25天.若一天用3小时生产A型零件、5小时生产B型零件共可生产34个;若一天用5小时生产A型零件、3小时生产B型零件则共可生产30个.(1)每小时可单独加工A型零件、B型零件各多少个?(2)按市场统计.一个A型零件的利润是150元.一个B型零件的利润是100元.设该模具厂每月安排x(小时)生产A型零件.这两种零件所获得的总利润为y(元).试写出y与x的函数关系式(不要求写出自变量的取值范围).【答案】(1)A型零件3个.B型零件5个(2)y=﹣50x+100000【解答】解:(1)设每小时可单独加工A型零件m个.B型零件n个.根据题意得:.解得;.答:每小时可单独加工A型零件3个.B型零件5个;(2)∵这种机器每天只能工作8小时.每月工作25天.设该模具厂每月安排x(小时)生产A型零件.则每月安排(25×8﹣x)小时生产B 零件.由题意得:y=150×3x+100×5(200﹣x)=﹣50x+100000.∴y与x的函数关系式为y=﹣50x+100000.6.(2020秋•沭阳县期末)学校与图书馆在同一条笔直道路上.甲从学校去图书馆.乙从图书馆回学校.甲、乙两人都匀速步行且同时出发.乙先到达目的地两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息.当t=分钟时甲乙两人相遇.甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.(3)当t为何值时.甲、乙两人相距2000米?【答案】(1)24.40 (2)y=40t(40≤t≤60)(3)t=4或t=50【解答】解:(1)甲乙两人相遇即是两人之间的距离y=0.从图中可知此时x=24(分钟).图中可知甲用60分钟走完2400米.速度为2400÷60=40(米/分钟).故答案为:24.40;(2)甲、乙速度和为2400÷24=100(米/分钟).而甲速度为40米/分钟.∴乙速度是60米/分钟.∴乙达到目的地所用时间是2400÷60=40(分钟).即A横坐标为40.此时两人相距(40﹣24)×100=1600(米).即A纵坐标为1600.∴A(40.1600).设线段AB所表示的函数表达式为y=kt+b.将A(40.1600)、B(60.2400)代入得:.解得k=40.b=0.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).(3)甲、乙两人相距2000米分两种情况:①二人相遇前.两人路程和为2400﹣2000=400(米).甲、乙两人相距2000米.此时t =400÷100=4(分钟).②二人相遇后.乙达到目的地时二人相距1600米.甲再走400米两人就相距2000米.此时t=40+400÷40=50(分钟).综上所述.二人相距2000时.t=4或t=50.考点三:方案问题方案一:没有底薪.只付销售提成;方案二:底薪加销售提成.如图中的射线l1.射线l2分别表示该鲜花销售公司每月按方案一.方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x ≥0)的函数关系.(1)分别求y1、y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克.但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1)y1=30x(x≥0).y1=30x(x≥0)(2)采用了方案一【解答】解:(1)设y1=k1x.根据题意得40k1=1200.解得k1=30.∴y1=30x(x≥0);设y2=k2x+b.根据题意.得.解得.∴y2=10x+800(x≥0);(2)当x=70时.y1=30×70=2100>2000;y2=10×70+800=1500<2000;∴这个公司采用了方案一给这名销售人员付3月份的工资.1.(2021春•饶平县校级期末)小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售.并分别以每箱35元与60元的价格售出.设购进A水果x箱.B水果y箱.(1)若小王将水果全部售出共赚了215元.则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量.则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润.此时最大利润是多少?【答案】(1)A种水果25箱.B种水果9箱(2)购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得.答:小王共购进A种水果25箱.B种水果9箱.(2)设利润为W元.W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量.∴x≥.解得:x≥15.∵﹣1<0.∴W随x的增大而减小.∴当x=15时.W取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.2.(2020秋•秦都区期末)某工厂新开发生产一种机器.每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70.且x为整数).函数y与自变量x的部分对应值如表:x(单位:台)1020 y(单位:万元/台)6055(1)求y与x之间的函数关系式;(2)市场调查发现.这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.若该厂第一个月生产这种机器40台.且都按同一售价全部售出.请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)【答案】(1)y=﹣0.5x+65 (2)200万元【解答】解:(1)设y与x之间的函数关系式为y=kx+b.根据题意.得.解得:.即y与x之间的函数关系式为y=﹣0.5x+65.(2)当x=40时.y=﹣0.5×40+65=45.设z与a之间的函数关系式为z=ma+n.根据题意.得.解得:.即z与a之间的函数关系式为z=﹣a+90.当z=40时.40=﹣a+90.解得.a=50.(50﹣45)×40=200(万元).答:该厂第一个月销售这种机器的总利润是200万元.3.(2020秋•浦东新区校级期末)有两段长度相等的河渠挖掘任务.分别交给甲、乙两个工程队同时进行挖掘.如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时.用了小时.开挖6小时.甲队比乙队多挖了米;(2)甲队在0≤x≤6的时段内.y与x之间的函数关系式是;(3)在开挖6小时后.如果甲、乙两队施工速度不变.完成总长110米的挖掘任务.乙队比甲队晚小时完成.【答案】(1) 2.10 (2)y=10x(0≤x≤6)(3)7【解答】解:(1)由图可知:乙队开挖到30米时.用了2小时.开挖6小时时.甲队挖了60米.乙队挖了50米.所以甲队比乙队多挖了60﹣50=10米.故答案为:2.10;(2)设2小时后乙的解析式为:y=kx(k≠0).把C(6.60)代入得:6k=60.k=10.∴2小时后乙的解析式为:y=10x.即y与x之间的函数关系式是:y=10x(0≤x≤6).故答案是:y=10x(0≤x≤6);(3)开挖6小时.甲挖了60米.甲的速度为10米/小时.∵要完成总长110米的挖掘任务.∴甲再挖50米.所需时间为50÷10=5小时;开挖6小时.乙挖了50米.乙的速度为=5米/小时.∵要完成总长110米的挖掘任务.∴乙需再挖60米.所用时间为60÷5=12(小时).则12﹣5=7(小时).∴乙队比甲队晚7小时完成.故答案是:7.4.(2021春•华容县期末)某玩具批发市场A、B玩具的批发价分别为每件30元和50元.张阿姨花1200元购进A、B两种玩具若干件.并分别以每件35元与60元价格出售.设购入A玩具为x件.B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元.那么张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量.则怎样分配购进玩具A、B的数量并全部售出才能获得最大利润.此时最大利润为多少?【答案】(1)A型玩具20件.B型玩具12件(2)购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得..答:张阿姨购进A型玩具20件.B型玩具12件;(2)设利润为w元.w=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A玩具的数量不得少于B玩具的数量.∴x≥.解得:x≥15.∵﹣1<0.∴w随x的增大而减小.∴当x=15时.w取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.故购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.5.(2020•老河口市模拟)2020年是全面建成小康社会目标实现之年.是全面打赢脱贫攻坚战收官之年.我市始终把产业扶贫摆在突出位置.建立了A.B两个扶贫种植基地.为了帮扶我市的扶贫产业.扶贫办联系了C.D两家肥料厂对我市共捐赠100吨肥料.将这100吨肥料平均分配到A.B两个种植基地.已知C厂捐赠的肥料比D厂捐赠的肥料的2倍少20吨.从C.D两厂将肥料运往A.B两地的费用如表:C厂D厂运往A地(元/吨)2220运往B地(元/吨)2022(1)求C.D两厂捐赠的肥料的数量各是多少吨;(2)设从C厂运往A地肥料x吨.从C.D两厂运输肥料到A.B两地的总运费为y元.求y与x的函数关系式.并求出最少总运费;(3)由于从D厂到B地开通了一条新的公路.使D厂到B地的运费每吨减少了a(0<a<6)元.这时怎样调运才能使总运费最少?【答案】(1)C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨(2)y=4x+1980(10≤x≤50).最少总运费为2020元(3)①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.【解答】解:(1)设D厂捐赠的数量是a吨.则C厂捐赠的数量是(2a﹣20)吨.根据题意可得.a+2a﹣20=100.解得.a=40.则2a﹣20=60.答:C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨.(2)根据题意可得.从C厂运往A地肥料x吨.从C厂运往B地肥料(60﹣x)吨;从D厂运往A地肥料(50﹣x)吨.从D厂运往B地肥料(x﹣10)吨.由题意可得.y=22x+20(60﹣x)+20(50﹣x)+22(x﹣10)=4x+1980.根据实际意义可得..解得.10≤x≤50.∵4>0.∴y随x的减小而减小.∴当x=10时.y取最小值2020.答:y与x的函数关系式为y=4x+1980(10≤x≤50).最少总运费为2020元.(3)在(2)的基础上.可得.y=22x+20(60﹣x)+20(50﹣x)+(22﹣a)(x﹣10)=(4﹣a)x+(1980+10a)(10≤x≤50.0<a<6).①当4﹣a>0.即0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4﹣a<0.即4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.综上.①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.1.(2020•广安)某小区为了绿化环境.计划分两次购进A.B两种树苗.第一次购进A种树苗30棵.B种树苗15棵.共花费1350元;第二次购进A种树苗24棵.B种树苗10棵.共花费1060元.(两次购进的A.B两种树苗各自的单价均不变)(1)A.B两种树苗每棵的价格分别是多少元?(2)若购买A.B两种树苗共42棵.总费用为W元.购买A种树苗t棵.B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案.并求出此方案的总费用.【答案】(1)A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.【解答】解:(1)设A种树苗每棵的价格x元.B种树苗每棵的价格y元.根据题意得:.解得.答:A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)设A种树苗的数量为t棵.则B种树苗的数量为(42﹣t)棵.∵B种树苗的数量不超过A种树苗数量的2倍.∴42﹣t≤2t.解得:t≥14.∵t是正整数.∴t最小值=14.设购买树苗总费用为W=40t+10(42﹣t)=30t+420.∵k>0.∴W随t的减小而减小.当t=14时.W最小值=30×14+420=840(元).答:购进A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.2.(2020•云南)众志成城抗疫情.全国人民在行动.某公司决定安排大、小货车共20辆.运送260吨物资到A地和B地.支援当地抗击疫情.每辆大货车装15吨物资.每辆小货车装10吨物资.这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车中的10辆前往A地.其余前往B地.设前往A地的大货车有x辆.这20辆货车的总运费为y元.(1)这20辆货车中.大货车、小货车各有多少辆?