统计学原理-统计指数分析法共42页
统计学(本科)教学课件第八章统计指数分析
2.是在运用资料的条件上不同。
3.是在经济分析中的具体作用亦有区别。
二、加权平均数指数的编制方法
(一)加权算术平均数指数
加权算术平均数指数的编制,是以基期价 值量指标为权数对个体数量指标指数进行 加权算术平均数,以此计算的加权平均数 指数等于数量指标综合指数。
第八章 统计指数分析
第一节 统计指数概述 第二节 综合指数 第三节 加权平均数指数 第四节 平均指标指数 第五节 指数体系与因素分析 第六节 几种常用的统计指数
第一节 统计指数概述
一、统计指数的源来 在我们日常的统计工作中,指数要算是最常见的
数字之一。我们常常可以听到与居民生活息息相 关的零售物价指数、消费价格指数,与股民命运 相关的股票价格指数,等等。追溯指数的起源, 可以发现它产生于现实中的有趣问题。 通过学者对货币贬值问题进行研究,提出了一系 列指数形式。从这里可以看出,指数的概念是从 物价变动中产生的。
第三节 加权平均数指数
一、加权平均数指数的定义和特点 加权平均数指数是总指数的一种基本形式。
它是先计算出复杂社会经济现象总体中单 项事物的个体指数,然后对其进行加权平 均计算总指数,从而测定复杂社会经济现 象总体的平均变动程度。
平均指数和综合指数是计算总指数的两 种形式,它们之间既有区别,又有联系。 从区别看:
第二节 综合指数
一、综合指数的定义和特点 综合指数是总指数的一种,它是由两个总量
指标对比而形成的指数。在总量指标中包含 两个或两个以上的因素指数,将其中一个或 一个以上的因素固定下来,仅观察另一个因 素的综合变动程度,这样的指数称之为综合 指数。它具有三个显著的特点: 1.先综合,后对比 2.固定同度量因素 3.保持分子与分母的一致性
统计指数分析 PPT课件
第二步,将同度量因素固定,以消除 同度量因素变动的影响。
拉氏指数
(Laspeyres index) 1. 1864年德国学者拉斯拜尔提出的一种指数计算方法 2. 计算指数时,主张将权数的各变量值固定在基期 3. 计算公式为 质量指数: 数量指数:
例:
设某粮油零售店2001年和2002年三种商品的零售价格和 销售量资料如下表。试分别以基期销售量和零售价格为 权数,计算三种商品的价格综合指数和销售量综合指数
销售量综合指数为
结论∶与2001年相比,三种商品的零售价格平均 上涨了2.44%,销售量平均上涨了28.38%
帕氏指数
(特点) 1. 帕氏指数以报告期变量值为权数,不能消除权数变 动对指数的影响,因而不同时期的指数缺乏可比性 。 2.帕氏指数可以同时反映出价格和消费结构的变化,具 有比较明确的经济意义。因此,在实际应用中,常 采用帕氏公式计算价格指数
如果只要求分析每一种商品销售量或价格的 变动情况,就只需要编制个体指数。
q1 p1 iq 100%. i p 100%. qo p0
•
如果要反映该粮油零售商店的三种商品销售量和价 格的综合变动,就没那么简单。因为该粮油店的三种商 品使用价值不同,计量单位不一,销售量和价格都不能 直接相加,这三种商品构成的总体我们称为复杂现象总 体。对于这种复杂现象总体,就须用特殊的方法编制狭 义的统计指数即总指数来反映其综合变动。
该指数说明多种商品价格的综合变动程度。
分子、分母之差: 说明由价格变动带来的销售额的增(减)量。
平均指数的概念
平均指数
以指数化指标的个体指数为基础,通过 对个体指数进行平均计算的总指数。有 简单平均指数与加权平均指数之分。通 常所说的平均指数都是指加权平均指数。
统计学――第七章指数分析PPT课件
5
二.指数的种类
按指数所反映的范 围和计算方法不同
个体指数 总指数
