平台式惯性导航系统原理及应用ppt课件
§3.5平台式惯导的基本原理
§3.5 平台式惯性导航系统的基本原理1、平台式惯导系统的基本组成原理平台式惯导系统的核心是一个惯性级的陀螺稳定平台,它确定了一个平台坐标系(用p 来标识)p p p z y ox ,三个惯性级的加速度计的敏感轴分别沿三个坐标轴的正向安装,测得载体的加速度信息就体现为比力f v在平台坐标系中的三个分量p x f 、p y f 和p z f 。
如果使平台坐标系精确模拟其一选定的导航坐标系(用n 来标识)n n n z y ox ,也便得到了比力在导航坐标系中的三个分量n x f 、n y f 和n z f ,通过必要的计算和补偿,可从中提取出载体相对导航坐标系的加速度矢量v&v 的三个分量,再通过两次积分,可得到载体相对导航坐标系的速度和位置。
平台式惯导系统按所选定的导航坐标系的不同又可分为:1)当地水平面惯性导航系统。
这种系统的导航坐标系是一种当地水平坐标系,即平台系的两个轴p ox 及p oy 保持在水平面内,p oz 轴与地垂线相重合。
由于两个水平轴可指向不同的方位,故这种系统又可分为(1)指北方位惯导系统。
这种系统在工作时p ox 指向地理东向(E),p oy 指向地理北向(N),即平台系模拟当地地理坐标系(用t 来标识)t t t z y ox 。
(2) 自由方位惯导系统。
在系统工作中,平台p oy 轴不跟踪地理北向而是与正北方向夹某个角度)(t α,称自由方位角。
由于)(t α可以有多种变化规律,因此又有自由方位、游动方位等区分。
2) 空间稳定惯导系统。
这种系统的导航坐标系为惯性坐标系(用i 来标识),一般采用原点定在地心的惯性坐标系。
i oz 轴与地轴重合指向北极,i ox 、i oy 轴处于地球赤道平面内,但不随地球转动(x 轴指向春分点)。
与当地水平面惯导系统相比,平台所取的空间方位不能把运动加速度和重力加速度分离开,而要依靠计算机进行补偿。
我们知道,地球相对惯性空间是转动的,因而在地表任何一点的水平坐标系也在随之一道转动。
惯性导航基本原理PPT课件
.
8
(3)加速度计测量原理
S
f
a
S 0 刻划
(不受外力)
0 刻划 g
.
9
地球
加速度计不能敏感引力加速度
.
10
加速度计
.
11
4 平台式惯性导航工作原理
Z平
az
ay Y平
ax
X平 平台式惯导系统示意图
.
12
测量载体在惯性坐标系中的加速度,然后一次积分 得到速度,二次积分得到位置。
av i ( t )
变化等。 结论:惯导误差随时间迅速增加。
应对措施:建立惯导误差模型,测试标定模型参 数,然后对惯导系统进行补偿。
.
21
7 惯性导航初始对准
1.为何要对准
惯导家族成员均是由加速度计测得的加速度经两 次积分而求得。要进行积分必须要知道初始条件: 初始速度,初始位置,初始姿态。而捷联惯导系统 中初始对准的另一个关键问题是要在较短的时间内 以一定的精度确定出从载体坐标系到地理坐标系的 初始变换矩阵。
v f i(t)
gv i ( t )
vv i ( t ) vv i ( t ) t av i ( ) d 0 t0
rv i ( t ) rv i ( t ) t vv i ( u ) d u 0
t0
其中
v f
:视加速度,测量值;gv
:引力加速度。
.
13
平台式惯导系统组成
.
14
5捷联惯性导航工作原理
.
