《导数的概念》(第1课时)教案1

合集下载

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。

2. 掌握导数的计算方法。

3. 能够应用导数解决实际问题,如速度、加速度等。

二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。

2. 难点:导数的计算方法和在实际问题中的应用。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。

2. 使用多媒体课件辅助教学。

五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。

2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。

3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。

4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。

5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。

6. 练习:布置练习题,让学生巩固导数的概念和计算方法。

7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。

8. 作业:布置作业,巩固所学内容。

六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。

针对学生的薄弱环节,加强讲解和练习。

七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。

鼓励学生积极参与讨论,提高解决问题的能力。

八、课时安排本节课安排2课时,共计45分钟。

九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。

2. 导数在其他学科中的应用,如物理、化学等。

六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。

2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。

3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。

《导数的概念》教案

《导数的概念》教案

《导数的概念》教案教案:导数的概念1.教学目标:1.1.知识目标:学生能够了解导数的概念及其基本性质。

1.2.能力目标:学生能够应用导数的概念解决实际问题。

1.3.情感目标:通过对导数的学习,培养学生的分析和解决问题的能力,并培养学生的兴趣和热爱数学的情感。

2.教学重点:2.1.导数的定义和概念。

2.2.导数的基本性质。

3.教学难点:3.1.导数的基本性质的理解和应用。

3.2.导数的计算和应用。

4.教学过程:4.1.导入(10分钟):引入导数的概念,通过一个简单的例子说明导数的作用和意义。

4.2.导数的定义(20分钟):4.2.1.简单介绍导数的定义和符号表示。

4.2.2.讲解导数的物理意义和几何意义。

4.2.3.通过实例和图像说明导数的计算。

4.3.导数的基本性质(30分钟):4.3.1.导数的定义区间和存在性。

4.3.2.导数的唯一性和连续性。

4.3.3.导数的运算法则。

4.4.导数的应用(30分钟):4.4.1.导数在函数图像的研究中的应用。

4.4.2.导数在最值问题中的应用。

4.4.3.导数在速度和加速度中的应用。

4.5.小结(10分钟):对导数的概念及其应用进行总结,并布置相应的作业。

5.教学手段:5.1.板书与讲解相结合的教学方法。

5.2.生动形象的实例和图像辅助讲解。

5.3.教师提问和学生互动的教学方式。

6.教学资源:教材、黑板、彩色粉笔、投影仪等。

7.教学评价:7.1.反馈评价:学生在课堂上积极参与,课堂气氛活跃。

7.2.笔试评价:设计一套综合性的习题,考查学生对导数概念理解和应用的能力。

7.3.直观评价:观察学生在计算和解决实际问题时运用导数的能力和方法。

8.教学延伸:8.1.导数的计算和应用在微积分的后续学习中具有重要的作用,学生还需继续加深对导数概念和应用的理解。

8.2.练习不同类型的导数计算题目,提高运算能力和分析解决问题的能力。

8.3.进一步了解导数的发展与应用,拓宽数学知识的广度。

大学导数的概念教案

大学导数的概念教案

一、教学目标1. 知识目标:理解导数的概念,掌握导数的定义、性质和计算方法。

2. 能力目标:能够运用导数解决实际问题,提高数学思维能力。

3. 情感目标:培养学生严谨、求实的作风,激发对数学学习的兴趣。

二、教学内容1. 导数的定义2. 导数的性质3. 导数的计算方法4. 导数的应用三、教学过程(一)导入1. 引入问题:在物理学中,速度是描述物体运动快慢的物理量,那么如何描述物体在某一瞬间的运动快慢呢?2. 引出导数的概念:导数是描述函数在某一点处变化快慢的物理量。

(二)讲解导数的定义1. 定义:设函数y=f(x)在点x0的某邻域内有定义,如果极限lim[f(x) - f(x0)] / (x - x0)存在,则称函数y=f(x)在点x0可导,该极限值称为函数y=f(x)在点x0的导数,记作f'(x0)或dy/dx|x=x0。

2. 强调定义中的关键点:函数在某点的导数存在,意味着函数在该点附近的变化趋势可以由该点的导数来描述。

(三)讲解导数的性质1. 线性性质:若函数y=f(x)和y=g(x)在点x0可导,则函数y=f(x) + g(x)和y=kf(x)在点x0也可导,且(f+g)'(x0) = f'(x0) + g'(x0),(kf)'(x0) =kf'(x0)。