个体指数是反映单个现象变动的相对数 总指数是反映多个现象综合变动的相对数
10
1、数量指标的综合指数
例1:假设某商店销售三种商品,基期和报告期的
销售量和价格资料如下:
商品
甲 乙 丙
计量单位
公斤 套 件
基期销售量
q 0
50 75 100
报告期销 售量 q 1
62.5 90 115
基期价 格p0
20 10 5
报告期价格
p 1
14 8 5
合计
—
—
—
—
—
11
三种商品的个体物量指数分别为:
31
二、加权平均数指数的编制 在实际统计工作中,有时受到统计资料的限制,不能直
接用综合指数公式编制总指数,而是以个体指数为基础采用 平均数形式编制总指数,这种方法就称为平均数指数法。
平均数指数有两种表现形式:一种是加权算术平均数指 数;另一种是加权调和平均数指数。
32
(一)基期总值加权的算术平均数指数 基期总值加权的算术平均数指数实际上是以
6
二.指数的种类
按指数反映的社会 经济现象特征的不同
数量指标指数 质量指标指数
数量指标指数是反映现象的规模、水平变化的指数。如: 商品销售量指数、工业产品产量指数。 质量指标指数是反映生产经营工作质量变动情况的指数。 如:物价指数、产品成本指数。
统计学原理 5.1指数分析
•
例如,总产量、总产值、工资总额、利税总额等。
2020/5/31
6
2、总量指标按其反映时间状态的不同,
可分为时期指标 时点指标。
时期指标:是反映总体在某一段时期内活动过程结果的总量指标。
例:工业产品产量、人口出生数、
增加值、商品销售量等。
时点指标:是反映总体在某一时刻(瞬间)上状况的总量指标。
例:职工人数、牲畜存栏头数、
尿 素 45000 46.20 20790 2.20 99000
碳酸氢铵 16000 16.40 2624 0.7809 12495
2020/5/31
合计
168000 —
49297
— 234745
12
第二节 相 对指标
一、相对指标的意义和表现形式
(一)相对指标的含义 相对指标是质量指标的一种表现形式。它是通过两个有联系的统计 指标对比而得到的比值或比率,其具体数值表现为相对数。 例如,2015年,全年网上零售额38773亿元,是是上年的133.3%, 比上年增长33.3%。 (二)相对指标的表现形式 相对指标的数值有两种表现形式,一种是有名数,另一种是无名数。 有名数是将对比的分子指标和分母指标的计量单位结合使用,以表 明事物的密度、普遍程度和强度等。 无名数是一种抽象化的数值,一般分为系数、倍数、成数、百分数、 千分数等。
2020/5/31
1、结构相对指标 2、比例相对指标
3、比较相对指标
4、动态相对指标
5、计划完成程度 相对指标 6、强度相对指标
1、结构相对指标:是在统计分组的基础上,以总 体中的部分数值与总体数值对比求得的比重 或比率。反映总体内部的组成状况。
计算公式:结构相对数=总体部分数值/总体全部数值
统计学课件——指数分析
质量指标综合指数: q1 p1 q1 p0
公式中: q代表数量指标, p代表质量指标
下标 1 代表报告期,0 代表基期
统计学原理(第七讲)
第八章 指数分析
(二)综合指数分析方法
1、数量指标综合指数分析
q1 p0
相对数分析:
q0 p0
公式分子与分母的比值反映了所研究的数量指 标报告期比基期相对综合变动程度。
绝对数分析:
q1 p1 q1 p0
公式分子减分母的差额,反映了由于所分析的质 量指标的变动,使价值量指标增加或减少的数额。
统计学原理(第七讲)
第八章 指数分析
例:某农贸市场销售三种农产品资料如下:
商品 名称
计量 单位
销售量 基期 报告期
单价(元) 基期 报告期
甲
万斤 400
500
0.2
0.18
∑(商品销售量× 商品销售价格) = 商品销售总额