5
2 惯性导航的组成
1惯性导航组件 加速度计 陀螺仪 主要完成导航参数的测量和计算 (1)平台式 一个三轴空间平台,2、3个高精度陀螺仪以及三个 高精度的加速度计,一部数字计算机,其他电子线 路板 (2)捷联式 三个高精度陀螺仪以及三个高精度的加速度计一部 数字计算机,其他电子线路板没有实际的陀螺稳定 平台,将加速度计和陀螺仪直接与飞机机体链接, 用导航计算机计算数学平台。
平台式惯性导航系统原理及应用课件
Part
03
平台式惯性导航系统关键技术
陀螺仪技术
机械陀螺仪
利用角动量守恒原理,通 过转子高速旋转来测量角 度和方向的变化。
光纤陀螺仪
采用光学干涉原理,具有 精度高、稳定性好的优点 ,但成本较高。
微机械陀螺仪
基于微电子机械系统( MEMS)技术,具有体积 小、成本低、易于集成等 优点。
加速度计技术
惯性导航系统概述
惯性导航系统的基本原理 和组成。
平台式惯性导航系统的特 点和优势。
惯导系统的误差来源和精 度评估。
Part
02
平台式惯性导航系统原理
惯性导航系统基本原理
利用陀螺仪和加速度计测量运动 物体的角速度和加速度,从而计 算出物体在空间中的位置、速度
和姿态。
惯性导航系统不受外界干扰,自 主性强,适用于各种复杂环境。
平台式惯性导航系统面临的挑战
技术瓶颈
虽然平台式惯性导航系统已经取得了很大的进展,但是在 高精度、高稳定性、小型化等方面仍然存在一定的技术瓶 颈。
替代技术
随着卫星导航系统、无线电导航等技术的发展,平台式惯 性导航系统的应用受到了一定的挑战,需要不断进行技术 更新和市场拓展。
成本压力
由于平台式惯性导航系统研发和生产成本较高,对于一些 需要大量使用该系统的领域来说,成本压力较大,需要寻 求更加经济可行的解决方案。
地。
无人机航拍
将平台式惯性导航系统应用于无人 机航拍中,可实现高精度航拍图像 采集,为城市规划、资源调查等领 域提供重要数据支持。
救援任务
在救援任务中采用平台式惯性导航 系统,可快速定位失踪人员或物资 ,提高救援效率。
商业领域应用
物流配送
平台式惯性导航系统原理及应用
战车定位
在战场上,平台式惯性导 航系统可为战车提供实时 、准确的定位信息,提高 作战效率。
舰艇导航
平台式惯性导航系统可为 舰艇提供稳定的导航服务 ,确保舰艇在复杂海况下 的航行安全。
单兵定位
单兵携带的平台式惯性导 航系统可为其提供实时定 位信息,提高单兵作战能 力。
民用领域应用
自动驾驶
平台式惯性导航系统可为自动驾驶汽车提供准确的定位和导航信 息,提高自动驾驶的安全性和可靠性。
惯性测量元件工作原理
陀螺仪工作原理
陀螺仪基于角动量守恒原理工作,当陀螺仪绕自身轴线旋转 时,其输出轴将指向一个固定方向,即陀螺仪的定轴性。通 过测量输出轴的角速度,可以得到载体相对于惯性空间的角 速度信息。
加速度计工作原理
加速度计基于牛顿第二定律工作,通过测量载体上的加速度 并积分,可以得到载体的速度和位置信息。加速度计的输出 受到重力加速度的影响,因此需要进行相应的补偿和校正。
平台式惯性导航系统 原理及应用演讲人:日期:目录
• 惯性导航基本原理 • 平台式惯性导航系统组成 • 平台式惯性导航系统工作原理 • 平台式惯性导航系统应用领域
目录
• 平台式惯性导航系统性能评估与优化 • 平台式惯性导航系统实验与仿真分析
01
惯性导航基本原理
惯性导航定义及发展历程
惯性导航定义
高精度、高动态性能
满足高精度定位和高动态运动 控制需求,提升系统性能极限
。
06
平台式惯性导航系统实验 与仿真分析
实验设计思路及实施过程
实验目的
验证平台式惯性导航系统的性能,包 括定位精度、稳定性等。
实验设备