2. 可导性:若函数y=f(x)在点x0可导,则其反函数y=g(x)在点f(x0)也可导,且g'(f(x0)) = 1 / f'(x0)。

(四)讲解导数的计算方法1. 基本求导公式:常数的导数为0,幂函数的导数为x^n的n次方,指数函数的导数为e^x,对数函数的导数为1/x。

2. 导数的运算法则:和、差、积、商的导数法则。

(五)讲解导数的应用1. 求函数在某点的瞬时变化率。

2. 求函数在某点附近的切线方程。

3. 求函数的极值和拐点。

4. 解决实际问题。

(六)课堂小结1. 总结导数的概念、性质和计算方法。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。

2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。

3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。

4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。

5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。

教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。

2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。

3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。

教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。

教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。

第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。

三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。

五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。

教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。

六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。

七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。

导数的概念教案

导数的概念教案

导数的概念教案教案标题:导数的概念教案教案目标:1. 理解导数的概念及其在数学中的作用;2. 能够计算简单函数的导数;3. 掌握导数的基本性质。

教案内容:引入导数的概念(10分钟):1. 通过简单的例子引出导数的概念,如一个物体在一段时间内移动的速度;2. 引导学生思考物体移动速度的变化情况,并提问他们是否可以用数学的方式表示和计算物体的速度。

导数的定义(15分钟):1. 介绍导数的定义:函数在某一点的导数是该点的切线斜率;2. 引导学生理解切线的概念,并通过具体函数的图形展示切线的斜率如何表示导数。

导数的计算(20分钟):1. 通过具体函数的例子,逐步教授导数的计算方法,如用极限法求导、使用导数公式等;2. 练习不同类型函数的导数计算,包括多项式、指数、对数、三角等函数。

导数的基本性质(15分钟):1. 介绍导数的基本性质,如常数函数的导数为0、导数的线性性质、导数的乘积法则和商法则等;2. 引导学生通过具体例子理解和应用导数的基本性质。

综合练习(20分钟):1. 提供一些综合性的导数计算题目,并鼓励学生尝试自己解答;2. 老师对学生的解答进行点评和纠正,加深对导数概念和计算方法的理解。

总结和拓展(10分钟):1. 总结导数的概念、计算方法和基本性质;2. 引导学生思考导数在实际生活和其他学科中的应用,并鼓励他们自主学习和探索更多有关导数的知识。

教学资源:1. 教学课件或投影仪;2. 教材、作业本和练习题。

评估方式:1. 教师通过课堂参与度、问题回答情况和练习题完成情况来评估学生的学习情况;2. 可以设计小组或个人综合性评估题目,考察学生对导数概念和计算方法的整体掌握情况。

教学反思:在教案中,关键是引导学生理解导数的概念及其作用,同时通过具体例子和计算方法让学生掌握导数的计算和基本性质。

在教学过程中,要注重与学生的互动和思维激发,鼓励学生积极参与问题解答和练习,加深对导数的理解。

另外,要结合实际生活和其他学科的应用,让学生认识到导数在数学中的重要性和广泛应用的价值。

导数的概念优秀教学设计

导数的概念优秀教学设计

导数的概念优秀教学设计导数是微积分中的重要概念,是描述函数变化率的工具。

设计优秀的导数教学,需要结合具体的学生特点和教学环境,以下是一个1200字以上的教学设计。

课程名称:导数的概念课时安排:2个课时教学目标:1.理解导数的概念和意义;2.掌握导数的计算方法;3.能够应用导数计算函数在给定点的切线和法线。

教学准备:1.教师准备黑板和粉笔;2.给学生准备纸和笔;3.提前准备好导数的相关练习题。

教学过程:第一课时(40分钟):1.导入(5分钟):教师首先简要回顾一下上节课讲解的函数及其性质,引导学生回忆函数图像的特点和函数值的意义。

2.引入导数的概念(15分钟):a.教师通过画图的方式,介绍导数的定义,即函数在其中一点的导数定义为函数在该点的斜率,引导学生对导数有初步的直观理解。

b.教师提供一些具体的例子,如从平面图中点A的位置移动到点B的位置所经过的路径,引导学生思考为什么我们需要斜率来描述这一移动过程的速率。

3.导数的计算方法(20分钟):a.教师通过画图和计算的方式,教学常见函数的导数计算方法,如幂函数、指数函数、对数函数、三角函数等。

b.教师提醒学生导数是一个极限的概念,需要进行极限运算,以此引导学生理解导数的计算方法。

4.小结(5分钟):教师进行本节课的小结,回顾本节课讲解的内容,强调导数是函数的变化率,需用斜率来描述。

第二课时(40分钟):1.复习(5分钟):教师简要回顾上节课讲解的导数的概念和计算方法,提问学生导数的意义和计算方法。

2.用导数计算切线和法线(15分钟):a.教师通过具体例子,如给定一条曲线上的一点P,求曲线上其中一点的切线方程和法线方程,引导学生应用导数的概念和计算方法进行求解。