所研究的指数化指标 同度量因素 价值量指标
当研究价格的变动时,商品价格是质量指标,则与 之相联系的数量指标——销售量,就是同度量因素
∑(商品销售量 × 商品销售价格) = 商品销售总额
同度量因素
所研究的指数化指标
价值量指标
统计学原理(第七讲)
第八章 指数分析
所需数据列表计算如下:
商品 名称
销售量
单价(元)
q0
q1
p0
p1
销售额(万元)
q0p0
q1p1 q1p0
甲
400 500 0.2
0.18
80
90
பைடு நூலகம்
100
乙
120 125 0.4
0.40
统计学原理07-第7章统计指数法(最新)
狭义指数是综合反映多种不同事物在不同时间上
的总变动的特殊的相对数。 的总变动的特殊的相对数。即专门用来综合说明那些 不能直接相加和对比的复杂社会经济现象的变动情况。 不能直接相加和对比的复杂社会经济现象的变动情况。
一、指数的性质
1. 指数是一种比较的数字; 指数是一种比较的数字; 2. 指数是一个综合的数字; 指数是一个综合的数字; 指数是一个平均的数字; 3. 指数是一个平均的数字; 指数是一个代表的数字; 4. 指数是一个代表的数字;
3. 动态指数和静态指数
——按其所反映的时间状况的不同 按其所反映的时间状况的不同 按其所反映的时间状况
动态指数是指同一总体两个不同时间同类指标数 值对比形成的相对数 静态指标是指相同时间不同空间的指标数值对比 得到的相对数。 得到的相对数。
环比指数和定基指数——按其所采用的基期不同 按其所采用的基期 基期不同 4. 环比指数和定基指数 指数往往随着时间的推移而连续编制, 指数往往随着时间的推移而连续编制,从 而形成指数数列。 而形成指数数列。
在某一方面的数量特征。 在某一方面的数量特征。
综合指数的编制原则
2.为了反映复杂总体中指数化因素的变动, 2.为了反映复杂总体中指数化因素的变动,就需 为了反映复杂总体中指数化因素的变动 要将相应的同度量因素固定在某一水平上 (1)如何取得可以加总的个体数量表现 (2)使用怎样的现象总量资料进行对比。
•
3、为了说明销售量的变动,同度量因素必 须使用同一时期的,即假定两个时期的商品销售额 是按同一时期的价格计算的,然后再进行对比。
•
用公式表示如下:
Kq
• •
Σ q1 p ⇒ 固定 p 以反映 q 的变动 = Σq0 p
4、同度量因素(价格)因素得到的结 果不同,并且会得到不同的指数公式。
《统计学原理》第7章:统计指数
• 以相应的数量指标作为同度量因 素。 • 将同度量因素固定在报告期。
综合指数的编制方法
计算公 式
KP
PQ PQ
1 0
1 1
K P 表示质量指标指数
Q 表示数量指标,0、1表示基期和报告期
P
表示质量指标,0、1表示基期和报告期
综合指数的编制方法
例如:根据以下资料计算出厂价格指数,选择产量作为 同度量因素,并将其固定在报告期。 产品 名称 甲 乙 计量 单位 吨 千米 产 量 2004 3000 400 2005 3600 420 出厂价格(元) 2004 2000 3600 2005 2200 4000
乙 丙 合计 千米 千块 -
综合指数的编制方法
同样:当研究该企业的价格变动。可选取的同度量 因素有:销售量、生产量等 产品 名称
销售量 价格量 销售额 计量 产 出厂价格(元)
单位 2004 400 4 2005 420 5 2004 3600 4000 2005
甲
乙 丙
3000 吨 生产量 价格3600 2000 总产量
如:当研究该企业的产量变动。可选取的同度量因 素有:销售价格、生产成本等 产品 名称
产量 销售价格 销售额 计量 产 量 出厂价格(元)