高精度惯性测量单元、转台、控制系 统、数据采集与处理系统等。
《惯性导航原理》课件
课程目标
01
掌握惯性导航的基本原理和技术 特点。
02
了解惯性导航在各个领域的应用 情况。
探讨惯性导航的未来发展趋势和 挑战。
03
提高学生对导航技术的兴趣和认 知水平,为未来的学习和职业发
展打下基础。
在深空探测任务中,惯性导航系统为 航天器提供连续、高精度的位置和速 度信息,确保航天器在深空中的精确 导航和科学数据采集。
地球物理学研究
在地球物理学研究中,利用惯性导航 系统进行地震数据采集和地壳运动监 测,推动地质灾害预警和地球科学研 究。
05
惯性导航技术发展
技术现状
惯性导航技术已广泛应用于军事、航 空、航海等领域。
与其他导航手段融合
研究如何更好地将惯性导航与其他导 航手段(如GPS、北斗等)进行融合 ,实现优势互补。
人工智能与大数据的应用
讨论如何利用人工智能和大数据技术 对惯性导航数据进行处理和分析,提 高导航性能。
THANKS
感谢观看
潜艇导航
在潜艇导航中,惯性导航系统用于长时间隐蔽航行,提供连续的定 位信息,保障潜艇作战和战略威慑能力。
无人机导航
无人机依靠惯性导航系统进行长航程、长时间飞行,实现复杂环境 下的精确导航和任务执行。
民用应用
航空交通管制
在航空交通管制中,惯性导航系统为飞机提供精确的位置和速度 信息,确保空中交通安全有序。
的组合方法。
陀螺仪与加速度计
深入探讨了陀螺仪和加速度计的工作 原理、分类及优缺点。
误差分析与校正
讨论了惯性导航中常见的误差来源及 其校正方法。
第8章 平台式惯性导航系统原理及应用分解
8
弹道式:起飞阶段必须在大气层内,平飞前 进阶段主要在空气稀少的高空或外层空间,下降 阶段再入大气层。弹道式导弹不在大气层中长时 间平行飞行,不需要飞航式导弹那样的弹翼和操 纵面,有的则连尾翼都没有。
特点:空气阻力小,飞行速度快,飞行距离远,能进行洲际攻击。
电子信息工程学院
9
4.半解析式平台惯导系统分类 飞机中应用多为半解析式惯导系统,根据平台两个水平 轴指向不同可分为 (1)指北方位惯导系统:工作时,平台的三个稳定轴分别指向 地理东、地理北、当地地平面的法线方向,即平台模拟当地地 理坐标系。 (2)自由方位惯导系统:工作时,平台的方位可以和北向成任 意夹角,始终指向惯性空间的某一个方向,台面仍要保持在当 地的水平面内。由于地球的旋转和飞机的运动,平台的横轴、 纵轴不指向地理东、北,而是有一定自由夹角,故称它为自由 方位惯导系统,其平台称为自由方位平台。 (3)游动方位惯导系统:与自由方位类似,平台的台面处于当 地水平面,方位轴只跟踪地球自转的分量。
电子信息工程学院
14
二 跟踪地理坐标系 1.地理坐标系相对惯性系 的运动规律:
VN V cos xt R R VE yt e cos R VE zt e sin tg R
为当地 式中:R 为地球半径, e 为地球自转速度, V 为飞行速度 纬度,
惯性导航原理
崔 铭
中国民航大学电子信息工程学院
2018/9/15
第8章 平台式惯性导航系统原理及应用
8.1
8.2 8.3 8.4 8.5
概
述
指北方位惯导系统 自由方位惯导系统 游动方位惯导系统 平台式惯导系统初始 对准原理
§3.7平台式惯导的基本原理
(2) 内环坐标系 OX Y pi piZpi (下标 pi 表示 pitch) ,简称 pi 系,与内环 固联, Zpi 轴为平台方位轴(同 Zp 轴) , X pi 轴沿平台内环轴(俯仰(纵 摇)轴)指向平台右侧, Ypi 与 X pi 、 Zpi 垂直构成右手直角坐标系。