b.教师提醒学生切线和法线的斜率分别等于导数和导数的负倒数,以此理解切线和法线的几何意义。

3.应用题练习(15分钟):a.教师出示一些应用题,如给定函数的图像,要求求函数在其中一点的切线和法线方程,并计算切点坐标等。

高等数学导数的概念教案

高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。

2. 培养学生运用导数解决实际问题的能力。

3. 引导学生掌握求导数的基本方法。

二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。

2. 难点:导数的直观理解和求复杂函数的导数。

四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。

2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。

3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。

4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。

5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。

五、课后作业1. 完成教材上的课后练习题。

2. 找一些实际问题,运用导数解决。

3. 复习本节课的内容,准备下一节课的学习。

1. 评价学生对导数概念的理解程度。

2. 评价学生掌握导数性质和求导数方法的情况。

3. 评价学生在实际问题中运用导数的熟练程度。

七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。

2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。

3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。

4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

八、教学资源1. 教材:高等数学导数部分。

2. 多媒体课件:用于展示导数的几何意义和实例分析。

3. 练习题库:用于巩固所学知识和提高解题能力。

4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。

九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。

针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。

注重培养学生的数学思维,激发学生学习高等数学的兴趣。

十、教学拓展1. 导数在微积分学中的应用:极限、积分等。

《 导数 的概念》教学设计

《 导数 的概念》教学设计

《导数的概念》教学设计一、学习内容分析:1.本节内容:导数的概念是高中新教材人教版选修1-1第一章第一节1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率的基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念。

新教材从平均变化率入手,用形象直观的"逼近"方法定义导数。

2.在课程标准、高考考纲中的地位与作用:"导数的概念"是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性。

3.与前后章节的联系:在前节课所学的平均变化率的基础上学习平均变化率,进而得到导数的概念,为下一节研究导数的几何意义和导数的应用奠定基础。

二、学生分析:1.学生的情感特点和认知特点:学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础2.已具备的与本节课相联系的知识、生活经验:学生已较好地在物理中学过平均速度、瞬时速度,并学习了一些的关于函数变化率的知识,为本节课学习瞬时变化率、导数做好铺垫。

3.学习本课存在的困难:导数概念建立在极限基础之上,极限是文科学生没有学习过的新知,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.三、学习环境分析:导数的方法是今后全面研究微积分的重要方法和基本工具,在其它学科中同样具有十分重要的作用.在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展.四、学习目标:(1)知识与技能目标:①通过实例分析,经历由平均变化率过度到瞬时变化率的过程,体会导数概念的实际背景。

②会用定义求导数。

(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟"逼近"思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.(3)情感、态度与价值观目标:通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度。

(完整版)导数的概念教案

(完整版)导数的概念教案

【教学课题】:§2.1 导数的概念(第一课时)【教学目的】:能使学生深刻理解在一点处导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数在一点处的导数;明确一点处的导数与单侧导数、可导与连续的关系。

【教学重点】:在一点处导数的定义。

【教学难点】:在一点处导数的几种等价定义及其应用。

【教学方法】:系统讲授,问题教学,多媒体的利用等。

【教学过程】:一) 导数的思想的历史回顾导数的概念和其它的数学概念一样是源于人类的实践。

导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton )和德国数学家莱布尼兹(Leibniz )在研究力学与几何学的过程中建立起来的。

二)两个来自物理学与几何学的问题的解决问题1 (以变速直线运动的瞬时速度的问题的解决为背景)已知:自由落体运动方程为:21()2s t gt =,[0,]t T ∈,求:落体在0t 时刻(0[0,]t T ∈)的瞬时速度。

问题解决:设t 为0t 的邻近时刻,则落体在时间段0[,]t t (或0[,]t t )上的平均速度为00()()s t s t v t t -=-若0t t →时平均速度的极限存在,则极限00()()limt t s t s t v t t →-=-为质点在时刻0t 的瞬时速度。

问题2 (以曲线在某一点处切线的斜率的问题的解决为背景)已知:曲线)(x f y =上点00(,)M x y ,求:M 点处切线的斜率。

下面给出切线的一般定义;设曲线C 及曲线C 上的一点M ,如图,在M 外C 上另外取一点N ,作割线MN ,当N 沿着C 趋近点M 时,如果割线MN 绕点M 旋转而趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线。

问题解决:取在C 上M 附近一点(,)N x y ,于是割线PQ 的斜率为0000()()tan y y f x f x x x x x ϕ--==--(ϕ为割线MN 的倾角) 当0x x →时,若上式极限存在,则极限00()()tan limx x f x f x k x x α→-==-(α为割线MT 的倾角)为点M 处的切线的斜率。

