信号与系统重点性质与公式

合集下载

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统知识点

信号与系统知识点

Y (z) 3z1Y (z) 2z2Y (z) z1X (z) 2z2 X[z],
H (z)
Y (z) X (z)
1
z 1 3z
1
2 z 2 2z
2
1 (z 1)
Yx
(z)
H
(z)X
(z)
(z
1 1)
(z
z 1)
(z
z 1)2
yx[n] nu[n]
(c)、全响应:y[n] y0[n] yx[n] (1 n)u[n]
x(n1) (0 )
复习范围:
6)




t u(t )

tu(t)

t eat u (t )

teatu(t)
1 s2 1 s2
1 (s a)2
1 (s a)2
Re{s} 0 Re{s} 0 Re{s} a Re{s} a
复习范围:
7) Z 变 换 的 性 质
Z{x[n m]u[n]} zm X (z) zm1x[1] zm2x[2] x[m]
m
最小抽样率:
2
T1
rad
/ s,或f
1 T1
s
2m
4
T1
rad / s,或f
2 T1
最大抽样间隔:
Ts
T1 2
s,
信号的频谱包络:
X (k0 ) T0ck
AT1 sin
c k0T1
2
复习范围:
三、调制、解调、滤波的分析计算
调制
x(t)
g(t)
p(t)
解调
g(t)
r(t) 低通滤波 y(t)=x(t)
k 0 n

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统公式大全

信号与系统公式大全

2 0
齐次性 若f (t) y(t) 则af (t) ay(t)
可加性
若f1 则 f1
(t) (t)
y1(t f2 (t)
),f2 (t) y1(t)
y2 (t) y2 (t)
分解性 线性系统 零状态线性
零输入线性
y(t) yx (t) y f (t) y(n) y0 (n) yn (n)
' (at b) 1 '(t b ) a 0
a2
a
证明:对 f (t) (t t0) f (t0) (t t0) 两端微分
证明:关键利用筛选特性展开 特别: a 1,b 0时 '(t) '(t)
'(t) 是奇函数
三.卷积
连续时间信号
卷积定义
f1(t) f2(t)
f1( ) f2 (t )d
A 0
t 0 t0
1. t A ( )d Au(t)
2. A ( ) d [Au(t)] dt
t 0 处可以定义为0, 1 ,1(个别点数值差别不会导致能量的改变) 2
斜坡信号 Ar(t) 性质
Ar(t)
At 0
t 0 t0
1.
t
Au(t)dt
Ar(t)
2.Au(t)dFra bibliotekdt[
Ar(t
IR (s)


u(t) 1
t
i(t)dt
C
u(t) 1 i(t) pC
UC (t) 1 IC (t) jC
UC
(s)
1 Cs
IC
(s)
1 s
uC
(0
)
IC (s) CsUC (s) CuC (0)

信号与系统-复习知识总结

信号与系统-复习知识总结

重难点按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率〔或周期〕的比值是有理分数时才是周期的。

其周期为各个周期的最小公倍数。

① 连续正弦信号一定是周期信号。

② 两连续周期信号之和不一定是周期信号。

周期信号是功率信号。

除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。

1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号01()u t ={0t =是()u t 的跳变点。

(2) 单位冲激信号单位冲激信号的性质:〔1〕取样性11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- 〔2〕是偶函数 ()()t t δδ=- 〔3〕比例性()1()at t aδδ=〔4〕微积分性质 d ()()d u t t tδ=; ()d ()tu t δττ-∞=⎰〔5〕冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ;(0)t <(0)t >()1t dt δ∞-∞=⎰()0t δ=〔当0t ≠时〕()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰;()()t t δδ''-=-()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