(3) 外环坐标系 OXrYrZr (下标 pi 表示 roll),简称 r 系,与外环固连, X r 轴沿平台内环轴指向平台右侧 (同 X pi 轴) ,Yr 轴沿平台外环轴(横 滚(横摇)轴)指向平台前方, Zr 与 Xr 、Yr 垂直构成右手直角坐标系。 由于外环平面与内环平面不一定垂直,Zr 轴与方位轴指向并不始终一 致。
基座
外环
内环轴摩擦 内环 方位轴摩擦
刚性约束
刚性约束
刚性约束
方位环(台体)
2 惯性导航系统实现的基本思路 从加速度计的原理可知,加速度计的输出是沿加速度计敏感轴方
向的比力,比力中含有载体绝对加速度信息。如果在载体上能得到三
个敏感轴互相正交的加速度计输出信号同时又能获知各加速度计敏
感轴的准确指向的话,就可以完全掌握载体的运动加速度,结合载体
动,通过计算得到载体的姿态角,也就确定出了加速度计敏感轴的指
向。再通过坐标变换,将加速度计输出的比力信号转换到一导航计算
比较方便的导航坐标系上,进行导航计算。这种系统就是捷联式惯导
系统。该系统由于没有平台实体,结构简单、体积小、维护方便;但
惯性元件直接装在载体上,工作环境恶劣,对元件要求很高。同时,
导航系统要求其三轴平台相对惯性空间稳定,即平台工作于几何稳定 状态;有的惯性导航系统要求其三轴平台在保持稳定的同时还要跟踪 某个导航坐标系,即平台工作于空间积分状态。三轴平台可以看成是 由三个单轴陀螺稳定平台组合而成,单轴平台的工作原理、系统的基 本组成和传递函数、系统的性能指标等内容都适用于三轴平台。但三 轴平台不是三个单轴平台简单的叠加,三轴平台由于其结构和工作原 理方面的特点,在实现平台的稳定和修正两种工作状态时,有许多特 殊问题。如陀螺仪信号的合理分配,基座转动角速度到平台的耦合与 隔离,三轴平台的环架锁定等。
第二章 平台式惯性导航系统
••
f = R− G
••
(2-2-6)
16
f 即为比力,即加速度计测量量。
二、导航系统比力方程
设载体在地心惯性坐标系中的位置矢量为 R 。矢量相对惯 性坐标系求其对时间的变化率为绝对变化率,矢量在动坐 标系的投影对时间的变化率称为相对变化率。若动坐标系r 相对惯性坐标系作定点转动,转动角速度ωir 是确定的, 则矢量的绝对变率与相对变率之间的关系为:
i
(2-2-10)
dωie
i
18 (2-2-11 )
加速度计沿平台坐标系正交安装,测量值为沿平台坐标系三个轴 的比力分量,因此取平台坐标系为动坐标系,则得
dV ep = dV ep +ωip ×V ep dt dt
i p
(2-2-12)
将式(2-2-9),(2-2-12)代入式(2-2-11)中,又因 ωip =ωie +ω ep 故式(2-2-11)为 d 2 R = dV ep + ⎛⎜ 2ω ie +ω ep ⎞⎟×V ep +ω ie × ⎛⎜ω ie × R ⎞⎟ (2-2-13) ⎜ ⎟ ⎟ ⎠ dt 2 i dt p ⎜⎝ ⎝ ⎠ 令
0
0
VN 0 AN AE
ϕ0
VN
∫ ∫
+
⊗
∫ ∫
1 R
+
⊗
+
ϕ
λ0
λ
VE
+⊗ VE 0
1 R cosϕ
⊗
2-1-4 平台坐标系和地理坐标系
2-1-5 惯导系统原型示意图
7
由加速度算得载体的地速分量为
VN = ∫α N dt +VN 0 VE = ∫α E dt +VE 0
《惯性导航系统》课件
轨道监测。
惯较高的测量精度,适用于精密导航和定位。
可靠性
不受外界环境干扰,适用于复杂环境和恶劣条件。
鲁棒性
不受信号遮挡和干扰,适用于密集城市和山区等特殊环境。
惯性导航系统的发展趋势
1
集成化
将惯性传感器和导航算法集成在一起,提高系统性能。
2
精度提升
《惯性导航系统》PPT课
件
本课件介绍了惯性导航系统的定义、组成和原理,以及在航空、航海、矿业