导数的概念教学设计方案

导数的概念教学设计方案

1. 知识目标:理解导数的概念,掌握导数的定义、几何意义和物理意义。

2. 能力目标:培养学生运用导数解决实际问题的能力,提高学生的数学思维能力。

3. 情感目标:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。

二、教学重难点1. 教学重点:导数的概念、几何意义和物理意义。

2. 教学难点:导数的定义及运用。

三、教学过程1. 导入新课通过回顾函数、极限等知识点,引导学生思考导数的概念。

教师可以提出问题:“如何求函数在某一点的瞬时变化率?”以此激发学生的学习兴趣。

2. 导数概念的教学(1)介绍导数的定义:导数是函数在某一点处的瞬时变化率。

通过几何直观,引导学生理解导数的定义。

(2)举例说明导数的几何意义:导数表示函数在某一点处的切线斜率。

(3)举例说明导数的物理意义:导数表示物体在某一点处的速度。

3. 导数的计算方法(1)讲解导数的定义法:运用导数的定义求解函数在某一点的导数。

(2)讲解导数的四则运算法则:运用导数的四则运算法则求解复合函数的导数。

(3)讲解求导公式和求导法则:通过举例讲解求导公式和求导法则,如幂函数、指数函数、对数函数、三角函数等的导数。

4. 实例分析通过实例分析,让学生运用所学知识解决实际问题,如求曲线在某一点的切线方程、求曲线的拐点等。

5. 课堂小结教师总结本节课的主要内容,强调导数的概念、几何意义和物理意义,以及导数的计算方法。

6. 作业布置布置相关练习题,巩固学生对导数的理解,提高学生的解题能力。

四、教学反思1. 教学过程中,注重引导学生理解导数的概念,避免死记硬背。

2. 通过实例分析,让学生将所学知识运用到实际问题中,提高学生的实际应用能力。

3. 在教学中,注重培养学生的探究精神和合作意识,鼓励学生积极参与课堂讨论。

4. 关注学生的学习进度,针对学生的不同需求,进行个性化辅导。

五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性。

2. 作业完成情况:检查学生对导数概念的理解程度和运用能力。

导数的概念教案

导数的概念教案

导数的概念教案导数的概念教案一、导学目标:1.了解导数的概念及其作用;2.掌握求导的方法和技巧;3.能够应用导数解决实际问题。

二、教学过程:1.导入导数概念:导数是微积分学中的一个重要概念,它是一个函数在某一点上的切线的斜率。

可以理解为函数的变化率,用来描述函数在某一点附近的变化情况。

2.导数的定义:如果函数 f(x) 在点 x=a 处可导,则在 x=a 处的导数定义为:f'(a)=lim(x->a) (f(x)-f(a))/(x-a)3.求导的方法:(1)导数的基本运算法则:- 常数的导数等于0;- 幂函数的导数等于其指数乘以自身的底数,再乘以幂差一的指数;- 三角函数的导数等于其对应的导数函数;- 指数函数的导数等于其对应的导数函数。

(2)运用链式法则求导:- 两个函数相乘,求导结果等于两个函数的导数相乘;- 复合函数,求导结果等于外函数对内函数求导结果的乘积。

4.导数的应用:通过求导,我们可以得到一个函数在某一点的导数,从而推断出该函数在该点的增减性、极值点、凹凸性等。

5.例题演示:(1)求函数 f(x) = x^2 在 x=2 处的导数。

解:根据导数的定义,我们可以得到 f'(2)=lim(x->2) (f(x)-f(2))/(x-2) 。

代入函数 f(x) = x^2,我们可以得到 f'(2)=lim(x->2) (x^2-2^2)/(x-2) 。

计算出 f'(2)=lim(x->2) (x+2) = 4。

(2)求函数 f(x) = sin(x) 在x=π/6 处的导数。

解:根据导数的定义,我们可以得到f'(π/6)=lim(x->π/6) (f(x)-f(π/6))/(x-π/6) 。

代入函数 f(x) = sin(x),我们可以得到f'(π/6)=lim(x->π/6) (sin(x)-sin(π/6))/(x-π/6) 。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义及物理意义;2. 掌握导数的计算方法;3. 能够运用导数解决实际问题。

二、教学内容1. 导数的定义;2. 导数的计算;3. 导数在实际问题中的应用。

三、教学重点与难点1. 导数的定义及其几何意义;2. 导数的计算方法;3. 导数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解导数的定义、计算方法及应用;2. 利用图形展示导数的几何意义;3. 通过例题演示导数的计算过程;4. 引导学生运用导数解决实际问题。

五、教学准备1. 教学课件;2. 练习题;3. 相关实际问题。

第一章:导数的定义1.1 引入导数的概念1.2 解释导数的几何意义1.3 导数的计算方法第二章:导数的计算2.1 基本导数公式2.2 导数的计算规则2.3 高阶导数第三章:导数在实际问题中的应用3.1 运动物体的瞬时速度和加速度3.2 函数的极值问题3.3 曲线的凹凸性和拐点第四章:导数的其他应用4.1 曲线的切线和法线4.2 函数的单调性4.3 函数的凸性第五章:练习与拓展5.1 导数计算的练习题5.2 实际问题的练习题5.3 拓展练习题六、教学过程6.1 导入:通过回顾函数图像,引导学生思考如何描述函数在某一点的瞬时变化率。