单位 2004 400 4 2005 420 5 2004 3600 4000 2005 4000 4000 -
3000 3600 2000 甲 产量 生产成本 成本总额2200 吨
统计指数的作用
综合反映多种不同事物的总的变动程度; 根据指数间的社会经济联系进行因素分析; 研究社会经济现象在长期内的变动趋势
第二节 综合指数的编制 与应用
统计学原理——统计指数
统计学原理——统计指数统计指数是一项重要的统计学原理,它用于评估和比较不同群体或变量之间的相对差异。
通过统计指数,我们可以对数据进行更深入的分析,了解不同群体的差异以及其对总体的贡献。
在统计学中,常用的统计指数有多种,其中包括平均数、标准差、相关系数、协方差等。
这些指数可以帮助我们从不同角度对数据进行分析和解释。
首先,平均数是最常见的统计指数之一、它用于衡量一组数据的集中趋势和中心位置。
平均数可以通过将所有数据值相加并除以数据的个数来计算得到。
通过计算平均数,我们可以了解数据的总体特征和整体水平。
其次,标准差是用于衡量数据的离散程度和波动性的指数。
它衡量数据的每个数据点与平均数之间的距离,并计算这些距离的平均值。
标准差越大,表示数据的分布越分散;标准差越小,表示数据的分布越集中。
另外,相关系数是用于衡量两个变量之间相关性的指数。
它可以告诉我们两个变量之间的线性相关程度,取值范围从-1到1、当相关系数为正时,表示两个变量之间存在正相关关系;当相关系数为负时,表示两个变量之间存在负相关关系;当相关系数接近于0时,表示两个变量之间几乎没有相关性。
此外,协方差是用于衡量两个变量之间总体变化趋势的指数。
它可以告诉我们两个变量之间的总体变化方向和程度。
当协方差为正时,表示两个变量之间存在正相关关系;当协方差为负时,表示两个变量之间存在负相关关系;当协方差接近于0时,表示两个变量之间几乎没有线性关系。
这些统计指数对于统计学原理的应用非常重要。
通过计算和分析这些指数,我们可以从不同的角度深入了解数据的特征和关系,从而更好地进行数据的解释和应用。
在实际应用中,统计指数可以帮助我们研究不同群体之间的差异,并为决策提供依据。
例如,我们可以使用平均数和标准差来比较两个地区的人均收入水平和收入分布情况;我们可以使用相关系数和协方差来研究两个变量之间的相关性,如广告投资和销售额之间的关系。
总之,统计指数是统计学原理中重要的一部分,它可以帮助我们对数据进行更深入的分析和解释。
统计指数分析法
第二节 个体指数的计算方法 及其在统计分析中的作用
一、 个体指数的计算方法: 二、 个体指数在因素分析中的运用:
(一)多因素分析法(逐一影响因素的分析法)
(二)两因素分析法(因子影响的分析法)
Ⅰ. 共变因素合 并到p
Ⅱ. 共变因素合 并到q
例
如以下实例:某县商业部门棉花收购情况
复习思考题
1. 试述指数的概念和作用。 2. 指数有哪些分类? 3. 编制总指数的公式主要有哪几种? 4. 什么是综合指数?综合指数能说是总指数的基本公式吗? 5. 什么是同度量因素?在编制数量指标指数和质量指标指数时,应该选用什 么指标作同度量因素?并固定在哪几个时期上?为什么? 6. 为什么综合指数公式中的同度量因素也具有权数的作用? 7. 什么是算术平均数指数和调和平均数指数?它们和综合指数有何关系? 8. 什么是指数体系?怎样利用指数体系进行两因素或多因素分析? 9. 什么是平均指标指数?说明什么问题? 10.平均指标指数一般受哪两个因素变动的影响?为测定这两个因素的变动 对总平均指标指数的影响,可编制哪两个相应的指数?怎样编制? 11.什么是指标数列?有哪些种类? 12.定基指数数列与环比指数数列各说明什么问题? 13.以什么作权数的环比指数数列与定基指数数列存在换算关系和改换基期 的计算关系?