和地震勘探等领域的应用场景。
什么是惯性导航系统
惯性导航系统是一种利用惯性传感器测量和计算对象运动状态和位置的系统。
惯性导航系统的应用场景
1
航空 ✈️
2
飞机、无人机等飞行器的导航和姿态控
航海 ⛵️
船舶的导航、位置定位和目标跟踪。
引入更精密的传感器技术和导航算法,提高导航精度。
3
多源数据融合
融合其他导航系统数据,提高位置和姿态的准确性。
惯性导航系统的应用前景
航空航天领域
工业制造领域
军事领域
飞行器导航、姿态控制和自主
机器人导航、定位和轨迹规划
武器系统导航、目标跟踪和战
导航技术的重要组成部分。
的关键技术。
场监测的重要手段。
结论
惯性导航系统在现代导航领域具有重要作用,随着技术的不断发展,其应用
前景将更加广泛。
制。
3
矿业 ⛏️
地下矿场的测量和导航。
4
地震勘探
地震仪的定位和震源分析。
惯性导航系统与其他导航系统的比较
GPS
北斗卫星导航系统
轨道测量系统
全球卫星定位系统,依赖卫
中国自主建设的卫星导航系
第8章平台式惯性导航系统原理及应用
第8章平台式惯性导航系统原理及应用平台式惯性导航系统(Inertial Navigation System,简称INS)是一种基于惯性传感器的导航系统,它通过测量和积分加速度和角速度来得出飞行器在空间中的位置、速度和姿态。
平台式INS由惯性测量单元(Inertial Measurement Unit,简称IMU)和数据处理单元组成,广泛应用于航空、航天、海洋、地质勘探等领域。
平台式INS的原理是基于牛顿第二定律和角动量守恒定律。
当飞行器作加速度和角速度运动时,惯性传感器会感知到这些运动并输出相应的信号。
IMU通常由加速计和陀螺仪组成,加速计用于测量加速度,陀螺仪用于测量角速度。
通过对加速度和角速度进行积分,可以得到飞行器在三维空间中的位置、速度和姿态。
平台式INS的应用十分广泛。
在航空领域,它被用于航空器的导航、制导和控制系统,可以实现自主飞行和目标跟踪。
在航天领域,它被用于航天器的姿态控制和轨迹修正。
在海洋领域,它被用于船舶和潜艇的导航和定位。
在地质勘探领域,它被用于测量地震波和地壳变动。
平台式INS具有许多优点。
首先,它不受外界环境的影响,可以在任何条件下进行导航。
其次,它具有高精度和高精度保持能力,可以提供精确的导航信息。
再次,它具有良好的可靠性和稳定性,可以长时间运行而不受干扰。
然而,平台式INS也存在一些局限性。
首先,积分误差会随时间的推移累积,导致导航精度下降。
其次,惯性传感器本身存在零偏和尺度因素等误差,需要进行校准和补偿。
再次,平台式INS在长时间无法接收外部定位信息的情况下,会出现漂移现象,导航精度降低。
为了克服这些问题,常常采取多传感器融合的方法,将惯性传感器与其他定位系统(如全球定位系统)相结合,以提高导航精度和可靠性。
另外,还可以使用自适应滤波和状态估计算法对积分误差和传感器误差进行校正和补偿。
总之,平台式惯性导航系统是一种基于惯性传感器的导航系统,通过测量和积分加速度和角速度来得出飞行器在空间中的位置、速度和姿态。
第8章平台式惯性导航系统原理及应用分解
第8章平台式惯性导航系统原理及应用分解导航系统是指通过利用一些特定设备和技术,能够确定用户在地球表面的位置、速度和方向等信息的系统。
其中,惯性导航系统是一种通过测量加速度和角速度来获得位置和姿态等信息的导航系统。
平台式惯性导航系统是一种常见的惯性导航系统,具有广泛的应用领域。
平台式惯性导航系统主要由陀螺仪和加速度计两部分组成。
陀螺仪用于测量角速度,而加速度计用于测量加速度。
通过分析和处理这些测量数据,可以计算出导航系统的位置、速度和姿态等信息。