6.2 新课讲解:详细讲解导数的定义,通过图形和实例直观展示导数的几何意义。

6.3 例题演示:挑选典型例题,展示导数的计算过程,引导学生理解和掌握计算方法。

6.4 课堂练习:布置练习题,让学生独立完成,巩固所学知识。

七、导数的计算7.1 基本导数公式:讲解常见函数的导数公式,如幂函数、指数函数、对数函数等。

7.2 导数的计算规则:介绍导数的四则运算法则、复合函数的导数等。

7.3 高阶导数:讲解函数的二阶导数、三阶导数等高阶导数的概念及计算方法。

八、导数在实际问题中的应用8.1 运动物体的瞬时速度和加速度:结合物理知识,讲解导数在描述物体运动中的应用。

8.2 函数的极值问题:引导学生利用导数求解函数的极值,探讨极值在实际问题中的应用。

《导数的概念》教学设计

《导数的概念》教学设计

《导数的概念》教学设计一、教材分析《导数的概念》是《普通高中课程标准实验教科书·数学选修2-2》(人教A版)第一章1.1.2的内容,是在学生学习了变化率的内容后,通过实例探究,从平均变化率过渡到瞬时变化率的过程,并抽象概括出导数的概念。

它为即将学习的导数的几何意义、导数的计算、导数的应用等知识的奠定了基础,更是我们研究函数单调性、极值、最值和解决生活中优化等问题的有力工具。

教学重点:了解导数概念的形成,理解导数有内涵。

教学难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵,可以通过逼近的方法,引导学生观察来突破难点。

二、学习目标1.知识与技能目标①理解导数的概念.②掌握用定义求导数的方法.2.过程与方法目标3.情感、态度与价值观目标①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.三、教学程序(一)创设情境,引入新课[课件投影]播放一段视频林跃在2022年北京奥运会10米跳台夺冠的视频,给出一个思考题:假如在比赛过程中,林跃相对水面的高度h(m)与起跳后的时间t()存在这样一个函数关系:.计算运动员在这段时间里的平均速度,并思考下面的问题:(1)林跃在这段时间里是静止的吗?(2)你認为用平均速度来描述他的运动状态有什么问题吗?[设计意图]林跃是和我们的学生年纪相仿的国家优秀运动员,他夺冠的经历无疑能让我们的学生感到振奋,这无形中激发了学生的爱国热情。

更重要的是,以此实例能激发学生求知的欲望,从而使学生从“要我学”变成了“我要学”。

通过数值与现实矛盾的产生,使学生意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动,我们有必要研究某个时刻的速度即瞬时速度。

[设计意图]通过引导使学生进一步体会从平均速度出发,“以已知探求未知”的数学思想方法,培养学生的动手操作能力,通过亲自动手算、动脑思,让学生初步感受到逼近的趋势。

高中数学导数的概念教案

高中数学导数的概念教案

高中数学导数的概念教案
一、教学目标:
1. 理解导数的定义及其物理意义;
2. 掌握导数计算的方法和规则;
3. 能够应用导数解决实际问题;
4. 培养学生的数学思维和解决问题的能力。

二、教学重点和难点:
1. 理解导数的定义及其物理意义;
2. 导数计算的方法和规则;
3. 实际问题应用。

三、教学内容与安排:
第一课时:导数的基本概念
1. 定义:导数是函数在某一点处的瞬时变化率;
2. 物理意义:导数表示了函数的变化速率,可以用来解释速度、加速度等物理现象;
3. 讨论导数存在的必备条件。