信号与系统知识要点

信号与系统知识要点

《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。

(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。

2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。

⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度.正跳变对应着正冲激;负跳变对应着负冲激。

5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。

(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。

信号与系统定义知识点总结

信号与系统定义知识点总结

信号与系统定义知识点总结一、信号的基本概念1. 信号的定义:信号是指随时间或空间变化的某一物理量,它可以是电压、电流、声压、光强等。

信号可以是连续的,也可以是离散的。

2. 基本信号类型:常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号等。

3. 基本信号操作:信号的加法、乘法、平移、缩放等操作对信号的表示和分析非常有用。

二、连续时间信号的表示和分析1. 连续时间信号的表示:连续时间信号可以用数学函数来表示,如正弦函数、余弦函数、指数函数等。

2. 连续时间信号的性质:连续时间信号的周期性、奇偶性、能量和功率等性质对信号的分析和处理至关重要。

3. 连续时间信号的分析方法:傅里叶级数和傅里叶变换是分析连续时间信号最常用的方法,它可以将信号分解成一系列正弦、余弦函数的和,方便对信号进行分析。

三、离散时间信号的表示和分析1. 离散时间信号的表示:离散时间信号可以用序列来表示,如离散单位冲激函数、阶跃函数等。

2. 离散时间信号的性质:离散时间信号的周期性、能量和功率等性质对信号的分析和处理同样十分重要。

3. 离散时间信号的分析方法:离散傅里叶变换和Z变换是分析离散时间信号最常用的方法,它可以将离散时间信号转换成频域表示,方便对信号进行分析。

四、系统的基本概念1. 系统的定义:系统是对信号进行输入输出转换的装置或过程,它可以是线性系统、非线性系统,时变系统、时不变系统等。

2. 系统的性质:系统的稳定性、因果性、线性性、时不变性等性质对系统的分析和设计至关重要。

3. 系统的表示和分析:系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示和分析。

五、线性时不变系统的性质与分析1. 线性时不变系统的特点:线性时不变系统具有线性性质和时不变性质,这使得对其进行分析和设计更加方便。

2. 线性时不变系统的表示:线性时不变系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示。

3. 线性时不变系统的分析方法:冲激响应、频域分析、零极点分析等方法对线性时不变系统的分析非常重要。

信号与系统(郑君里)复习要点

信号与系统(郑君里)复习要点

信号与系统复习书中最重要的三大变换几乎都有。

第一章 信号与系统 1、信号的分类 ①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。

③能量信号和功率信号 ④因果信号和反因果信号 2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k )f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0)4、系统的分类与性质?d )()4sin(91=-⎰-t t t δπ)0()()(f k k f k =∑∞-∞=δ4.1连续系统和离散系统4.2 动态系统与即时系统4.3 线性系统与非线性系统①线性性质T[a f (·)] = a T[ f (·)](齐次性)T[ f1(·)+ f2(·)] = T[ f1(·)]+T[ f2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:y(·) = y f(·) + y x(·) = T[{ f(·) }, {0}]+ T[ {0},{x(0)}] (可分解性)T[{a f(·) }, {0}] = a T[{ f(·) }, {0}]T[{f1(t) + f2(t) }, {0}] = T[{ f1(·) }, {0}] + T[{ f2(·) }, {0}](零状态线性) T[{0},{a x1(0) +b x2(0)} ]= aT[{0},{x1(0)}] +bT[{0},{x2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t -t d)] = y f(t -t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

信号与系统复习资料总结

信号与系统复习资料总结
-2 x ″(t) x ′(t) x(t) 4 -5 -3
f (t)




y(t)
例图
解 选图中右端积分器的输出为中间变量x(t),则其输入 为x′(t),左端积分器的输入为x″(t), 如图所示。写出左端加 法器的输出
x" (t ) = − x ' (t ) − 3x (t ) + f (t ) x" (t ) + 5 x ' (t ) + 3x (t ) = f (t )
卷积图形计算
• 卷积积分图解(反转) f (t)
1
f2(t)=3/4t 1.5
2 O 4 t
O
2
t
f1(τ) 2 O 4 τ –2 O
f2(– τ) 1.5 τ
卷积图形计算
• 卷积积分图解(平移)
t=0 f2(t – τ) 1.5 –2 O τ
t<0
f2(t – τ) 1.5 t–2 t O τ
所以u1(t) f(t) u (t)对f(t)的传输算子为
2( p + 1) H ( p) = 2 p + 2p + 2
它代表的实际含义是
u (t ) + 2u (t ) + 2u1 (t ) = 2 f ' (t ) + 2 f (t )
" 1 ' 1
卷积计算方法
• 卷积最重要的用法:系统零状态响应y(t)=f(t)*h(t) • 时域计算方法,又分为
信号与系统复习重点
信号自变量的线性变换: 已知f(t) 图 形,求f(at-b)
• 按“平移-翻转-展缩”顺序。 • (a)平移:b>0,则先将f(t)沿t轴右移b个单位 得到f(t-b)波形。若b<0, 则将f(t)沿t轴左移b 个单位得到f(t-b)波形