(2)求y与x的函数解析式.并直接写出x的取值范围;(3)若运往A地的物资不少于140吨.求总运费y的最小值.【答案】(1)大货车、小货车各有12与8辆(2)y=100x+15600 (2≤x≤10)x为整数(3)当x=8时.y有最小值.此时y=100×8+15600=16400元.【解答】解:(1)设大货车、小货车各有m与n辆.由题意可知:.解得:答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆.则到A地的小货车有(10﹣x)辆.到B地的大货车有(12﹣x)辆.到B地的小货车有(x﹣2)辆.∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600.其中2≤x≤10.x为整数.(3)运往A地的物资共有[15x+10(10﹣x)]吨.15x+10(10﹣x)≥140.解得:x≥8.∴8≤x≤10.x为整数.当x=8时.y有最小值.此时y=100×8+15600=16400元.答:总运费最小值为16400元.3.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲进价是30元.乙进价是24元(2)应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元【解答】解:(1)设甲品牌洗衣液每瓶的进价是x元.则乙品牌洗衣液每瓶的进价是(x﹣6)元.依题意得:.解得:x=30.经检验.x=30是原方程的解.且符合题意.∴x﹣6=24(元).答:甲品牌洗衣液每瓶的进价是30元.乙品牌洗衣液每瓶的进价是24元;(2)设可以购买甲品牌洗衣液m瓶.则可以购买(120﹣m)瓶乙品牌洗衣液.依题意得:30m+24(120﹣m)≤3120.解得:m≤40.依题意得:y=(36﹣30)m+(28﹣24)(120﹣m)=2m+480.∵k=2>0.∴y随m的增大而增大.∴m=40时.y取最大值.y最大值=2×40+480=560.120﹣40=80(瓶).答:超市应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元.4.(2021•宿迁)一辆快车从甲地驶往乙地.一辆慢车从乙地驶往甲地.两车同时出发.匀速行驶.两车在途中相遇时.快车恰巧出现故障.慢车继续驶往甲地.快车维修好后按原速继续行驶乙地.两车到达各地终点后停止.两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h.C点的坐标为.(2)慢车出发多少小时后.两车相距200km.【答案】(1)100.(8.480)(2)出发h或h时两车相距200km.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h).∵两车3小时相遇.此时慢车走的路程为:60×3=180(km).∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h).通过图象和快车、慢车两车速度可知快车比慢车先到达终点.∴慢车到达终点时所用时间为:480÷60=8(h).∴C点坐标为:(8.480).故答案为:100.(8.480);(2)设慢车出发t小时后两车相距200km.①相遇前两车相距200km.则:60t+100t+200=480.解得:t=.②相遇后两车相距200km.则:60t+100(t﹣1)﹣480=200.解得:t=.∴慢车出发h或h时两车相距200km.答:慢车出发h或h时两车相距200km.5.(2020•广西)倡导垃圾分类.共享绿色生活.为了对回收的垃圾进行更精准的分类.某机器人公司研发出A型和B型两款垃圾分拣机器人.已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨.3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人.这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45).B型机器人b 台.请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下.设购买总费用为w万元.问如何购买使得总费用w最少?请说明理由.【答案】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨(2)b=100﹣2a(10≤a≤45)(3)A型号机器人35台时.总费用w最少.此时需要918万元【解答】解:(1)设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y 吨.由题意可知:.解得:.答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20.∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时.此时40<b≤80.∴w=20×a+0.8×12(100﹣2a)=0.8a+960.当a=10时.此时w有最小值.w=968.当30≤a≤35时.此时30≤b≤40.∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960.当a=35时.此时w有最小值.w=918.当35<a≤45时.此时10≤b<30.∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时.w有最小值.此时w=930.答:选购A型号机器人35台时.总费用w最少.此时需要918万元.6.(2020•德阳)推进农村土地集约式管理.提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地.计划对其进行平整.经投标.由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩.乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元.当甲工程队所需工程费为12000元.乙工程队所需工程费为9000元时.两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整.已知两个工程队工作天数均为正整数.且所有土地刚好平整完.总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案.并求出最低费用.【答案】(1甲每天需工程费2000元、乙工程队每天需工程费1500元)(2)甲乙两工程队分别工作的天数共有7种可能(3)最低费用为107000元【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元.由题意.=.解得x=2000.经检验.x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天.则乙平整y天.由题意.45x+30y=2400①.且2000x+1500y≤110000②.由①得到y=80﹣1.5x③.把③代入②得到.2000x+1500(80﹣1.5x)≤110000.解得.x≥40.∵y>0.∴80﹣1.5x>0.x<53.3.∴40≤x<53.3.∵x.y是正整数.∴x=40.y=20或x=42.y=17或x=44.y=14或x=46.y=11或x=48.y=8或x=50.y =5或x=52.y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000.∵﹣250<0.∴w随x的增大而减小.∴x=52时.w的最小值=107000(元).答:最低费用为107000元.7.(2021•湘西州)2020年以来.新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机.开始组建团队.制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本.制作5个A 类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站.每个A类微课售价1500元.每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课.且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课.其中制作A类微课a天.制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式.并写出a的取值范围;(3)每月制作A类微课多少个时.该团队月利润w最大.最大利润是多少元?【答案】(1)A类微课的成本为700元.B类微课的成本为500元(3)当a=8时.w有最大值.w最大=50×8+16500=16900(元)【解答】解:(1)设团队制作一个A类微课的成本为x元.制作一个B类微课的成本为y元.根据题意得:.解得.答:团队制作一个A类微课的成本为700元.制作一个B类微课的成本为500元;(2)由题意.得w=(1500﹣700)a+(1000﹣500)×1.5(22﹣a)=50a+16500;1.5(22﹣a)≥2a.解得a≤.又∵每月制作的A、B两类微课的个数均为整数.∴a的值为0.2.4.6.8.(3)由(2)得w=50a+16500.∵50>0.∴w随a的增大而增大.∴当a=8时.w有最大值.w最大=50×8+16500=16900(元).答:每月制作A类微课8个时.该团队月利润w最大.最大利润是16900元.1.(2021•玉泉区二模)甲、乙两个工程队共同承担一项筑路任务.甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天.且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天.再由乙队施工y天.刚好完成筑路任务.求y与x之间的函数关系式.(3)在(2)的条件下.若每天需付给甲队的筑路费用为0.1万元.需付给乙队的筑路费用为0.2万元.且甲、乙两队施工的总天数不超过24天.则如何安排甲、乙两队施工的天数.使施工费用最少.并求出最少费用.【答案】(1)甲、乙各需30天、20天(2)y=﹣x+20(3)甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.【解答】解:(1)设乙队完成此项任务需要x天.则甲队完成此项任务(x+10)天..解得.x=20.经检验.x=20是原分式方程的解.∴x+10=30.答:甲、乙两队单独完成此项任务各需30天、20天;(2)由题意可得.=1.化简.得y=﹣x+20.即y与x之间的函数关系式是y=﹣x+20;(3)设施工的总费用为w元.w=0.1x+0.2y=0.1x+0.2×(﹣x+20)=x+4.∵甲、乙两队施工的总天数不超过24天.∴x+y≤24.即x+(﹣x+20)≤24.解得.x≤12.∴当x=12时.w取得最小值.此时w=3.6.y=12.答:安排甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.2.(2021•富平县二模)甲、乙两家草莓采摘园的草莓品质相同.销售价格也相同.“五一”假期.两家均推出了优惠方案.甲采摘园的优惠方案:游客进园需购买60元的门票.采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票.采摘的草莓超过一定数量后.超过部分打折优惠.优惠期间.设某游客的草莓采摘量为x(千克).。
2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)