在平台式惯性导航系统中,陀螺仪和加速度计通常被安装在一个机械平台上,该平台可以旋转和倾斜。
当导航系统发生运动时,陀螺仪和加速度计可以测量出相应的角速度和加速度,进而计算出导航系统的姿态和加速度。
平台式惯性导航系统的原理是基于牛顿力学中的惯性定律。
根据惯性定律,一个物体在没有外力作用时,将保持其匀速直线运动状态,或者保持其静止状态。
因此,当平台式惯性导航系统没有受到其他力的影响时,陀螺仪和加速度计的测量数据可以被用来计算导航系统的姿态和加速度。
平台式惯性导航系统具有广泛的应用领域。
首先,它被广泛应用于航空航天领域。
在飞机和航天器的飞行过程中,由于缺乏地面参考,惯性导航系统可以提供稳定和精确的位置和姿态信息,从而保证飞行的安全和稳定性。
其次,平台式惯性导航系统也被广泛应用于海洋领域。
在海上航行中,由于海上条件的复杂性,常规导航系统容易受到干扰和影响。
而平台式惯性导航系统可以通过测量姿态和速度等信息来提供可靠的导航支持。
另外,平台式惯性导航系统还被应用于无人驾驶车辆、船舶和机器人等领域,以及医疗设备和工业自动化等领域。
总结起来,平台式惯性导航系统是一种通过测量陀螺仪和加速度计的数据来计算导航系统姿态和加速度的导航系统。
它的工作原理基于惯性定律,广泛应用于航空航天、海洋、无人驾驶和医疗设备等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)解析式:陀螺和加速度计装于同一平台, 平台相对惯性空间稳定。加速度计测量值包含 重力分量,在导航计算前必须先消除重力加速 度影响。求出的参数是相对惯性空间,需进一 步计算转换为相对地球的参数。平台结构较简 单,计算量较大,主要用于宇宙航行及弹道式 导弹。
7
导弹依在空中飞行的弹道可分两类:飞航式 导弹和弹道式导弹,也可称有翼导弹和无翼导弹。 (巡航导弹在弹道特征和弹体外形都有飞航式的特性,应作为飞航
18
(2)水平和方位修正 四套稳定系统使平台相
对惯性空间保持稳定,为使 平台跟踪地理坐标系,须对 平台实施水平和方位修正。 即利用地理坐标系运动规律 给平台各轴施加指令角速率 (施加到相应的陀螺力矩器 上)。
xt
V
cos
R
VN R
yt
e
cos
VE R
14
二 跟踪地理坐标系
1.地理坐标系相对惯性系 的运动规律:
xt
V
cos
R
VN R
yt
e
cos
VE R
zt
e sin
VE R
tg
式中:R 为地球半径,e 为地球自转速度, 为当地
纬度,V 为飞行速度
15
2.控制平台跟踪地理坐标系 在平台上建立地理坐标系,包括:
惯性导航 原理
1
第8章 平台式惯性导航系 统原理及应用
8.1 概 述
8.2 指北方位惯导系统 8.3 自由方位惯导系统 8.4 游动方位惯导系统
8.5 平台式惯导系统初始 对准原理
2
8.1 概 述
一 惯性导航的分类 1.平台式惯导:三轴陀螺稳定平台,加速度
计固 定在平台上,其敏感轴与平台轴平行,平台
17
③俯仰环稳定系统:俯仰轴有干扰力矩,当俯仰轴与 水平轴一致,上陀螺外环轴上y传感器感受角偏移; 不一致,上、下陀螺都感受,需送入方位信号分解器 处理。 ④外横滚环稳定系统:外横滚环的稳定基准是内横滚 环。外横滚轴上有干扰力矩,外横滚环偏离原位置, 并带动俯仰环绕外横滚轴偏离,此时内横滚轴与俯仰 环间信号器感受此偏离,输出信号驱动恢复原位。 ⑤上、下陀螺自转轴垂直锁定电路:为保持上、下 陀螺自转轴相互垂直。
本章解决的主要问题:平台各轴的指令角速度、加 速度测量、导航参数解算
一 系统组成(P300)
13