信号与系统-公式总结

信号与系统-公式总结

4复频域微分
5复频域积分
※6时域卷积
※4. 拉普拉斯反变换 ⑴部分分式展开法
复频域,
⑵留数法 留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留 数的运算,即
其中 (为一阶极点) 或 (为阶极点)
第四章 Z变换
1. Z变换定义
正变换: 双边:
单边:
2. Z变换收敛域ROC:满足的所有z值
★ ROC内不包含任何极点(以极点为边界); ★ 右边序列的ROC为 的圆外; ★ 左边序列的ROC为 的圆内; ★ 双边序列的ROC为 的圆环。 ★ 有限长序列的ROC为整个 z 平面 (可能除去z = 0 和z = );
冲激 脉冲
※※
直流 函数 ※ 冲激 序列
第三章 拉普拉斯变换
1 定义 双边拉普拉斯变换 单边拉普拉斯变换 单边变换收敛条件:
拉普拉斯反变换 称为收敛域。
2 常见函数的拉普拉斯变换
公式序号
原函数,
※1
※2
※※3
像函数
频谱图
※※4 ※5 ※6
3 拉普拉斯的基本性质
性质
时域
※※1时间平 移
※2频率频移
※3时域微分
1 差分方程的一般形式
前向差分: 后向差分: 2 卷积法 (1)零输入响应 :激励时初始状态引起的响应 Step1 特征方程,特征根; Step2 解形式或 ;
Step3 初始条件代入,确定系统; (12)零状态响应 :初始状态为零时外加激励引起的响应 方法1:时域分析法 方法2:变换域分析法
Step1: 差分方程两边Z变换(注意初始状态为零); 左移位性质
第六章 第七章 第八章 连续系统时域、频域和复频 域分析
1 线性和非线性、时变和非时变系统判别 (1)线性和非线性 先线性运算,再经系统=先经系统,再线性运算

信号与系统常用公式

信号与系统常用公式

1时移x(t-t 0) )(0ωωj X t j F -−→←2频移)(0t x t j ω−→←F ))((0ωω-j X 3共轭x *(t)−→←F x *)(ωj - 4时间反转x(-t)−→←F )(ωj X - 5时间与频率尺度变换x(at)−→←F )(1a j X a ω 6卷积x(t)*y(t)−→←F )()(ωωj Y j X 7相乘x(t)y(t)−→←F )(*)(21ωωπj Y j X 8时域微分dt t x dtd )(−→←F )(ωωj X j 9积分⎰∞-tdt t x )(−→←F )()0()(1ωσπωωX j X j + 10频域微分)(t tx −→←F )(ωωj X d d j 11ωωπd j X dt t x ⎰⎰+∞∞-+∞∞-=22|)(|21|)(| 12e a t jk k k0ω∑+∞-∞=−→←F ∑+∞-∞=-k k k a )(20ωωδπ 13e t jk 0ω−→←F )(20ωωπδk -14t 0cos ω−→←F()()[]00ωωδωωδπ++- 15t 0sin ω−→←F ()()[]00ωωδωωδπ+--j 16()1=t x −→←F ()ωπδ2 17()∑+∞-∞=-n nT t δ−→←F ∑+∞-∞=⎪⎭⎫ ⎝⎛-k T k T πωδπ22 18()⎪⎩⎪⎨⎧><11,0,1T t T t t x −→←F ωω1sin 2T19t Wt πsin −→←F ()⎪⎩⎪⎨⎧><=WW j X ωωω,0,1 20()t δ−→←F1 21()t μ−→←F ()ωπδω+j 1 22()0t t -δ−→←F 0t j e ω-23()a a t u e at >ℜ-}{, −→←F ωj a +1 24时移:)()(00s X e t t x st L -⇔- )(R25 S 域平移:)()(00s s X t x e L t s -⇔26时域尺度变换:)(1)(a s X a at x L ⇔ )/(a R 27共轭:)()(***⇔s X t x L )(R 28卷积:)()()()(2121s X s X t x t x L⇔* )(21R R 至少 30 S 域积分:)()(s X ds d t tx L ⇔- )(R 31时域积分:)(1)()(L s X sd x t ⇔⎰∞-ττ })0}{{(>ℜse R 至少 32初始和终值定理:若t<0,x(t)=0且在t =0不包括任何冲激或高阶奇异函数,则)(lim )0(s sX x s ∞→+=;)(lim )(lim 0s sX t x s t →∞→=33基本函数的拉普拉斯变换34时移−→←-L n n x ][0)(0z X zn - R(除了可能增加或除去原点或∞点)35 Z 域尺度变换][0n e n jw −→←L )(0z e X jw -R36][0n x z n −→←L )(0z z X R z 0 37][n x a n −→←L )(1z a X -R 的比例伸缩(即,|α|R=在R 中z 的这些{|α|z }点的集合)38时间反转][n x -−→←L )(1-z X 39时间扩展rkn rk n r x n x k ≠==,0],[{][)(−→←L )(k z X 1-R (即1-R =在R 中的z 的这些1-z 点的集合)40共轭][*n x −→←L )(**z X R 50卷积][*][21n x n x −→←L )()(21z X z X 至少是1R 2R 的相交 60一次差分]1[][--n x n x −→←L )()1(1z X z --至少是R 和 |z| >0的相交 61累加][k x n k ∑-∞=−→←L )(111z X z --至少是R 和 |z|>1的相交 62 Z 域微分][n nx −→←L dz z dX z )(- 63[]n δ−→←L1全部z 64[]n u −→←L 111--z 1>z 65[]1---n u −→←L 111--z 1<z67[]n u n α−→←L 111--z α α>z 68[]1---n u n α−→←L 111--z α α<z 69[]n u n n α−→←L ()2111---z z αα α>z 70[]1---n u n n α−→←L ()2111---z z ααα<z 71]1[)(]1[1-+↔--x z X z n x 72]0[)(]1[zx z zX n x -↔+ 73)(][00z e X n x e jw n j -↔ω74)/(][00z z X n x z n ↔75)(][1z a X n x a n -↔ 76{m kn m x m k n k n x =≠=],[m ,0][对任意77)(][**z X n x ↔78)()(][][2121z X z X n x n x ↔* 79]1[)()1(]1[)(1---↔---x z X z n x n x 80)(11][10z X z k x n k -=-↔∑ dz z dX z n nx )(][-↔ 81)(lim ]0[z X x z ∞→=。