2024 学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)1.春天来了,学校计划用两种花卉对校园进行美化.已知用600元购买A 种花卉与用900元购买B 种花卉的数量相等,且B 种花卉每盆的价格比A 种花卉每盆的价格多0.5元.(1)求A ,B 两种花卉每盆的价格各是多少元;(2)学校计划购买A ,B 两种花卉共6000盆,其中A 种花卉的数量不超过B 种花卉数量的13,请你给出购买这批花卉费用最低的方案,并求出最低费用. 2.某市的A 县和B 县春季育苗,急需化肥分别为90t 和60t ,该市的C 县和D 县分别储存化肥100t 和50t ,全部调配给A 县和B 县.已知从C 县运化肥到A 县的运费为35元/t ,从C 县运化肥到B 县的运费为30元/t ,从D 县运化肥到A 县的运费为40元/t ,从D 县运化肥到B 县的运费为45元/t .(1)设C 县运到A 县的化肥为x t ,求总运费W (单位:元)关于x (单位:t )的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.3.为加强学生的劳动教育,某校准备开展以“种下希望,共建美好家园”为主题的义务植树活动. 经了解,购买2棵枣树和3棵石榴树共需44元;购买5棵枣树和6棵石榴树共需98元,该校决定购买(0)m m 棵枣树和50棵石榴树.(1)求枣树和石榴树的单价;(2)实际购买时,商家给出了如下优惠方案:方案一:均按原价的九折销售;方案二:如果购买的枣树不超过50棵,按原价销售. 如果购买的枣树超过50棵,则超出的部分按原价的八折销售,石榴树始终按原价销售.分别求出两种方案的费用1W ,2W 关于m 的函数解析式.4.“一骑红尘妃子笑,无人知是荔枝来”,夏季是盛产荔枝的季节,某县城为尽快打开市场,对本地的荔枝品种妃子笑进行线上和线下销售相结合的模式,具体费用标准如下:线上销售模式:不超过6千克时,按原价出售,超过6千克时,超出部分每千克再让利3.5元;线下销售模式:一律九折出售.购买妃子笑x 千克,所需费用为y 元,y 与x 之间的函数关系如图所示.根据以上信息回答下列问题:(1)请问妃子笑的标价为多少?(2)请求出线上销售模式所需费用y关于x的函数解析式;(3)若想购买妃子笑40千克,请问选择哪种模式购买最省钱?5.某公司为改善办公条件,计划采购一批A,B两种型号的电脑,已知1台A型电脑比1台B型电脑的便宜1200元;采购4台A型电脑与采购3台B型电脑的费用一样多.(1)求A型电脑和B型电脑每台各需多少元;(2)若公司计划采购A、B两种型号电脑共50台,且A型电脑的台数不超过B型电脑的4倍,两种型号电脑的采购总费用不超过200000元,该公司共有几种采购方案?哪种采购方案可使总费用最低,最低费用是多少元?6.希望艺术团准备采购甲,乙两种道具,某经销商知道了活动的方案后,主动联系希望艺术团,对甲种道具的出售价格根据购买量给予优惠,对乙种道具按25元/件的价格出售.设希望艺术团购买甲种道具x件,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若希望艺术团计划一次性购买甲,乙两种道具共100件,且甲种道具不少于40件,但又不超过60件.如何分配甲,乙两种道具的购买量,才能使希望艺术团付款总金额w(元)最少?(3)若甲、乙两种道具的进货价格分别为22元/件和18元/件.经销商按(2)中甲,乙两种道具购买量的分配比例卖出两种道具共a件,且销售完a件道具获得的利润不少于1050元,求a的最小值.7.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买A,B两种奖品.已知2件A种奖品和3件B种奖品共需41元,5件A种奖品和2件B种奖品共需53元.(1)这两种奖品的单价各是多少元?(2)学校准备购进这两种奖品共90件,且B种奖品的数量不少于A种奖品数量的13,请设计出最省钱的购买方案,并求出最少费用.8.我市是福建省茶叶的主要产区,清明过后就是春茶的采摘季节.已知熟练采茶工人每天采茶的数量是新手采茶工人的3倍,每个熟练采茶工人采摘600斤鲜叶比新手采茶工人采摘450斤鲜叶少用25天.(1)求熟练采茶工人和新手采茶工人一天分别能采摘鲜叶的斤数;(2)某茶厂计划一天采摘鲜叶600斤,该茶厂有20名熟练采茶工人和15名新手采茶工人,按点工制度付给熟练采茶工人每人每天的工资为300元,付给新手采茶工人每人每天的工资为80元,应如何安排熟练采茶工人和新手采茶工人能使费用最少?9.为了方便老师工作,某中学决定购进一批教学用具,在购买教学用具时,该校从甲、乙、丙三家商场了解到同一种型号教学用具的优惠条件如下:甲:定价为90元,超过5个,超过的部分每个优惠20%;乙:定价为90元,每个优惠10% ;丙:购会员卡100元,每个教学用具70元.(1)设该校购买x个教学用具,选择甲商场时,所需费用为y1元;选择乙商场时,所需费用为y2元;选择丙商场时,所需费用为y3元;请分别求出y1,y2,y3与x之间的函数关系式;(2)当购买教学用具数量大于多少件时,y2>y3?10.某年级430名师生秋游,计划租用8辆客车,现有甲、乙两种型号客车,它们的载客量和租金如下表:(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?11.目前,全国各地都在积极开展新冠肺炎疫苗接种工作,某生物公司接到批量生产疫苗任务,要求5天内加工完成22万支疫苗,该公司安排甲,乙两车间共同完成加工任务,乙车间加工过程中停工一段时间维修设备,然后提高效率继续加工,直到与甲车间同时完成加工任务为止,设甲,乙两车间各自生产疫苗y (万支)与甲车间加工时间x (天)之间的关系如图1所示;两车间未生产疫苗w (万支)与甲车间加工时间x (天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天生产疫苗 万支,第一天甲、乙两车间共生产疫苗 万支,=a ;(2)当3x =时,求甲、乙车间生产的疫苗数(万支)之差12y y -;(3)若5.5万支疫苗恰好装满一辆货车,那么加工多长时间装满第一辆货车?再加工多长时间恰好装满第三辆货车?12.某校准备在健康大药房购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元? 13.某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.方案一:买一件夹克送一件衬衣方案二:夹克和衬衣均按定价的80%付款现有顾客要到该商场购买夹克30件,衬衣x件(x>30)(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?(3)当x=40时,哪种方案更省钱?请说明理由.14.灵宝寺河山被誉为“亚洲第一高山果园”,海拔800﹣1200米,土质肥沃,雨量充沛,日照充足,昼夜温差大,气候条件得天独厚,是苹果的最佳适生地.寺河山苹果,是三门峡市灵宝苹果的龙头品牌,素有“天下苹果属灵宝,灵宝苹果属寺河”之说.在苹果收获季节,为了保证苹果的新鲜度,需要将苹果运送至冷库进行保存,现有A,B两个果园,若A果园有苹果120吨,B果园有苹果60吨.现将A,B两个果园的苹果全部运往C,D两个冷库进行冷藏保存,已知C仓库可储存100吨,D仓库可储存80吨,A,B 两个果园到C,D两个冷藏仓库的运费如下表:设从A果园运往C仓库的苹果重量为x吨.(1)用含x(吨)的代数式表示总运费W(元),并写出自变量x的取值范围;(2)如何进行运送才能使总运费最少?求出最低总运费.15.学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程.在建设美丽中国的活动中,某学校计划组织全校1450名师生到相关部门规划的林区植树,经过研究,决定在当地租车公司租用62辆A、B两种型号的客车作为交通工具.下表是租车公司提供给学校有关A、B两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数;(1)设租用A型号客车x辆,租车总费用为y元,求y与x之间的函数表达式,并通过计算求出x的取值范围;(2)若要使租车总费用不超过13460元,则共有几种租车方案?哪种租车方案最省钱?参考答案:1.(1)A 种花卉每盆1元,B 种花卉每盆1.5元(2)当购买A 种花卉1500盆,B 种花卉4500盆时购买这批花卉总费用最低,最低费用为8250元.2.(1)W =10x +4800(40≤x ≤90)(2)最低总运费为5200元,此时的运送方案是:C 县的100t 化肥40t 运往A 县,60t 运往B 县,D 县的50t 化肥全部运往A 县3.(1)枣树的单价为10元,石榴树的单价为8元(2)19360W m =+,210400(050),8500(50).m m W m m +<≤⎧=⎨+>⎩4.(1)25元/千克(2)()()250621.5216x x y x x ⎧≤<⎪=⎨+>⎪⎩(3)线上购买5.(1)购买1台A 型电脑需要3600元,购买1台B 型电脑需要4800元.(2)该公司共有7种采购方案. 购买A 型电脑40台,B 型电脑10台方案可使总费用最低,最低费用是192000元6.(1)30(050)24300(50)x x y x x ≤≤⎧=⎨+>⎩ (2)购进甲道具40件,乙道具60件时,才能使希望艺术团付款总金额w (元)最少;(3)a 的最小值为2107.(1)A :7元,B :9元(2)购进A 种奖品67件,购进B 种奖品23件;676元8.(1)每名熟练的采茶工人一天能采摘鲜叶30斤,每名新手采茶工人一天能采摘鲜叶10斤(2)茶厂应安排15名熟练的采茶工人采摘鲜叶,15名新手采茶工人采摘鲜叶能使得费用最少9.(1)190(05)7290(5)x x y x x <≤⎧=⎨+>⎩;290(110%)81y x x =⨯-=;370100y x =+ (2)1010.(1)y =100x +3600(2)当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是4100元11.(1)2,3.5,1.5(2)1(3)2天,2天12.(1)每盒口罩和每盒水银体温计的价格各是200元,50元(2)5m(3)当m ≤4时,则w=450m ;当m >4时,w =360m +360,需要购买口罩20盒,水银体温计100盒,所需总费用为7560元13.(1)12501500402400y x y x =+⎧⎨=+⎩;(2)当90x =时12y y =;(3)当x =40时,方案一更省钱. 14.(1)43400W x =+,40100x ≤≤;(2)运送方案为A 果园将40吨苹果运往C 仓库,80吨运往D 仓库,B 果园的60吨苹果全部运往C 仓库,此时总运费最低,最低是3560元 15.(1)y =100x +11160(21≤x ≤62且x 为整数);(2)3种,租用A 型号客车21辆。
中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.分段函数:在一次函数的实际应用中,最常见为分段函数。
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
关键点:①分段函数各段的函数解析式。
②各个拐点的实际意义。
③函数交点的实际意义。
专项练习题1、(2022•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是()A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hD.轿车到雅安20分钟后,货车离雅安还有20km【分析】根据“速度=路程÷时间”分别求出两车的速度,进而得出轿车出发的时间,再对各个选项逐一判断即可.【解答】解:由题意可知,货车从西昌到雅安的速度为:140÷4=60(km/h),故选项B不合题意;轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;轿车从西昌到雅安所用时间为:240÷110=(小时),3﹣=(小时),设货车出发x小时后与轿车相遇,根据题意得:,解得x=1.8,∴货车出发1.8小时后与轿车相遇,故选项A不合题意;轿车到雅安20分钟后,货车离雅安还有60×=40(km),故选项D符合题意.故选:D.2、(2022•恩施州)如图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=kh+P0,其图象如图2所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是()A.青海湖水深16.4m处的压强为189.36cmHgB.青海湖水面大气压强为76.0cmHgC.函数解析式P=kh+P0中自变量h的取值范围是h≥0D.P与h的函数解析式为P=9.8×105h+76【分析】由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2).由此可得出k和P0的值,进而可判断B,D;根据实际情况可得出h的取值范围,进而可判断C;将h=16.4代入解析式,可求出P的值,进而可判断A.【解答】解:由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2),∴,解得.∴直线解析式为:P=7.4h+68.故D错误,不符合题意;∴青海湖水面大气压强为68.0cmHg,故B错误,不符合题意;根据实际意义,0≤h≤32.8,故C错误,不符合题意;将h=16.4代入解析式,∴P=7.4×16.4+68=189.36,即青海湖水深16.4m处的压强为189.36cmHg,故A正确,符合题意.故选:A.3、(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为()A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟【分析】根据题意和函数图象中的数据,可以先表示出两人的速度,然后即可计算出两人第一次和第二次相遇的时间,然后作差即可.【解答】解:由图象可得,小王的速度为米/分钟,爸爸的速度为:=(米/分钟),设小王出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,m=(m﹣4)•,n+[n﹣4﹣(12﹣4)÷2]=a,解得m=6,n=9,n﹣m=9﹣6=3,故选:C.4、(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5hB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/hD.汽车在乡村道路上行驶的平均速度是40km/h【分析】由3.5h到达目的地,在乡村道路上行驶1h可得下高速公路的时间,从而可判断A,由图象直接可判断B,根据速度=路程除以时间可判断C和D.