第二课时:导数的计算方法
1. 导数的计算法则:和、差、积、商、复合函数的导数;
2. 高阶导数的计算方法;
3. 计算导数的基本技巧。

第三课时:导数的应用
1. 利用导数求函数的极值;
2. 利用导数解决优化问题;
3. 利用导数解决曲线的切线问题。

四、教学方法:
1. 讲授相结合,引导学生主动探究;
2. 注重示范和实例讲解,提高学生的问题解决能力;
3. 课堂小组讨论,促进学生之间的合作与交流。

五、教学评价:
1. 课堂练习与作业;
2. 实际问题解决能力的考核;
3. 学生的课堂表现和参与度。

六、教学反思:
1. 根据学生的理解情况调整教学内容和节奏;
2. 激发学生的学习兴趣,增强学生的主动学习意识;
3. 关注学生的学习过程,及时给予反馈和帮助。

《导数的概念教案》

《导数的概念教案》

《导数的概念教案》word版第一章:导数的概念1.1 导入利用实际例子引入变化率的概念,如物体运动的速度、温度变化等。

引导学生思考如何描述函数在某一点的“变化率”。

1.2 导数的定义介绍导数的定义:函数在某一点的导数是其在该点的切线斜率。

解释导数的几何意义:函数图像在某一点的切线斜率。

强调导数表示函数在某一点的瞬时变化率。

1.3 导数的计算介绍导数的计算方法:极限法、导数的基本公式、导数的运算法则。

强调导数计算中需要注意的问题,如函数的连续性、可导性等。

1.4 导数的应用介绍导数在实际问题中的应用,如最优化问题、物理运动问题等。

引导学生思考如何利用导数解决实际问题。

第二章:导数的性质与法则2.1 导数的性质介绍导数的性质,如单调性、连续性、可导性等。

通过实例引导学生理解导数性质的应用。

2.2 导数的运算法则介绍导数的运算法则,如四则运算法则、复合函数运算法则等。

利用导数的运算法则进行函数求导。

2.3 导数的应用利用导数研究函数的单调性、极值、拐点等。

引导学生思考如何利用导数解决实际问题。

第三章:函数的单调性与极值3.1 函数的单调性介绍函数单调性的概念,如何判断函数的单调性。

利用导数判断函数的单调性。

3.2 函数的极值介绍函数极值的概念,如何求解函数的极值。

利用导数求解函数的极值。

3.3 函数的拐点介绍函数拐点的概念,如何求解函数的拐点。

利用导数求解函数的拐点。

第四章:导数在实际问题中的应用4.1 运动物体的瞬时速度与加速度利用导数求解运动物体的瞬时速度与加速度。

解释瞬时速度与加速度的概念及物理意义。

4.2 函数的最值问题利用导数求解函数的最值问题。

解释最值问题的实际意义,如成本最小化、收益最大化等。

4.3 曲线的切线与法线利用导数求解曲线的切线与法线。

解释切线与法线的概念及几何意义。

第五章:高阶导数与隐函数求导5.1 高阶导数介绍高阶导数的概念,如何求解高阶导数。

强调高阶导数在实际问题中的应用,如加速度与瞬时加速度的关系。

导数的概念第一课时

导数的概念第一课时

导数的概念(第一课时)【教材分析】:《导数的概念》是人教版高中数学选修2-2第一章1.1.2的内容,导数是近代数学微积分的核心概念之一,是人类智慧的骄傲。

为了突出导数概念的实际背景,教科书已经在上一节课选取了两个典型的实例,引导学生经历从平均变化率到瞬时变化率的过程,从而理解导数概念的本质——导数就是瞬时变化率。

本节课将导数概念的建立划分为两个阶段:首先明确瞬时速度的含义,然后将瞬时速度一般化,给出导数的定义。

这个过程蕴含了逼近的思想和用已知探究未知的思考方法。

因此根据新课程的标准,设定了本节课教学重点:体会从平均变化率到瞬时变化率的过程中采用的逼近方法;理解导数的概念。

【学情分析】:一般的,导数概念学习的起点是极限,就高中学生的认知水平而言,他们很难理解极限的形式化定义,由此产生的困难也影响了对导数本质的理解。

高一的学生教学难点:导数概念的形成,了解导数的内涵。

【教学目标】(1)知识与技能:明确瞬时速度的含义;理解导数的概念,理解导数就是瞬时变化率。

(2)过程与方法:结合学生的认知规律,师生共同完成一个完整的数学探究过程:提出问题,寻求想法,实施想法,发现规律,给出定义。

(3)情感态度与价值观:体验和认同“有限和无限对立统一”的辩证观点,学会用运动变化的辩证唯物主义思想处理数学问题。

【教学方法】:通过问题的探究,体会逼近、类比、以已知求未知、从特殊到一般的数学思想方法。

引导探究法:设疑——点拨——引导——探究【课型】【教学准备】:多媒体课件、计算器v̅=(h(65/49)-h(0))/(65/49-0)=0(s⁄m)【教学过程】:一、创设情境(5分钟)(展示幻灯片)播放10米跳台跳水的录像片段问题1.回顾什么是平均变化率?课本P3的探究中运动员在0≤t≤6549这段时间里的平均速度?v̅=h(6549)−h(0)6549−0=0(s m⁄)[设计意图]虽然运动员在这段时间里的平均速度为 0(s m⁄),但实际上运动员仍然运动,说明用平均速度不能精确的描述运动员的运动状态,有必要知道任意时刻的速度。

《导数的概念教案》

《导数的概念教案》

《导数的概念教案》word版一、教学目标:1. 理解导数的定义及物理意义;2. 掌握导数的计算方法及应用;3. 培养学生的逻辑思维能力和创新能力。

二、教学内容:1. 导数的定义:函数在某一点的导数表示函数在该点的瞬时变化率;2. 导数的计算:基本导数公式、导数的四则运算、复合函数的导数;3. 导数的应用:求函数的极值、单调性、曲线的凹凸性等。

三、教学重点与难点:1. 重点:导数的定义、计算方法及应用;2. 难点:导数的计算规则、复合函数的导数、导数在实际问题中的应用。

四、教学方法:1. 采用讲授法,系统地讲解导数的定义、计算方法和应用;2. 利用例题解析,让学生掌握导数的计算技巧;3. 开展小组讨论,引导学生将导数应用于实际问题。