信号与系统

信号与系统

《信号与系统》第一章知识点梳理1. 两种基本类型的信号:连续时间信号(t)、离散时间信号[n]。

2. 信号能量与功率:(1)连续时间信号:能量:E=⎰2t 1t 2t x )(dt ,功率:P=12Et t -(2)离散时间信号:能量:E=[]22n 1n n n ∑=x ,功率:P=112E+-n n(3)三种重要的信号:①具有有限的总能量,平均功率为零;②具有平均功率有限,总能量无限大; ③具有无限大的平均功率和总能量。

3. 自变量的变换:(1)时移;(2)时间反转;(3)尺度变换。

4. 周期信号:(1)连续时间信号:x(t)=x(t+T) 其中最小正值T 称为x (t )的基波周期To 。

x(t)=C,基波周期无意义,对于任意的T 来说x(t)都是周期。

一个信号x(t)不是周期的就是非周期的。

(2)离散时间信号:x[n]=x[n+N] 其中最小正值N 就是他的基波周期No 。

5.偶信号与奇信号:偶信号:x (-t )=x(t);x[-n]=x[n] 奇信号:x(-t)=-x(t);x[-n]=-x[n] 任何信号都可以分解为两个信号之和εu{})]()([21)(t x t x t x -+=(偶部)和Od{x(t)}=)]()([21t x t x --(奇部)5. 连续时间复指数信号x(t)=C ate (其中C 和a 一般为复数)。

其中实指数信号C 和a 都为实数。

周期复指数信号a 是纯虚数x(t)=tjw 0etjw 0e=)(0eT t jw +。

基波周期00w 2π=T 。

正弦信号:x(t)=Acos(φ+t w 0)。

t jw j t jw j e e A e e A t w A 0022)cos(0--+=+φφφ 欧拉关系:tjw 0e=t w j t w 00sin cos + Acos(φ+t w 0)=ARe{)(0φ+t w j e};Asin(φ+t w 0)=AIm{)(0φ+t w j e};周期复指数信号具有有限平均功率P=1,总能量无限大。