1.外横滚环 2.俯仰输出同步器 3.倾斜输出同步器 4.内横滚环力矩器 5.俯仰环 6.平台航向同步器 7.方位环力矩器 8.方位环 9.俯仰力矩器 10.内横滚环同步器 11.外横滚环力矩器 12.外横滚伺服放大器 13.内横滚环 14.内横滚伺服放大器 15.方位环伺服放大器 16.稳定信号分配器. 17.俯仰伺服放大器 18.锁定放大器 19.方式选择器 20.控制显示组件 21.计算机
个水平 轴指向不同可分为 (1)指北方位惯导系统:工作时,平台的三个稳定轴
分别指向 地理东、地理北、当地地平面的法线方向,即平台模
拟当地地 理坐标系。 (2)自由方位惯导系统:工作时,平台的方位可以和
北向成任 意夹角,始终指向惯性空间的某一个方向,台面仍要
10
二 平台式惯导的基本组成 平台式惯导系统由三轴陀螺稳定平台(包含陀螺仪)、
初始对准——初始状态时将平台坐标调整到与起始点的 地理系坐标一致;
修正控制——在对准基础上控制平台跟踪地理系变化。
假设初始对准已完成(该内容后面章节讲解),修 正控制步骤:首先使平台相对惯性空间稳定;其次对平 台进行水平修正和方位修正,使平台保持在水平面内而 方位始终指北。
16
(1)稳定系统 ①方位轴稳定系统:方位轴上有干扰力矩,上陀螺的z 传感器感受角偏移。 ②内横滚环稳定系统:内横滚轴上有干扰力矩,两种情 况:当内横滚轴与平台y轴平行,下陀螺外环上的x传感 器感受角偏移;当内横滚轴与平台y轴不平行,即夹角 为航向角时,内横滚轴的干扰力矩上、下陀螺都感受, 此时两个陀螺信号要经信号分配器,再送到稳定电机处 理。
zt
e
式的一种,而不能单独分类。)
飞航式:在大气层中飞行,有弹翼、尾翼和舵 面。弹翼用于在大气层中飞行时产生流体升力, 平衡导弹的重量。尾翼用于保持导弹飞行姿态的 稳定性。舵面是用来控制导弹飞行姿态和弹道的 调整。
特点:飞行距离较近,多是战术导弹。长度、弹径和重量 较小,飞机、舰艇、潜艇和车辆均可作为发射平台。
加速度计、导航计算机、控制显示器等部分组成。
三 三种平台式惯导的特点(p299)
11
12
8.2 指北方位惯导系统
指北方位惯导系统是平台惯导中最基本的类型。陀 螺平台建立的理想坐标系与地理坐标系完全重合。这样 的平台需用一个三轴稳定平台,并对两个水平轴进行舒 勒调谐和积分修正控制其在水平面内,对方位轴系统施 以控制信号使其指向北方。
3.平台式惯导分类 (1)半解析式:又称当地水平惯导系统, 系统 有一三轴稳定平台,台面始终平行当地水 平面, 方向指地理北(或其它方位)。陀螺和加 速度计 放置平台上,测量值为载体相对惯性空间 沿水平
5
(2)几何式:该系统有两个平台,一个装有陀螺, 相对惯性空间稳定;另一个装有加速度计,跟踪 地理坐标系。陀螺平台和加速度计平台间的几何 关系可确定载体的经纬度,故称几何式惯导系统。 主要用于船舶和潜艇的导航定位。精度较高,可 长时间工作,计算量小,但平台结构复杂。
8
弹道式:起飞阶段必须在大气层内,平飞前 进阶段主要在空气稀少的高空或外层空间,下降 阶段再入大气层。弹道式导弹不在大气层中长时 间平行飞行,不需要飞航式导弹那样的弹翼和操 纵面,有的则连尾翼都没有。
特点:空气阻力小,飞行速度快,飞行距离远,能进行洲际攻击。
9
4.半解析式平台惯导系统分类 飞机中应用多为半解析式惯导系统,根据平台两
的三 根稳定轴模拟一种导航坐标系。 优点:直接模拟导航坐标系,计算比较简单;
能
3
2.捷联式惯导:无稳定平台,加速度计和陀 螺仪
与载体直接固连。载体转动时,加速度计和陀 螺仪
的敏感轴指向也跟随转动。陀螺仪测量载体 角运
动,计算载体姿态角,从而确定加速度计敏 感轴
指向。再通过坐标变换,将加速度计输出的 4