【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,∴汽车下高速公路的时间是2.5h,∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;故选:D.5、(2022•桂林)桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km)随时间t (h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是()A.甲大巴比乙大巴先到达景点B.甲大巴中途停留了0.5hC.甲大巴停留后用1.5h追上乙大巴D.甲大巴停留前的平均速度是60km/h【分析】根据函数图象中的数据,可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,甲大巴比乙大巴先到达景点,故选项A正确,不符合题意;甲大巴中途停留了1﹣0.5=0.5(h),故选项B正确,不符合题意;甲大巴停留后用1.5﹣1=0.5h追上乙大巴,故选项C错误,符合题意;甲大巴停留前的平均速度是30÷0.5=60(km/h),故选项D正确,不符合题意;故选:C.6、(2022•玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,y1,y2分别表示兔子与乌龟所走的路程).下列说法错误的是()A.兔子和乌龟比赛路程是500米B.中途,兔子比乌龟多休息了35分钟C.兔子比乌龟多走了50米D.比赛结果,兔子比乌龟早5分钟到达终点【分析】根据函数图象中的数据可以判断各个选项中的结论是否正确.【解答】解:A、“龟兔再次赛跑”的路程为500米,原说法正确,故此选项不符合题意;B、乌龟在途中休息了35﹣30=5(分钟),兔子在途中休息了50﹣10=40(分钟),兔子比乌龟多休息了35分钟,原说法正确,故此选项不符合题意;C、兔子和乌龟同时从起点出发,都走了500米,原说法错误,故此选项符合题意;D、比赛结果,兔子比乌龟早5分钟到达终点,原说法正确,故此选项不符合题意.故选:C.7、(2022•乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【分析】观察函数图象,逐项判断即可.【解答】解:由图象可得:前10分钟,甲的速度为0.8÷10=0.08(千米/分),乙的速度是1.2÷10=0.12(千米/分),∴甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,故B正确,不符合题意;∵甲40分钟走了3.2千米,∴甲的平均速度为3.2÷40=0.08(千米/分钟),故C正确,不符合题意;∵经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,∴甲比乙走过的路程多,故D错误,符合题意;故选:D.8、(2022•阜新)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.【分析】根据图象求出快递员往返的时间为2(0.35﹣0.2)h,然后再根据速度=路程÷时间.【解答】解:∵快递员始终匀速行驶,∴快递员的行驶速度是=35(km/h).故答案为:35.9、(2022•资阳)女子10千米越野滑雪比赛中,甲、乙两位选手同时出发后离起点的距离y(千米)与时间t(分钟)之间的函数关系如图所示,则甲比乙提前分钟到达终点.【分析】根据图象求出20分钟后甲的速度,进而求出32分钟,甲和乙所处的交点位置,再根据速度公式求出20分钟后乙的速度,进而求出达到终点时乙所需的时间,即可求出答案.【解答】解:由图象可知,甲20~35分钟的速度为:(千米/分钟),∴在32分钟时,甲和乙所处的位置:(千米),乙20分钟后的速度为:(千米/分钟),∴乙到达终点的时间为:(分钟),∴甲比乙提前:36﹣35=1(分钟),故答案为:1.10、(2022•呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为.【分析】根据糯米的价格为5元/千克,如果一次购买2千克以上糯米,超过2千克的部分的糯米的价格打8折,即可得出解析式;再把x=14代入即可.【解答】解:∵x>10时,∴一次购买的数量超过2千克,∴y=,=.∵14>10,∴y=,=,=3.故答案为:3;y=.11、(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.【分析】设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,求出x,再求出8分钟后的放水时间,可得结论.【解答】解:设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,∴x=12,∵8分钟后的放水时间==,8+=,∴a=,故答案为:.。
一次函数的应用举例-
一次函数的应用举例一次函数是最简单,最基本的函数之一,它有着极为广泛的应用.现以近几年的一些中考题为例说明一次函数的应用.一、用于解决现实生活中的问题例1 “五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s (千米)与时间t (时)的关系可用图中的曲线来表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时? (2)求出返程途中,s (千米)与时间t (时)的函数关系式并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总量为35升,汽车每行驶1千米耗油 升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议(加油所用时间忽略不计).分析:(1)可直接从图象上看出来;(2)设函数关系式为=s b kt +,再用代点入式法求解即可; (3)是个开放性问题,答案不唯一,只要所提建议合理即可. 解:(1)由图象可看出,小明全家在旅游景点游玩了4小时.(2)设=s b kt +,代入点(14,180)和(15,120),得1418015120k d k d +=⎧⎨+=⎩解得60-=k ,1020=b ,故=s 102060+-t . 令=s 0,得17=t ,即小明全家到家是当天下午5时.(3)合理化建议:①9时30分前必须加一次油;②若8时30分前加满油箱,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量不得少于25升.点评:这是一道贴近生活实际的函数图象的“审读—理解—应用”问题,将行程问题91与一次函数的图象有机结合起来,构思巧妙,设计新颖.由于本题的信息由图象结出,故应仔细审视图象并在此基础上建立数学模型,进而运用相关的数学基础知识和数学基本思想进行解决.二、用于解决“方案设计型”问题例2 东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了两种优惠方法.甲:买一支毛笔赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法小组购买这种毛笔10支,书法练习本x (x ≥10)本.(1)写出每种优惠方法实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式.(2)若商场允许可任选一种优惠方法购买,也可同时用两种优惠方法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.分析:读懂题意是解决本题的基础,在此基础上建立数学模型——一次函数模型是解决本题的关键.解:(1)由题意,得y 甲=2005+x ,y 乙=2255.4+x .(2)当x =60时,y甲=500,y 乙=495,故任选一种优惠方法购买时,乙方法省钱.当同时选用两种方法购买时,设用甲方法购买m 支毛笔,获赠m 本练习本;用乙方法购买(10-m )支毛笔,(60-m )本练习本,则付款金额4952%90)]60(5)10(25[25+-=⨯-+-+=m m m m y . 由题意知m ≤10,故当=10时,y 有最小值,y最小495475495102<=+⨯-=,故用甲方法购买10支毛笔,用乙方法购买50本练习本最省钱.点评:这是一道实际应用题,首先要进行数学抽象,把它转化为一次函数问题,然后利用一次函数的性质及自变量的取值范围来解决.一次函数b kx y +=本没有最大值或最小值,但当自变量x 的取值受某种条件制约(如本例中m 只能取不超过10的整数)时,一次函数就有最大值或最小值了.三、用于解决“决策型”问题例3 某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,它们提供的信息见下表.解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A 、B 两市的距离(精确到个位);(2)若A 、B 两市的距离为s 千米,且这批水果在包装与装卸及运输过程中的损耗为300元/小时,则要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)包装与装卸及运输费用与A 、B 的距离有关.设距离为x 千米,分别写出三家公司的费用,利用所给等量关系列方程可求出x .(2)由题意知总费用是距离s 的函数,故应分别求出选各公司所需总费用与s 的函数关系式,然后通过比较来判断应选哪家公司.解:(1)设A 、B 两市的距离为x 千米,则各公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司(10x +700)元, 由题意,得(8x +1000)+(10x +700)=2(6x +1500), 故x ≈217,即A 、B 两市的距离约为217千米. (2)设选择各公司所需总费用分别为y 甲、y 乙、y 丙, 由表格信息可知各公司包装与装卸及运输所需时间分别为: 甲公司(60s +4)小时,乙公司(50s+2)小时,丙公司(100s +3)小时, 故y 甲=6s +1500+(60s+4)×300=11s +2700,y 乙=8s +1000+(50s+2)×300=14s +1600, y 丙=10s +700+(100s+3)×300=13s +1600. 因s >0,故y 乙>y 丙恒成立,故只需比较y 甲与y 丙的大小. 因y 甲-y丙= -2s +1100=0时,s =550,故:①当s <550千米时,y 甲>y 丙,又y 乙>y 丙,故此时可选丙公司较好; ②当s =550千米时,y 甲=y 丙,又y 乙>y 丙,故此时可选甲公司或丙公司; ③当s >550千米时,y 乙>y 丙>y 甲,故此时选甲公司较好.点评:这又是一道利用一次函数解决实际问题的应用题.其中根据题意和表格信息建立一次函数模型是解题关键.从以上几题可看出,一次函数是解决实际问题的重要数学模型之一,善于读懂图象、表格并从图象的形状、位置、发展变化趋势等信息中获取相关的数据、性质、规律,再将其转化为数学问题加以解决是解决此类问题的关键.。
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案)
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案) 1.蓄电池发展水平是制约新能源汽车发展的关键要素.小明爸爸根据自家电动汽车仪表显示,感觉蓄电池充满电后,用前半部分电量所行驶的路程,总要比用后半部分电量行驶的路程更远一些.于是小明细心观察了充满电后汽车的行驶情况,并将蓄电池剩余电量y(千瓦时)和已行驶路程x(千米)的相关数据,用函数图象表示如下.(1)根据图象,直接写出剩余电量为35千瓦时时,汽车已行驶的路程为千米;(2)求该汽车剩余电量为30千瓦时时,已行驶的路程是多少?(3)根据小明提供的数据,这辆汽车用前半部分电量比用后半部分电量,能多行驶千米.2.如图,l1反映了某品牌手机一天的销售收入与销售量之间的函数关系,l2反映了该品牌手机一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)分别求出l1与l2所对应的函数解析式;(2)当销售量为20部时,该品牌手机所获利润为多少元?(利润=销售收入﹣销售成本)3.为鼓励实习员工工作积极性,某公司提供了两种实习员工月工资方案,方案一如图所示,方案二每生产一件产品25元,实习员工可以任选一种方案与公司签订合同.(1)方案一中,当x≥30时,求月工资y(元)与生产产品x(件)的关系式;(2)某实习员工发现,当月选择方案一比选择方案二月工资多450元,求该实习员工生产产品的件数.4.某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.5.一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是千米,a=;(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)6.2023年,哈尔滨的“冰雪大世界”吸引了众多游客,小明的爸爸将容量为60升的私家车油箱加满后,带着全家从大连自驾到哈尔滨游玩.行驶过程中,车离哈尔滨的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量不超过10升时,车会自动显示加油提醒.设车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出大连到哈尔滨的路程千米;(2)求s关于t的函数表达式;(3)当车显示加油提醒后,问行驶时间t在怎样的范围内车应进站加油?7.2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?8.