《信号与系统》知识点归纳

《信号与系统》知识点归纳

《信号与系统》知识点总结北京交通大学电子信息工程学院程轶平2009.60. 前言本文的目的是帮助《信号与系统》课程学习者整理知识。

它适合于对《信号与系统》已经建立起一定的框架,但可能对某些问题感到模糊或困惑的人阅读。

本文也试图对一些类型的计算题给出机械的标准化的解法。

过于容易,或不太可能被考试题考察的知识点在此省略。

知识点基本上按照章来组织和编号。

但是如果不同的章有相类似的知识点,我将把它们合并成一个,然后用字母M (mixed)开头编号。

另外大家要注意将本文和教材结合起来看。

它的目的是整理思路,因此不能对它期望过多。

符号*表示卷积,而不是乘法。

1. 第1章1.1 能量信号和功率信号请阅读教材第4页。

1.2 系统的线性和非线性,时不变和时变,因果和非因果请阅读教材相关内容。

这里,我对系统的线性和非线性给出我的一点个人看法。

严格地说来,系统是否线性指的是系统的输出对输入满足齐次性和叠加性。

按照这个标准,如果系统的输出和某个系统的“初始状态”有关,即其不能视为一个线性系统。

但是,很多教材都从实用的角度出发,将线性的定义放宽为允许将初始状态看做一种特殊的输入,因而很多按照原来定义不是线性的系统成为了线性系统。

在第3章我还要对此问题作进一步的阐述。

2. 第2章2.1 冲激信号的性质筛选特性、抽样特性、展缩特性,即教材中公式(2-21),(2-22),(2-23)必须在理解的基础上记忆。

冲激信号δ(t)不是一般意义上的信号,而是一种理想化的“信号”,在数学上它是一广义函数。

我们无法离开冲激信号因为它为我们的推导和思维提供了很多方便。

冲激信号虽然在物理上不存在,但如果一个物理信号取到非0值的时间集中在某个瞬时,就可用冲激信号近似。

不过要注意脉冲信号δ[k]却是完完全全的一般意义上的信号。

2.2 信号的尺度变换、翻转与时移图示解题方法对这种类型的题目。

针对信号是连续或离散应采用不同的解题步骤。

对于连续信号,大家应仔细阅读教材中的例子,特别是例2-6。

信号与系统重点公式

信号与系统重点公式

第一章绪论所有的信号与系统包含两个基本的共同点:即作为一个或几个独立变量函数的信号都包含了有关某些现象性质的饿信息;而系统总是对所给的信号做出响应,从而产生另外的信号,或产生某些所需的特性。

三种重要的信号1.信号具有有限的总能量,信号的平均功率必须为0.连续时间情况下:离散时间情况下:2.平均功率有限,总能量=∞连续时间情况下:离散时间情况下:3.和都不是有限的,一个例子就是信号离散时间单位脉冲(单位样本)和单位阶跃序列u[n]离散时间单位脉冲是离散时间单位阶跃的一次差分,离散时间阶跃是单位样本的求和函数连续时间单位阶跃和单位冲激函数连续时间单位冲激可看成连续时间单位阶跃u(t)的一次微分,连续时间单位阶跃是单位冲激的积分函数第二章线性时不变系统线性时不变系统之所以能够被深入分析的主要原因之一就是具有叠加性质。

这样,能够将线性时不变系统的输入用一组基本信号的线性组合来表示,就可以根据该系统对这些基本信号的响应,然后利用叠加性质求得整个系统的输出。

无论在离散时间或连续时间情况下,单位冲激函数的重要特性之一就是一般信号都可以表示为延迟冲激的线性组合。

这个事实,再与叠加性和时不变性结合起来,就能够用线性时不变的单位冲激响应来完全表征任何一个线性时不变系统的特性。

这样一种表示,在离散时间情况下称为卷积和,在连续时间情况下称为卷积积分,这种表示方式在分析线性时不变系统时提供了极大的便利。

在建立了卷积和与卷积积分之后,再用这些特性来分析线性时不变系统的某些其他性质。

然后讨论由线性常系数微分方程所描述的连续时间系统,由线性常系数差分方程所描述的离散时间系统。

线性空间里,讲了怎么把信号(离散和连续)表示成一组基(移位单位脉冲和移位单位冲激)的线性组合。

用脉冲表示离散时间信号:把任意一个序列表示成一串移位的单位脉冲序列的线性组合,而这个线性组合式中的权因子就是x[k]。

离散时间线性时不变系统的单位脉冲响应及卷积和表示y[n] = ,这个结果称为卷积和,或叠加和。

信号与系统常用公式

信号与系统常用公式

常用公式第一章判断周期信号方法两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。

2/2/2/(2/),/N N M M N πβπβπβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性,1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。

2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。

信号的能量 def2()E f t dt +∞-∞=⎰信号的平均功率 def2/2/21lim ()T T T P f t dt T +-→∞=⎰ 冲激函数的特性'''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ=()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞-∞=⎰()()()f t t a dt f a δ∞-∞-=⎰()()11()()n n n at t a a δδ=g 001()()t at t t a aδδ-=- 000()()()()f k k k f k k k δδ-=-()()()()(1)(0)n n n t f t dt f δ∞∞=-⎰- ''()()(0)t f t dt f δ∞∞=-⎰-动态系统是线性系统的条件可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x •=•+•=•+⎡⎤⎡⎤⎣⎦⎣⎦ 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=•+•⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦判断系统时不变、因果、稳定的方法。

信号与系统重点概念公式总结材料

信号与系统重点概念公式总结材料

信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn Λ=如果满足:ni K dt t f ji dt t f t f iT T i T T j i Λ2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K iΛ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i Λ2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n Λ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档