2.在一般研究中,人们通常在编制数量指标总指 数时,以相关的基期质量指标作为同度量因素;而 在编制质量指标总指数时,常以相关的报告期数量 指标作为同度量因素。
二、平均数指数的计算公式
(一)加权算术平均数的计算公式 (二)加权调和平均数的计算公式 (三)综合指数法与平均数指数法的区别与联系
1.区别: ①综合指数法是从确定同度量因素出发,把不能直接对比的 事物变成能够同度量,从而编制总指数;而平均数总指数是在适当 选择代表个体的条件下,用个体指数的某种样本平均来近似正确的 测定总体现象的一般变动水平。 ②用综合指数法编制总指数,使用的是全面资料;平均数指 数法计算总指数,使用的是非全面资料。 2.联系:
大学课程《统计学原理》PPT课件:第八章 统计指数
目录
1 统计指数概述 2 总指数的编制和计算 3 平均数指数和平均指标指数的因素分析 4 指数体系和因素分析 5 指数在社会经济统计中的应用
第一节 统计指数概述
一、统计指数的概念
统计指数是一种常用的统计分析方法,用 来分析研究社会经济现象数量之间的关系。
统计指数的含义有广义和狭义之分。广义 的统计指数泛指所有反映社会经济现象变 动程度的相对数,用来反映客观现象在不 同空间、不同时间上的变动程度,如动态 相对数、计划完成相对数和比较相对数等。 狭义的统计指数是指用来综合反映那些不 能直接相加的复杂社会经济现象总体变动 的相对数,是一种特殊的相对数。
多因素分析的基本方法与两因素分析相
第四节 指数体系和因素分析
四、总指数与平均指标指数相结合的因素分析
平均指标指数与总指数之间的关系如同 平均指标与总量指标之间的关系,存在 着一定的经济联系,同样可以进行两因 素分析和多因素分析。
第五节 指数在社会经济统计中 的应用
一、零售物价指数
零售物价指数是测定市场零售商品价格变 动程度和趋势的一种相对数。它是政府加 强宏观调控和市场管理、制定物价和分配 政策、研究和分析市场商品供需情况及国 民经济运行的重要依据之一。
第五节 指数在社会经济统计中 的应用 三、零售物价指数和居民消费价格指数的应用
(一)测定通货膨胀
所谓通货膨胀,是指货币发行量过多,超 过商品流通的正常需要,引起物价上涨、 货币贬值的一种经济现象。
通货膨胀程度的测定是计算通货膨胀率, 其计算方法很多,通常用价格指数的环比 增长率表示,也可以用居民消费价格指数 计算。
(二)其绝对数上的关系
商品销售额增减总额 = 因销售量变动影 响而增减的销售总额+因销售价格变动 影响而增减的销售总额。
统计学原理-统计指数分析法
K Q 1 150.42% 1 50.42%
解:⒉价格综合指数为:
K P
P1 Q1 P0 Q1
38500 35800
107.54﹪
由于价格的提高而增加的销售额为:
Q1P1 Q1P0 38500 35800 2700元
K P 1 107.54% 1 7.54%
计算销售量指数和价格指数
第六章 统计指数
第六章 统计指数
§6.1 统计指数概述 §6.2 综合指数 §6.3 平均指数 §6.4 指数体系与因素分析
§6.1 统计指数概述
一、问题的提出 二、指数的概念及作用 三、指数的分类
问题的提出
指数起源于人们对 价格动态的关注。
今天的面包价格 个体价格指数
昨天的面包价格
今天的面包、鸡蛋、香肠等等价格 综合价格指数
昨天的面包、鸡蛋、香肠等等价格
指数是解决多种不能直接相加 的事物动态对比的分析方法
指数的定义
指由于各个部分的不同性质 而在研究其数量时,不能直 接加总进行对比的总体
从广义上讲,指数是指反映社会经济现象数量
变动的相对数;
从狭义上讲,指数是指反映复杂社会经济现象 总体数量综合变动 的相对数。
指数的作用
计 商品 量
销售量
名称 单 基期 报告期
位 Q0 Q1
甲 件 120 100
乙 支 1000 1200
丙 台 60 100
合计 — — —
价格(元)
基期
P0