小强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系.根据记录的数据,画函数图象如图.(1)求乙壶中水温y关于加热时间x的函数解析式;(2)当甲壶中水温刚达到80℃时,求此刻乙壶中水的温度?9.“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.10.洛阳牡丹饼是河南省洛阳市的一道传统小吃,入口酥松绵软,而且具有促进人体代谢,降低胆固醇及防止细胞老化功能,深受老百姓喜爱.刘小姐假期去洛阳游玩,准备回去时带点牡丹饼给家人和朋友品尝.已知甲、乙两家超市都以20元/盒的价格销售同一种牡丹饼,并且同时在做促销活动:甲超市:办理本超市会员卡(卡费50元),食品全部打七折销售;乙超市:购买同种商品超过一定数量后,超过的部分打折销售.活动期间,若刘小姐购买牡丹饼x袋,在甲、乙超市所需费用分别为y1元、y2元,y2与x之间的函数图象如图所示,回答下列问题:(1)分别求出y1、y2与x之间的函数关系式;(2)当x的值为多少时,在两家超市购买的费用一样?(3)若刘小姐准备购买20盒牡丹饼,你认为在哪家超市购买更划算?参考答案1.解:(1)由图象可知,B点表示充满电后行驶150千米时,剩余电量为35千瓦时;故答案为:150;(2)当150≤x≤200时,设y关于x的函数表达式y=kx+b(k≠0),把点(150,35),(200,10)代入得,∴∴y=﹣0.5x+110即当150≤x≤200时,函数表达式为y=﹣0.5x+110当x=30时,﹣0.5x+110=30,解得x=160答:该汽车剩余电量为30千瓦时时,已行驶的路程是160千米;(3)当y=0时,﹣0.5x+110=0,解得x=220160﹣(220﹣160)=100(千米)即这辆汽车用前半部分电量比用后半部分电量,能多行驶100千米.故答案为:100.2.解:(1)设l1所对应的函数解析式为y=k1x(k1为常数,且k1≠0).将坐标(5,1000)代入y=k1x得5k1=1000解得k1=200∴l1所对应的函数解析式为y=200x;设l2所对应的函数解析式为y=k2x+b(k2、b为常数,且k2≠0).将坐标(0,800)和(5,1000)代入y=k2x+b得,解得∴l2所对应的函数解析式为y=40x+800.(2)当x=20时,y=200x=200×20=4000;当x=20时,y=40x+800=40×20+800=1600;4000﹣1600=2400(元)∴销售20部分该品牌的手机获利润为2400元.3.解:(1)方案一中,当x≥30时,设月工资y(元)与生产产品x(件)的关系式为y=kx+b(k ≠0)将A(30,600),(50,1400)代入y=kx+b得:,解得:∴方案一中,当x≥30时,月工资y(元)与生产产品x(件)的关系式为y=40x﹣600;(2)根据题意得:40x﹣600﹣25x=450解得:x=70∴该实习员工生产产品的件数为70件.4.解:(1)由函数图象可得,大巴速度为=40(km/h)∴s=20+40t;当s=100时,100=20+40t解得t=2∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h)设部队官兵在仓库领取物资所用的时间为x h根据题意得:60(2﹣x)=100解得:x=答:部队官兵在仓库领取物资所用的时间为h.5.解:(1)∵80×=60(千米)∴A,B两地之间的距离是60千米;∵货车到达B地填装货物耗时15分钟∴a=+=1故答案为:60,1;(2)设线段FG所在直线的解析式为y=kx+b(k≠0),将F(1,60),G(2,0)代入得:,解得∴线段FG所在直线的函数解析式为y=﹣60x+120;(3)巡逻车速度为60÷(2+)=25(千米/小时)∴线段CD的解析式为y=25x+25×=25x+10(0≤x≤2)当货车第一次追上巡逻车后,80x﹣(25x+10)=15解得x=;当货车返回与巡逻车未相遇时,(﹣60x+120)﹣(25x+10)=15解得x=;当货车返回与巡逻车相遇后,(25x+10)﹣(﹣60x+120)=15解得x=;综上所述,货车出发小时或小时或小时,两车相距15千米.6.解:(1)由图象,得t=0时,s=900工厂离目的地的路程为900千米答:工厂离目的地的路程为900千米;故答案为:900;(2)设s=kt+b(k≠0)将(0,900)和(4,600)代入解得:∴s关于t的函数表达式:s=﹣75t+900(0≤x≤12)答:s关于t的函数表达式:s=﹣75t+900(0≤t≤12);(3)当油箱中剩余油量为10升时s=900﹣(60﹣10)÷0.1=400(千米)∴400=﹣75t+900解得:t=(小时)当油箱中剩余油量为0升时s=900﹣60÷0.1=300(千米)300=﹣75t+900解得:t=8∵k=﹣75<0∴s随t的增大而减小∴t的取值范围为≤t<8.7.解:(1)∵货车的速度是60km/h∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150)设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h)∴货车到达乙地需6h∵s=100t﹣150,s=330解得t=4.8∴两车相差时间为6﹣4.8=1.2(h)∴货车还需要1.2h才能到达即轿车比货车早1.2h到达灾区.8.解:(1)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)代入y=kx+b得,解得∴y=x+20.(2)甲水壶的加热速度为(60﹣20)÷80=℃/s∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷=120s将x=120代入y=x+20得y=65即此刻乙壶中水的温度为65℃.9.解:(1)由图象可得小丽与小明出发30min相遇故答案为:30;(2)①设小丽步行的速度为V1m/min,小明步行的速度为V2m/min,且V2>V1 则,解得:答:小丽步行的速度为80m/min,小明步行的速度为100m/min;②解法一:设点C的坐标为(x,y)则可得方程(100+80)(x﹣30)+80(67.5﹣x)=5400解得x=54,y=(100+80)(54﹣30)=4320m解法二:5400÷100=54,54×80=4320∴点C(54,4320)点C表示:两人出发54min时,小明到达甲地,此时两人相距4320m.10.解:(1)根据题意得:y1=50+20×0.7x=14x+50;当0≤x≤10时,y2=20x;当x>10时,y2=200+(x﹣10)=12x+80;∴y1=14x+50;y2=;(2)当x≤10时,14x+50=20x解得:x=(不符合题意,舍去);当x≥10时,14x+50=12x+80解得:x=15∴x的值为15时,在两家超市购买的费用一样;(3)当x=20时,y1=14×20+50=330,y2=12×20=80=320 ∵330>320∴在乙超市购买更划算.。
中考数学复习指导:分类例说一次函数在解决实际问题中的应用
分类例说一次函数在解决实际问题中的应用利用一次函数解决生活中的实际问题,是培养学生应用意识的一个重要途径.我们有时会综合应用一元一次方程、一元一次不等式、二元一次方程组等内容,有时则需要数与形有机地结合,有时又会利用分类讨论、对应、极端值等数学思想与方法.以下就一次函数在生活实际问题中的应用类型作一些归纳探讨.一、求实际问题中一次函数的解析式及变量的取值范围例1 拖拉机耕地时,每小时的耗油量假定是个常量,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1) 写出油箱中的余油量Q (升) 与工作时间t (时) 之间的一次函数关系式.(2) 这台拖拉机工作4.5小时后,油箱中的余油量是多少升?(3) 这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?(4) 写出自变量t的取值范围.本题利用待定系数法构建函数表达式.由两组对应量得出二元一次方程组,可求出函数关系式,然后解决相应的问题.二、利用一次函数图像中的有关信息解题例2 如图1,小红和小华分别从A、B两地到远离学校的博物馆(A地、B地学校、博物馆在一条直线上),小红步行,小华骑车.(1) 小红、小华谁的速度快?(2) 出发后几小时两人相遇?(3) A、B两地离学校分别有多远?本题中一次函数在表示路程和时间的关系时,图像与横轴(时间) 所夹的角度越大,表明速度越快,反之所夹的角度越小,表明速度越慢.通过函数图像获取信息,可以判断出路程、速度、时间等之间的关系,、培养学生的数形结合意识.三、利用一次函数的性质及自变量取值范围确定最优方案例3 某公司准备与汽车租赁公司签订租车合同.以每月用车路程x km计算,甲汽车租赁公司的月租费是y1元,乙汽车租赁公司的月租费是y2元.如果y1、y2与x之间的关系如图2,那么:(1) 每月用车路程多少时,租用两家汽车租赁公司的车所需费用相同?(2) 每月用车路程在什么范围内,租用甲汽车租赁公司的车所需费用较少?(3) 如果该公司每月用车路程约为2300km,那么租用哪家汽车租赁公司的车所需费用较少?本题可根据一次函数的性质来读图思考:这两条直线有共同之处吗? 哪一条直线上升得更快一些?“上升得更快一些”的实际意义是什么? 如果该公司每月用车路程约为2300km,那么租用哪家汽车租赁公司的车所需费用较少? 要确定所选的方案,其实质就是比较两个函数值的大小关系.我们除了用“图上作业法”也可以综合方程、不等式的思想,确定自变量的取值范围,从而解决问题.四、利用一次函数图像探究问题例4 为缓解油价上涨给出租车待业带来的成本压力,某市调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数).设行驶路程x km时,调价前的运价y1 (元),调价后的运价为y2 (元).如图3,折线ABCD 表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=,b= ,c=;②写出当x>3时,y1与x的关系,并在图3中画出该函数的图像.③函数y1与y2的图像是否存在交点? 若存在,求出交点的坐标,并说明该点的实际意义;若不存在,请说明理由.本题我们根据图中点的坐标探索其函数关系式,需要我们大胆地进行猜想、推理、验证,得出问题的结论,本题能够较好的培养学生对问题的探究能力.五、运用分类讨论思想解决分段函数问题例5 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h),两车之间的距离为y (km),图4中的折线表示y与x之间的函数关系.根据图像进行以下探究:(1) 甲、乙两地之间的距离为km;(2) 请解释图中点B的实际意义;(3) 求慢车和快车的速度;(4) 求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(5) 若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?本题中不同的自变量区间所对应的函数式不同,其函数图像是一个折线.解决分段函数问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上.求解析式时要用好“折点”坐标,同时在分析图像时还要注意“折点”表示的实际意义,“折点”的纵坐标通常是不同区间的最值.分段函数应用广泛,在收费问题、行程问题及几何动态问题中都有应用.。
考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)
考点09 一次函数的应用一次函数的实际应用在中考中更多的是以简答题的形式出题,选择题、填空题多考察一次函数图象的理解和信息提取,并且多考行程类实际应用题。
简答题在出题时也多和方程、不等式结合,考察对象的方案设计和决策等。
在考生复习此考点时,需要多注意一次函数图象具体意义的,熟练掌握根据已知条件确定一次函数的表达式的方法,并能根据一次函数的性质解决简单的实际问题。
一、一次函数图象信息类问题二、利用一次函数进行方案设计与决策三、一次函数与几何的结合问题考向一:一次函数图象信息类问题一.一次函数图象与性质的应用解题要点:1.明确题目中图象的横、纵坐标表示的意义;2.理解并能准确应用图象中的拐点的意义;3.理解函数图象的变化趋势、倾斜程度各表示什么意义;二.分段函数图象问题解题要点:1.读懂每段图象的意义,从图象中获取信息,2.注意图象中的一些特殊点的实际意义;1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等2.已知张老师家、超市、书店在同一条直线上.下面的图象反应的过程是:张老师晚饭后从家里散步到超市,在超市停留了一会儿后又去书店看书,看会儿书觉得有点晚了,就快步走回家.图中x表示张老师离开家的时间,y表示张老师离开家的距离.根据图象提供的信息,下列说法错误的是( )A.张老师家离超市1.5kmB.张老师在书店停留了30minC.张老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.张老师从书店到家的平均速度是10km/h3.公路旁依次有A,B,C三个村庄,小明和小红骑自行车分别从A村、B村同时出发匀速前往C村(到了C村不继续往前骑行,也不返回),如图所示,l1,l2分别表示小明和小红与B村的距离s(km)和骑行时间t(h)之间的函数关系,下列结论:①A,B两村相距12km;②小明每小时比小红多骑行8km;③出发1.5h后两人相遇;④图中a=1.65.其中正确的是( )A.②④B.①③④C.①②③D.①②③④4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,求出y1,y2关于x的函数关系式.(2)若设两车间的距离为S(km),请写出S关于x的函数关系式.(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.考向二:利用一次函数进行方案设计与决策一次函数与方程(组)、不等式的实际应用解题要点:1.利用图象交点的意义及图象关系将实际问题转化为一次函数问题2.在解题中要分清图象所对应的实际问题中的参量,同时要注意自变量的取值范围3.利用一次函数的性质进行方案设计与决策,一般先求出函数表达式,结合不等式求出自变量的取值范围,然后再利用函数的增减性或函数图象进行决策。