五、教学过程:1. 导入:回顾函数的概念,引导学生思考函数在某一点的瞬时变化率;2. 讲解导数的定义,通过图形和实例使学生理解导数的物理意义;3. 讲解导数的计算方法,包括基本导数公式、导数的四则运算、复合函数的导数;4. 利用例题解析,让学生掌握导数的计算技巧;5. 开展小组讨论,引导学生将导数应用于实际问题;6. 总结本节课的主要内容,布置课后作业。

教案内容仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评估:1. 课后作业:布置有关导数计算和应用的习题,巩固所学知识;2. 课堂练习:及时反馈学生的学习情况,针对性地进行讲解和辅导;3. 小组讨论:评估学生在讨论中的表现,了解学生的理解程度和团队合作能力。

七、教学拓展:1. 导数在实际应用中的例子:如优化问题、物理运动方程等;2. 导数与其他数学概念的联系:如微分方程、泰勒公式等;3. 导数在高等数学中的作用:如多元函数的导数、隐函数的导数等。

八、教学资源:1. 教材:选用合适的教材,如《高等数学》、《数学分析》等;2. 课件:制作精美的课件,辅助讲解和展示;3. 习题库:整理一份全面的习题库,便于学生课后练习。

导数的概念第一课时教案核心素养是什么

导数的概念第一课时教案核心素养是什么

导数的概念第一课时教案核心素养概念是反映一类事物的本质属性的思维形式,是数学思维的一个基本单位,概念的掌握一般是通过概念的形成和概念同化。

数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。

在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。

正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

许多数学概念需要用数学符号来表示。

数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。

许多数学概念的定义就是用数学符号来表达,从而增强了科学性。

在上述理念的指导下,导数的概念从实际问题出发,在对具体问题的解决过程中,让学生体验概念的形成过程,遵循学生的认知规律,注重提高学生的数学思维能力。

《普通高中数学课程标准》指出:微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。

导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。

在导数的概念这一节中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调性、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