一次函数的应用与综合篇(解析版)--中考数学必考考点总结+题型专训
知识回顾一次函数的应用与综合--中考数学必考考点总结+题型专训1.一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,kb ;与y 轴的交点坐标公式为:()b ,0。
2.一次函数的平移:①左右平移,自变量上进行加减。
左加右减。
即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。
②上下平移,解析式整体后面进行加减。
上加下减。
即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。
3.一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。
即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。
②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。
即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。
③若一次函数关于原点对称,则自变量与函数值均变成相反数。
即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。
4.待定系数法求函数解析式:具体步骤:①设函数解析式——()0≠+=k b kx y 。
②找点——经过函数图像上的点。
③带入——将找到的点的坐标带入函数解析式中得到方程(或方程组)。
④解——解③中得到的方程(或方程组),求出b k ,的值。
⑤反带入——将求出的k ,5.一次函数与一元一次方程:①若一次函数()0≠+=k b kx y 的图像经过点()n m ,,则一元一次方程n b kx =+的解为m x =。
一次函数的简单应用(解析版)
5.5一次函数的简单应用一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.一、单选题1.小苏现已存款180元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y (元)与时间x (月)之间的关系式是( )A .10y x =B .180y x =C .18010y x =-D .18010y x =+ 【答案】D【提示】根据存款总数=已存款180元+x 个月的存款数,可以写出存款总金额y (元)与时间x (月)之间的函数关系式,从而可以解答本题. 【解答】解:由题意可得,18010y x =+. 故选:D .【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出其中的函数关系式. 2.下列变量之间关系中,一个变量是另一个变量的正比例函数的是( ) A .正方形的面积S 随着边长x 的变化而变化 B .正方形的周长C 随着边长x 的变化而变化C .水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化D .面积为20的三角形的一边a 随着这边上的高h 的变化而变化 【答案】B【提示】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A 、正方形的面积S 随着边长x 的变化而变化的关系式,关系式为S =x2,不是正比例函数,故错误;B 、正方形的周长C 随着边长x 的变化而变化,关系式为C =4x ,是正比例函数,故正确;C 、水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化,关系式为V =10−0.5t ,不是正比例函数,故错误;D 、面积为20的三角形的一边a 随着这边上的高h 的变化而变化的关系式为a =40h,不是正比例函数,故错误. 故选:B .【点睛】本题主要考查的是正比例函数的定义,熟练掌握正比例函数的定义:形如y=kx (k≠0)的函数为正比例函数是解题的关键.3.小张加工某种机器零件,工作一段时间后,提高了工作效率.小张加工的零件总数m (单位:个)与工作时间t (单位:时)之间的函数关系如图所示,则小张提高工作效率前每小时加工零件( )个A .3B .4C .5D .6【答案】B【提示】此题只要能求出3时之后的一次函数解析式,从而求出当x=3时的纵坐标,除以3即可. 【解答】解:从图象可知3时之后的函数图象为一次函数且经过(5,24),(6,30) 设该时段的一次函数解析式为:y kx b =+,可列出方程组:524630k b k b +=⎧⎨+=⎩,求解得:66k b =⎧⎨=-⎩∴一次函数解析式为:66y x =-,当3x =时,12y =,1234∴÷=故选:B .【点睛】本题考查了一次函数的应用,熟练掌握求解一次函数解析式和掌握图象中的关键拐点含义是解题的关键.4.食用油沸点的温度远高于水的沸点温度(100℃).小明为了用刻度不超过100℃的温度计测量出某种食用油沸点的温度,在锅中倒人一些这种食用油,用煤气灶均匀加热,并每隔10s 测量一次锅中油温,测量得到的数据如下表: 时间/s t10 20 30 40油温/y ℃ 10 30 50 70 90而且,小明发现,烧了110s 时,油沸腾了.你估计这种油沸点的温度是( )A .200℃B .230℃C .260℃D .290℃【答案】B【提示】由表中数据发现油温与时间成一次函数关系,根据表中数据,求出一次函数解析式,然后把x=110代入即可.【解答】解:设油温与时间的函数关系是y=kx+b ,则103010b k b =⎧⎨=+⎩,解得210k b =⎧⎨=⎩ ∴y=2x+10,当x=110时,y=2×110+10=230. 故选:B .【点睛】本题主要考查的是一次函数的应用,关键是根据表中数据,求出一次函数解析式. 5.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC 的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<<C .212(012)y x x =-<<D .16(412)2y x x =-<< 【答案】B【提示】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【解答】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >, ∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键.6.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了14.如果加满汽油后汽车行驶的路程为km x ,油箱中的剩油量为L y ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .0.0625,0y x x =>B .500.0625,0y x x =->C .0.0625,0800y x x =≤≤D .500.0625,0800y x x =-≤≤ 【答案】D【提示】根据题意列出一次函数解析式,即可求得答案.【解答】解:因为油箱容量为50 L 的汽车,加满汽油后行驶了200 km 时,油箱中的汽油大约消耗了14,可得:14×50÷200=0.0625L/km ,50÷0.0625=800(km ), 所以y 与x 之间的函数解析式和自变量取值范围是:y =50−0.0625x ,0≤x≤800, 故选D .【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.7.已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②2分钟后,乙每分钟走50米;③甲比乙提前3分钟到达B 地;④当x=2或6时,甲乙两人相距100米.其中,正确的是( )A.①②③B.②③④C.①②④D.①②【答案】C【提示】根据函数图像中的信息,逐一解答即可判定.【解答】解:由图像可得:①甲图像是正比例函数,甲每分钟走600÷6=100(米),故①正确;②两分钟后,乙每分钟走5003005062-=-(米),故②正确;③甲到达B地所用的时间是6分钟,乙前2分钟走300米,2分钟之后速度为50米/分,2分钟之后所用的时间为600300650-=(分),所以甲比乙提前2分钟到达B地,故③不正确;④当x=2时,甲路程为100×2=200(米),乙路程为300米,则甲乙两人相距100米;当x=6时,甲路程为600米,乙路程为500米,则甲乙两人相距100米,故④正确;故正确的有①②④,故选:C.【点睛】本题考查了一次函数的图像,准确识图并根据函数图像的变化情况获取信息是解题的关键.8.“吉祥物趣事”,某天,墩墩和容融在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速行走3600米、当墩墩领先容融1000米时,墩墩停下来休息,当容融追上墩墩的瞬间,墩墩立即又以原来的速度继续走向终点,在整个行走过程中,墩墩和容融之间的距离y(米)与它们出发时间x(分钟)的关系如图所示,下列说法错误的是()A.容融的速度为40米/分钟B.墩墩休息了23分钟C.第85分钟时,墩墩到达终点D.领先者到达终点时,两者相距200米【答案】B【提示】根据题意和图象中的数据,可以计算出各个选项中的结果是否正确,然后即可判断哪个选项符合题意.【解答】解:由图象可得,容融的速度为:36009040÷=(米/分钟),故选项A正确,不符合题意;÷=(分钟),故选项B错误,符合题意;墩墩休息了:10004025墩墩的速度为:4010005060+÷=(米/分钟),5025(36006050)6085++-⨯÷=(分钟),即第85分钟时,墩墩到达终点,故选项C正确,符合题意;-⨯=(米),(9085)40200即领先者到达终点时,两者相距200米,故选项D正确,不符合题意;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.牛奶配送员小吴从县城出发,骑配送车到米村配送牛奶,途中遇到在县城上学的外甥张聪从米村步行返校上学,小吴在米村配送牛奶后,在返回县城途中又遇到张聪,便用配送车载上张聪一起返回县城,结果小吴比预计时间晚到5分钟.二人与县城间的距离y(km)和小吴从县城出发后所用的时间x(min)之间的关系如图,假设两人之间的交流时间忽略不计,则下列说法正确的有()个.①小吴到达米村后配送牛奶所用时间为25min.②小吴从县城出发,最后回到县城用时100min.③两人第一次相遇时,小吴距离米村2km.④张聪从米村到县城步行速度为0.05km/min.A.1 B.2 C.3 D.4【答案】D【提示】从图中可以看出小吴和张聪并不是同时出发的,小吴还有在A村停留时间30分钟,小吴去A村和返回速度不一样,这些都可以从图中看出来.小吴到达米村后配送牛奶所用时间为停留时间即65与35的差可对①判断;小吴从县城出发到返回县城所用时间,从图中可以看出包括去时用的时间加在A 村待的时间加上返回遇张聪的时间加上原计划时间再加上晚到1分钟,即可对②进行判断;由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小王距县城25×735=5千米,进一步可对③判断;求出两次相遇时的距离及间隔时间即可求出张聪从米村到县城步行速度,从而对④进行判断 【解答】①小吴到达米村后配送牛奶所用时间为60-35=25min ,故①正确; ②从图中可以看出小吴从离城7千米到2千米用时85分钟 小吴返回的速度=(7-2)÷(85-60)=0.2(千米/分钟), 小吴原计划返回用时7÷0.2=35分钟, 结果小吴比预计时间晚到5分钟.故小吴从县城出发,最后回到县城用时为35+25+25+10+5=100min .故②正确; ③由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小吴距米村:7-25×735=7-5=2千米,故③正确;④两次相遇时张聪走的路程为5-2=3千米,用时为85-25=60分钟, 所以步行速度为:3÷60=0.05千米/分钟,故④正确. 正确的结论有4个, 故选:D .【点睛】此题考查了一次函数的应用,注意数形结合以及行程问题的解决方法.10.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,56t =或54或154或256.其中正确的结论有( )A .4个B .3个C .2个D .1个 【答案】A【提示】直接根据函数图像可判断①②;分别求出两条直线的解析式,令y y =甲乙可判断③;令50y y -=甲乙,结合先出发的时间内以及乙到达目的地的时间进行计算可得结论④.【解答】由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-, 解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③正确;令50y y -=甲乙,可得6010010050t t -+=,即1004050t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为56或54或154或256时,两车相距50千米,∴④正确;综上可知正确的有①②③④共4个, 故选:A .【点睛】本题考查了一次函数的实际应用,从函数图像上读取信息,读懂题意,理清甲乙两车的行驶情况,运用数形结合思想解题是关键.11.已知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时.若用(x 时)表示行走的时间,(y 千米)表示余下的路程,则y 关于x 的函数解析式是______. 【答案】()3400.75y x x =-≤≤【提示】先求出小黄从A 地到B 地所需的时间,从而可得x 的取值范围,再利用余下的路程等于3减去已走的路程即可得.【解答】解:小黄从A 地到B 地所需的时间为340.75÷=(时), 则00.75x ≤≤, 由题意得:34y x =-,则y 关于x 的函数解析式是()3400.75y x x =-≤≤, 故答案为:()3400.75y x x =-≤≤.【点睛】本题考查了一次函数的应用,找准等量关系,并正确求出自变量的取值范围是解题关键. 12.公民的月收入超过5000元时,超过部分须依法缴纳个人所得税,当超过部分在3000 元以内(含3000元)时税率为3%.根据已知信息,公民每月所缴纳税款y (元)与月收入x (元)之间的函数关系式是__________,自变量的取值范围是__________. 【答案】 003150.y x =-+ 5000<x≤8000【提示】超过部分在3000元以内(含3000元)时税率为3%,所以必须从收入中减去5000后,再去考虑缴税多少,即可解答.【解答】解:根据题意可知y 与x 之间的函数关系式为:()50003003150%.y x x =-⨯=-+,(5000<x≤8000).故答案为:003150.y x =-+;5000<x≤8000.【点睛】本题主要考查的是一次函数的实际问题,理解题意,根据题意得出需要缴税的部分为()5000x -元,是解题的关键.13.在槐荫区“勾股数学”杯初中校际联赛中,小明的队伍在第一轮中获得积分50分,第二轮共10道题,每答对一道题得10分,则两轮总积分y (分)与第二轮答对题目数量x (道)之间的关系式为__________(010x ≤≤,x 为正整数). 【答案】5010y x =+【提示】根据“两轮总积分y (分)等于第一轮积分与第二轮积分的和”,用含有x 的代数式表示第二轮的积分即可. 【解答】解:由题意得,故答案为:5010y x =+;【点睛】本题考查函数关系式,理解“两轮总积分y (分)”的意义,掌握“积分=每题得分×答对的题目数”是正确解答的关键.14.某公司准备和A 、B 两家出租车公司中的一家签订合同.设A 、B 两出租车公司收费y (元)与行程x (每千米)的关系分别是l1,l2,若行驶大于2500km ,则选择 _____出租车公司较合算.【答案】A【提示】根据函数图象作出判断即可. 【解答】解:由图象可知:当1500x <时,12y y >;当1500x >时,12y y <; ∵行驶大于2500km ,即2500x >, ∴选择A 出租车公司较合算, 故答案为:A .【点睛】本题考查一次函数的实际应用,根据图象越高费用也越高判断出图象各部分的费用高低,再作出选择是解答本题的关键.15.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方. 月用水量不超过12方部分 超过12方不超过18方部分 超过18方部分收费标准(元/方) 2 2.53【答案】20【提示】根据题意可知:先判断出该用户用的水与18方的关系,再设用水x 方,水费为y 元,继而求得关系式为y=39+3(x-18);将y=45时,代入上式即可求得所用水的方数. 【解答】解:∵45>12×2+6×2.5=39, ∴用户5月份交水费45元可知5月用水超过了18方,设用水x 方,水费为y 元,则关系式为y=39+3(x-18). 当y=45时,x=20, 即用水20方. 故答案为:20.【点睛】本题主要考查了一次函数的应用,用待定系数法求函数的解析式和根据自变量的值求函数值.弄清对应的水费是解决问题的关键.16.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y (微克)随时间x (小时)而变化的情况如图所示.研究表明,当血液中含药量5y ≥(微克)时,对治疗疾病有效,则有效时间是__________小时.【答案】3【提示】当2x ≤时,设1y k x =,把(2,6)代入计算即可得3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入计算即可得82734y x =-+,把5y =代入3y x =中得53x =,把5y =代入82734y x =-+中得143x =,进行计算即可得.【解答】解:当2x ≤时,设1y k x =,把(2,6)代入得, 162k =,解得,13k =, ∴当2x ≤,3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入得,2226103k b k b +=⎧⎨+=⎩ 解得,283274k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴当2x >时,82734y x =-+,把5y =代入3y x =中,得53x =,把5y =代入82734y x =-+中,得143x =,则145333-=(小时), 即该药治疗的有效时间是3小时, 故答案为:3.【点睛】本题考查了一次函数的应用,解题的关键是掌握一次函数的性质.17.2022年4月7日,许昌市首批新能源出租车上路,新车空间更大,舒适度更高,受到大众欢迎.新车的收费方式也做了调整,新车的打车费用y (单位:元)与行驶里程x (单位:千米)的函数关系如图所示.老款出租的收费方式为:不超过2千米收费5元,超过2千米部分收费1.5元/千米,同时,每次再加收1元的燃料附加费.小明爸爸从家到公司打车上班的行驶里程为22千米,则他上班乘坐新车的打车费用比老款车多______元.【答案】3【提示】待定系数法求出x≥2时y 关于x 的函数解析式,再求出x=22时y 的值可求得新车的费用,根据老款车的收费标准进行计算求得老款车的费用,比较即可求解. 【解答】解:当行驶里程x≥2时,设新车的打车费用为y=kx+b , 将(2,7)、(7,15)代入,得:27715k b k b +=⎧⎨+=⎩,解得:85195k b ⎧=⎪⎪⎨⎪=⎪⎩,∴y=85x+195,当x=22时,y=85×22+195=39, 即新车的打车费用为39(元),老款车的费用为:5+1.5×(22-2)+1=36(元),39-36=3(元). 故答案为:3.【点睛】本题主要考查一次函数的图象与待定系数法求一次函数解析式,熟练掌握待定系数法求得一次函数解析式是解题的关键.18.已知A ,C 两地之间有一站点B ,甲从A 地匀速跑步去C 地,2分钟后乙以50米/分钟的速度从站点B 走向C 地,两人到达C 地后均原地休息.甲、乙两人与站点B 的距离y(米)与甲所用的时间x(分钟)之间的关系如图所示.(1)站点B 到C 地的距离为_____米; (2)当x=_____时,甲、乙两人相遇.【答案】 800 10【提示】(1)由图象可知乙从站点B 到C 地所用时间,再用时间×速度=路程得出结论; (2)先求出甲的速度,再根据追击问题写出方程,解方程即可.【解答】解:(1)根据题意,站点B 到C 地的距离为:50×(18-2)=800(米), 故答案为:800;(2)由图象可知甲的速度:400÷5=80(米/分), 设经过x 分钟,甲、乙两人相遇, 则80x=400+50(x-2), 解得x=10,∴甲出发10分钟,甲、乙两人相遇, 故答案为:10.【点睛】本题考查了一次函数的实际应用,理解图象上各点的实际含义,并根据题意列方程是解题的关键.三、解答题19.某种气体在0℃时的体积为100L ,温度每升高1℃,它的体积增加0.37L . (1)写出气体体积()L V 与温度()t ℃之间的函数表达式(2)求当温度为30℃时气体的体积.(3)当气体的体积为107.4L 时,温度为多少摄氏度? 【答案】(1)1000.37V t =+ (2)111.1L (3)20℃【提示】(1)根据题意,直接写出函数表达式即可,气体体积=0℃时的体积+增加的体积; (2)将30t =℃代入(1)中的函数表达式即可; (3)将107.4L V =代入(1)中的函数表达式即可. 【解答】(1)解:根据题意得:1000.37V t =+.(2)当30t =℃时,1000.3730111.1V =+⨯=, ∴当温度为30℃时,气体的体积为111.1L . (3)当107.4L V =时,107.41000.37t =+, 解得:20t =,∴气体的体积为107.4L 时,温度为20℃.【点睛】本题主要考查了一次函数的实际应用,解题的关键是根据题意找出等量关系,写出一次函数的表达式.20.在某一段时期,一年期定期储蓄的年利率为4.14%,规定储蓄利息应付个人所得税的税率为5%.设按一年期定期储蓄存入银行的本金为x 元,到期支取时扣除个人所得税后实得本利和为y 元. (1)求y 关于x 的函数表达式.(2)把18000元钱按一年期定期储蓄存入银行.问:到期支取时,扣除个人所得税后实得本利和为多少元?【答案】(1) 1.03312y x = (2)18707.94元【提示】(1)根据利息=本金⨯利率⨯时间列式计算求出本金;根据税率为利息的20%可得扣除个人所得税后实际利息=利息()120%⨯-;(2)将18000x =代入(1)的解析式进行计算即可求解.【解答】(1)解:依题意,()()1 4.14%1 4.14%5%1 1.04140.00207 1.03933y x x x x =+⨯-⨯⨯=-= 即: 1.03933y x =,(2)当18000x =时, 1.039331800018707.94y =⨯= 到期支取时,扣除个人所得税后实得本利和为18707.94元.【点睛】本题考查了一次函数的应用,根据题意列出函数关系是解题的关键.21.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的销售方式,让大山深处的农产品远销全国各地.若要对某地特色花生与茶叶两种产品助销,已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同. (1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,计划两种产品共助销600千克,若花生销售m 千克()120m ≥,花生和茶叶的销售总利润为w 元,求w 的最大值. 【答案】(1)每千克花生10元,每千克茶叶50元(2)当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200【提示】(1)设每千克花生x 元,每千克茶叶(40)x +元,列出一元一次方程求解即可;(2)设花生销售m 千克,茶叶销售(600)m -千克,先根据总成本不高于1260元,且花生的数量不高于茶叶数量的2倍求出m 的取值范围,再根据利润之和求出函数解析式,根据函数的性质求出最大值.【解答】(1)解:设每千克花生x 元,每千克茶叶(40)x +元, 根据题意得:5010(40)x x =+, 解得:10x =,40401050x +=+=(元),答:每千克花生10元,每千克茶叶50元;(2)解:设花生销售m 千克,茶叶销售(600)m -千克获利最大,利润w 元, 由题意得:(106)(5036)(600)484014108400w m m m m m =-+--=+-=-+,100-<,w ∴随m 的增大而减小,120m ,∴当120m =时,利润w 最大,此时花生销售120千克,茶叶销售600120480-=(千克),1012084007200w =-⨯+=最大(元), ∴当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200.【点睛】本题考查一次函数的性质和一元一次方程的应用,解题的关键是读懂题意,列出方程和函数关系式进行求解.22.某电信公司手机的A 类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min 计;B 类收费标准如下:没有月租费,但通话费按0.6元/min 计.按照此类收费标准完成下列各题:(1)直接写出每月应缴费用y (元)与通话时长x (分)之间的关系式: A 类:________;B 类:______.(2)若每月平均通话时长为300分钟,选择类收费方式较少.(3)求每月通话多长时间时,按A ,B 两类收费标准缴费,所缴话费相等. 