导数概念是对函数知识的深化,为以后研究导数的几何意义及应用打下必备的基础,是我们今后学习微积分的基础,具有承前启后的重要作用。

同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。

基于此,确定此课的教学重点是导数概念的形成。

导数概念(第一节)教学设计

导数概念(第一节)教学设计

7mins 1min 2mins 4mins
6mins
设点 P(1,1),设 Q 点 (1 Δx,1 Δy) , 其中1 Δy (1 Δx)3
则割线 PQ 的斜率为
(1 Δy) 1 (1 Δx)3 1 3 3Δx +△x2
(1 Δx) 1
Δx
当动点 Q 沿双曲线逐渐向点 P源自靠近,即一个公共点.学生
提问②:那这三条直线到底哪几条是曲线 演示
的切线呢? 预设引导:利用图形计算器进行验证.
作图 验证
6
2 f(x)=- 4
x
2
x=1 y=2x-4
-10
-5
-2
5
10
-4
y=-2
-6
提问③:问题出在哪里了呢? 预设发现:曲线与直线有一个公共点同直 线与曲线相切不等价.圆的切线定义不适 用于其他曲线. 提问④:圆的定义到底出了什么问题,导 致它不适用于任何曲线了呢? 预设发现:不能用公共点的个数确定切线 位置.
教学重点:切线斜率的定义. 教学难点:曲线的切线概念再建构. 教学方式:启发式教学,以学生探究为主、师生互动为辅的活动式教学. 教学手段:图形计算器,几何画板,PPT. 技术准备:图形计算器,电脑.
教学目标
1.通过对曲线切线问题的求解,质疑,探索,感受切线定义的必要性,理解切线的含义, 初步形成导数的概念,能计算基本初等函数在某点的导数.
设计者 实施者 指导者
姓名 白杰 白杰 侯海全
教学设计参与人员 单位
通州区潞河中学 通州区潞河中学 通州区教师研修
中心
联系方式 13311150756 13311150756 13810890107
指导思想与理论依据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的概念(第1课时)
一、教学目标:
1.了解曲线的切线的概念.
2.在了解瞬时速度的基础上,抽象出变化率的概念.
3.掌握切线的斜率、瞬时速度,它们都是一种特殊的极限,为学习导数的定义奠定基础.
二、教学重点:切线的概念和瞬时速度的概念.
教学难点:在了解曲线的切线和瞬时速度的基础上抽象出变化率的概念.
三、教学用具:多媒体
四、教学过程:
1.曲线的切线
如图,设曲线C 是函数)(x f y =的图像,点),(00y x P 是曲线C 上一点,点),(00y y x x Q ∆+∆+是曲线C 上与点P 邻近的任一点.作割线PQ ,当点Q 沿着曲线C 无限地趋近于点P ,割线PQ 便无限地趋近于某一极限位置PT .我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线.
问:怎样确定曲线C 在点P 处的切线呢?因为P 是给定的,根据解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PT 的斜率αtan ,即.)()(lim lim
tan 0000x x f x x f x y x x ∆-∆+=∆∆=→∆→∆α 例题 求曲线12+=x y 在点P (1,2)处的切线的斜率k .
解:x x x f x f x f x x f y ∆+∆=+-+∆+=-∆+=-∆+=∆2)11(1)1()1()1()()(2200
222+∆=∆∆+∆=∆∆x x
x x x y ∴2)2(lim lim 0
0=+∆=∆∆=→∆→∆x x y k x x ,即2=k . 2.瞬时速度
我们知道,物体作直线运动时,它的运动规律可用函数)(t s s =描述.
下面以自由落体运动为例进行分析. 已知22
1gt s =. (1)计算t 从3秒到3.1秒、3.01秒、3.001秒、3.0001秒……各段内平均速度.
(2)求3=t 秒时的瞬时速度.
解:(1)[]t t ∆=-=∆,1.031.3,1.3,3指时间改变量.
s g g s s s ∆=⋅-⋅=
-=∆.3059.03211.321)3()1.3(22指位置改变量. .059.31
.03059.0==∆∆=t s v 其余各段时间内的平均速度,事先刻在光碟上,待学生回答完第一时间内的平均速度后,即用多媒体出示,让学生思考在各段时间内平均速度的变化情况.
(2)从(1)可见某段时间内的平均速度
t s ∆∆随t ∆变化而变化,t ∆越小,t
s ∆∆越接近于一个定值,由极限定义可知,这个值就是0→∆t 时,t
s ∆∆的极限. t
g t g t s t s t s v t t t ∆⋅-∆+⋅=∆-∆+=∆∆=→∆→∆→∆22000321)3(2
1lim )3()3(lim lim 4.293)6(lim 210
==∆+=→∆g t g t (米/秒) 问:非匀速直线运动的瞬时速度是怎样定义的?(当0→∆t 时,平均速度t s ∆∆的极限) 教师引导,学生进行归纳:求非匀速直线运动在时刻0t 的瞬时速度的方法如下: 非匀速直线运动的规律)(t s s =
时间改变量t ∆,位置改变量)()(00t s t t s s -+=∆ 平均速度t s v ∆∆=,瞬时速度t
s v t ∆∆=→∆0lim . 一般地,如果物体的运动规律是)(t s s =,物体在时刻t 的瞬时速度v ,就是物体在t 到t t ∆+这段时间内,当0→∆t 时,平均速度的极限,即
t
t s t t s t s v t t ∆-∆+=∆∆=→∆→∆)()(lim lim 00 例题 若一物体运动方程如下:
⎪⎩⎪⎨⎧≥-+<≤+=)2( )3(
)3(329)1( )30( 2322t t t t s 求此物体在1=t 和3=t 时的瞬时速度.
解:当1=t 时,232
+=t s
.6)36(lim 36lim 2132)1(3lim )()(lim 0202200=∆+=∆∆+∆=∆-⨯-+∆+=∆-∆+=∆∆=→∆→∆→∆→∆t t
t t t t t t s t t s t s v t t t t 当3=t 时,2
)3(329-+=t s .03lim )(3lim )33(329)33(329lim )()(lim 0
202200=∆=∆∆=∆----∆++=∆-∆+=∆∆=→∆→∆→∆→∆t t t t t t t s t t s t s v t t t t 所以,物体在1=t 和3=t 时的瞬时速度分别是6和0.
3.课堂练习(学生练习后教师再讲评)
(1)求223
+-=x x y 在2=x 处的切线的斜率.
解:)()(00x f x x f y -∆+=∆ 3
23
3)()(610)2222(2)2(2)2()
2()2(x x x x x f x f ∆+∆+∆=+⨯--+∆+-∆+=-∆+= 2)(610x x x
y ∆+∆+=∆∆ ∴.10)610(lim lim 20
0=∆+∆+=∆∆=→∆→∆x x x y k x x (2)教科书第111页练习第1、2题.
4.课堂小结
(1)曲线的切线.
(2)瞬时速度.
(3)求切线的斜率、瞬时速度的步骤.
五、布置作业
1.求下列曲线在指定点处的切线斜率.
(1)2,23=+-=x x y 处, (2)0,11=+=
x x y 处. 2.已知某质点按规律t t s 222+=(米)作直线运动.求:(1)该质点在运动前3秒内
的平均速度;(2)质点在2秒到3秒内的平均速度;(3)质点在3秒时的瞬时速度.
解:1.(1)12-=k ,(2)1-=k ;
2.(1)8米/秒,(2)12米/秒,(3)14米/秒.。

相关文档
最新文档