【答案】(1)0.212y x =+;0.6y x = (2)选择A 收费方式较少 (3)30分钟【提示】(1)根据题目中收费标准可列出函数关系式; (2)根据两种收费方式,计算结果比较得出答案即可;(3)设每月通话时间x 分钟,按A 、B 两类收费标准缴费,所缴话费相等列出方程解答即可. 【解答】(1)解:根据题意,得A 类:0.212y x =+,B 类:0.6y x =;故答案为:0.212y x =+;0.6y x =. (2)解:A 类收费:120.230072+⨯=元;B 类收费:0.6300180⨯=元;18072>,所以选择A 类收费方式;(3)解:设每月通话时间x 分钟,根据题意,得120.20.6x x +=,解得:30x =.答:每月通话时间30分钟,按A 、B 两类收费标准缴费,所缴话费相等【点睛】本题主要考查一次函数的应用,由条件列出相应的函数关系式是解题的关键.23.某移动公司设了两类通讯业务,A 类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B 类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x 分钟,两种方式费用分别是A y ,B y 元. (1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?【答案】(1)500.4A y x =+,0.6B y x = (2)选择A 类 (3)350元【提示】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解; (2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解;(3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【解答】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+;B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) ∵AB y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元), ∴小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.24.如图,有80名师生要到离学校若干千米的大剧院参加演出,学校只有一辆能做40人的汽车,学校决定采用步行和乘车相结合的办法:先把一部分人送到大剧院,车按原路返回接到步行的师生后开往大剧院,其中车和人的速度保持不变.(学生上下车,汽车掉头的时间忽略不计).y 表示车离学校的距离(千米),x 表示汽车所行驶的时间(小时).请结合图象解答下列问题:(1)学校离大剧院相距 千米,汽车的速度为 千米/小时; (2)求线段BC 所在直线的函数表达式;(3)若有一名老师因临时有事晚了0.5小时出发,为了赶上学生,该老师选择从学校打车前往,已知出租车速度为80千米/小时,请问该老师能在学生全部达到前赶到大剧院吗?并画出相关图象. 【答案】(1)15,60 (2)105604y x =-(3)该老师能在学生全部达到前赶到大剧院,图象见解析【提示】(1)由图象直接可得学校与大剧院的距离,由路程除以时间可得汽车的速度; (2)设步行速度为m 千米/小时,可得:15(60)21532m +=⨯,即可解得15(32B ,15)8,从而可得11(16C ,15),用待定系数法得线段BC 所在直线的函数表达式为105604y x =-; (3)由学生全部达到大剧院时,1116x =,出租车到达大剧院时,15110.58016x =+=,知该老师能在学生全部达到前赶到大剧院,再画出图象即可.【解答】(1)解:由图象可得,学校与大剧院相距15千米, 汽车的速度为115604÷=(千米/小时), 故答案为:15,60;(2)设步行速度为m 千米/小时, 根据题意得:15(60)21532m +=⨯, 解得4m =, ∴步行的路程为15154328⨯=(千米), 15(32B ∴,15)8,。
专题13一次函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习
2021年中考数学专题13 一次函数及其应用(知识点总结+例题讲解)一、一次函数的概念:1.一次函数的概念:(1)定义:一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数;(2)结构特征:①k≠0;②x的次数是1;③常数项b可以是任意实数。
(3)图像:是不经过原点的一条直线。
2.正比例函数的概念:(1)定义:当一次函数y=kx+b中的b为0;即:y=kx(k为常数,k≠0);这时,y叫做x的正比例函数;(2)结构特征:①k≠0;②x的次数是1;③常数项为0;(3)图像:是经过原点的一条直线。
3.一次函数与正比例函数的联系:正比例函数是一次函数的特殊形式。
【例题1】(2019•梧州)下列函数中,正比例函数是( )A.y=﹣8x B.8y=C.y=8x2D.y=8x﹣4x【答案】A【解析】A、y=﹣8x,是正比例函数,符合题意;B、8=,是反比例函数,不合题意;yxC、y=8x2,是二次函数,不合题意;D、y=8x﹣4,是一次函数,不合题意.故选A.【变式练习1】要使函数y=(m–2)x n–1+n是一次函数,应满足( )A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=0【答案】C【解析】∵函数y=(m–2)x n–1+n是一次函数,∴m–2≠0,n–1=1.∴m≠2,n=2.故选C。
二、一次函数的图像及平移:1.正比例函数的图象:正比例函数y=kx(常数k≠0)的图象是一条经过原点(0,0)与点(1,k)的直线。
2.一次函数的图象:y=kx+b(k,b是常数,k≠0)(1)所有一次函数的图象都是一条直线;(2)与y轴交于点(0,b);与x轴交于点(bk-,0)的直线。
(3)作图:①画一次函数的图象,只需过图象上两点作直线即可;一般取(0,b),(bk-,0)两点;②当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例,过原点;3.一次函数图象的平移:(1)上下平移:上加下减(对于y=kx+b来说,只改变b)①将直线y=kx+b向上平移n个单位长度:得到直线y=kx+b+n;②将直线y=kx+b向下平移n个单位长度:得到直线y=kx+b-n;(2)左右平移:右减左加(对于y=kx+b来说,只改变b)①将直线y=kx+b向右平移n个单位长度:得到直线y=k(x-n)+b;②将直线y=kx+b向左平移n个单位长度:得到直线y=k(x+n)+b;【例题2】(2020•陕西)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=-2x交于点A、B,则△AOB的面积为( )A.2 B.3 C.4 D.6【答案】B【解析】根据方程或方程组得到A(-3,0),B(-1,2),根据三角形的面积公式即可得到结论.解:在y=x+3中,令y=0,得x=-3,解32y xy x=+⎧⎨=-⎩得:12xy=-⎧⎨=⎩,∴A(-3,0),B(-1,2),∴△AOB的面积1323=⨯⨯=.故选:B。
中考数学:一次函数应用题
中考数学:一次函数应用题
函数应用题属于中考必考内容,尤其是与二元一次方程结合的应用题,倒是有些同学总是在此类题型的计算中出错,导致拿不到分数。
(1)填表格,两个都是一次函数
1号的解析式为y=x+5;
2号的解析式为y=15+0.5x;
根据表中数据同学们自行计算即可;
(2)根据表格的数据可以看出,在某个时间点,1号气球的高度超过了2号气球,也就是说在这个过程中,两个气球会在某一时间点处于同一高度。
那么令两个解析式相等可得x+5=15+0.5x;
解方程得x=20,也就是说20min的时候高度相等;
那么高度就是25m了;
(3)我们知道在30到50分钟的这个过程中,1号气球是高于2号气球的,且上升速度比较快,所以二者的高度差会越来越大,那么假设高度差为d,
则d=5+x-(15+0.5x)=0.5x-10
可知x越大,d越大,
那么x≤50,
所以当x=50时,d最大,
∴d max=15m;
总之这道题未涉及到二次函数,所以难度就相对低了很多,基本就算是送分题吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时16.一次函数的应用
【课前热身】:
1.为了加强公民的节约用水的意识,某市制定了如下节约用水的收费标准:每户每月的用水不超过10吨时,水价为1.2元,超过10吨时,超过部分按每吨1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式是_______.
2.弹簧的长度与所挂物体的质量的关系是一次函数,如图
所示,则不挂物体时弹簧的长度是 .
3.蜡烛在空气中燃烧的速度与时间成正比,如果一支原长
15cm的蜡烛4分钟后,其长度变为13cm,请写出剩余长
度y(cm)与燃烧时间x(分钟)的关系式为_________.
(不写x的范围)
4. 如上右图所示,表示的是某航空公司托运行李的费用y(元)
与托运行李的质量x(千克)的关系,由图中可知行李的质量
只要不超过_________千克,就可以免费托运.
【考点链接】
一次函数y kx b
=+的性质
k>0⇔直线上升⇔y随x的增大而;
k<0⇔直线下降⇔y随x的增大而 .
【典例精析】
例1某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.
⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:
①当用水量小于或等于3000吨时;
②当用水量大于3000吨时 .
⑵某月该单位用水3200吨,水费是元;若用水2800吨,水费元.
⑶若某月该单位缴纳水费1540元,则该单位用水多少吨?
例2 杨嫂在再就业中心的扶持下,创办了“润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:
①买进每份0.2元,卖出每份0.3元;
②一个月内(以30天计),有20天每天可以卖出200份,其余10天每
天只能卖出120份;
③一个月内,每天从报社卖进的报纸份数必须相同,当天卖不掉的报纸
以每份0.1元退回给报纸:
一个月内每天买进该种晚报的100 150
份数
当月利润(单位:元)
y元,试求出y于x的函数关系式,并求月利润的最大值.
【中考演练】
1.从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t之间的函数关系式是_________.
2. 在一定范围内,某种产品购买量y吨与单价x元之间满足一次函数关系式,
若购买1000吨,每吨800元,购买2000吨时,每吨700元,一客户购买4000吨单价为
元.
3. 汽车工作时油箱中的燃油量y(升)与汽车工作时间t(小时)之间的函数图象
如下中图所示,汽车开始工作时油箱中有燃油升,经过小时耗尽燃油,y与x之间的函数关系式为 .
4. 如图所示的折线ABC为某地出租汽车收费y(元)与乘坐路程x(千米)之间的函
数关系式图象,当x≥3千米时,该函数的解析式为,乘坐2千米时,车费为元,乘坐8千米时,车费为元.
(第3题) (第4题)
5. 一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就
伸长1
2
cm写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式
是()
A. y = 1
2
x + 12 (0<x≤15) B. y =
1
2
x + 12 (0≤x<15)
C. y = 12 x + 12 (0≤x ≤15)
D. y = 12
x + 12 (0<x <15) 6.中国电信公司最近推出的无线市话小灵通的通话收费标准为:前3分钟(不足3分钟按3分钟)为0.2元;3分钟后每分钟收0.1元,则一次通话实际那为x 分钟(x >3)与这次通话的费用y (元)之间的函数关系是( )
A .y =0.2+0.1x
B .y =0.1x
C .y =-0.1+0.1x
D .y =0.5+0.1x
7. 某学校组织团员举行申奥成功宣传活动,从学
校骑车
出发,先上坡到达A 地后,宣传8分钟;然
后下坡到B 地宣传8分钟返回,行程情况如
图.若返回时,上、下坡速度仍保持不变,在
A 地仍要宣传8分钟,那么他们从
B 地返回学
校用的时间是( )
A.45.2分钟
B.48分钟
C.46分钟
D.33分钟
8. 将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3 cm . 设x 张白纸粘合后的总长度为y cm ,写出y 与x 的函数关系式,并求出当x =时y 的值.
9. 某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨, 该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县.已知C 、D 两县运化肥到A 、B 出发地
运费
目的地
C D A 35 40
B 30 45
(1) 设C 吨)的函数关系式,并
写出自变量x 的取值范围;
(2) 求最低总运费,并说明总运费最低时的运送方案.
3 10 30。