报告期
P1
Q0 P0
20 25
4
5
290 300
——
Q1P1
Q1P0
资料栏
计算栏
计算:三种商品销售量的综合变动和销售
《统计学原理与应用》课件第09章 统计指数
第二节 综合指数与平均指数
(二)质量指标综合指数的编制方法 2.确定同度量因素有固定时期
第一,将同度量因素固定在基期--拉斯贝尔公 式
拉斯贝尔公式:
q0 p1
K p
q0 p0
该公式优点:它不夹杂其他因素的影响能反 映指数化指标的“纯”变动;
缺点在于:现实经济意义不强并且不符合指 数体系的要求。
(4)
1 500 1 980 500 520 700 680 450 615
680
450
615
基期销售额 /万元
6.2 3.1 3.9 2.4
合要计求: -
-
-
15.6
要求:计算三种商品销售量的总指数。
计算有关数据入表:
商品 计量 基期 报告期 基期销 个体销
名称 单位 销售 销售量 售额/ 售量指
量
万元 数
k﹒q0p0
(1) (2)
甲床 乙个
丙要求:辆
丁台
q0
(3)
q1
104500 106300 102500
计算得到:
q0 p0 104500
q1 p1 106300
q1 p0 102500
(1)分析三种商品销售量的变动:
k q
q1 p0 102500100% 98.1% q0 p0 104500
销售量变动对销售额产生的影响:
q1 p0 q0 p0 102500104500 2000(元)
第一节 统计指数的意义和种类
二、统计指数的种类
2.指数按其所表明的指标性质的不同分为: 数量指标指数与质量指标指数
数量指标指数:是根据数量指标(即总量指标,又称 为绝对数)计算的指数。
统计学统计指数分析法
统计学统计指数分析法统计学是一项重要的科学方法,它可以帮助我们收集、整理、分析和解释数据。
统计指数分析法是统计学中的一种应用方法,可以帮助我们分析和解释多个指标之间的关系和趋势。
本文将介绍统计指数分析法的定义、原理和应用,并提供几个具体的实例。
统计指数分析法是一种将数据指标转化为相对数的方法。
它通过计算各个指标相对于其中一基准指标的比率或相对变化量,来反映多个指标之间的相对关系和变化趋势。
这种相对数常常被称为“指数”,用来比较不同指标的大小和变化。
统计指数分析法的原理是基于以下两个核心概念:权重和基期。
权重是指不同指标在整体中的重要性或权重,它可以通过主观判断或客观评估来确定。
基期是指参照的时间点或时间段,用来对比各个指标的变化情况。
在应用统计指数分析法时,首先需要选择一项基准指标。
基准指标可以是任何一个被认为比较合适的指标,比如一个最主要或最关键的指标。
然后,需要确定各个指标与基准指标的相关性和变化趋势。
这可以通过计算各个指标与基准指标的比率或相对变化量来实现。
最后,将这些相对数进行加权求和,得到一个综合指数,反映各个指标的整体变化趋势。
统计指数分析法在实际应用中具有广泛的用途。
一方面,它可以帮助我们分析和解释多个指标之间的关系。
比如,在金融领域,我们可以使用统计指数分析法来分析股票市场中各个指数的涨跌情况。
另一方面,它也可以帮助我们分析和解释一个指标的变化趋势。
比如,在经济领域,我们可以使用统计指数分析法来分析国内生产总值(GDP)的变化情况。
下面是几个具体的实例,以帮助理解统计指数分析法的应用。
1.指数股票市场分析:假设我们希望比较两个股票指数A和B的涨跌情况。
首先,我们选择其中一个指数作为基准指标,比如指数A。
然后,计算指数B相对于指数A的比率或相对变化量,并进行加权求和,得到一个综合指数。
通过分析这个综合指数的大小和趋势,我们可以得出指数B 相对于指数A的涨跌情况,以及它们之间的关系。
统计学统计指数分析PPT课件
若指数化指标为质量指标,则构成的指数 为质量指标指数,可简称为质量指数。如, 价格指数、平均工资指数、单位成本指数等。
.
11
(三)按指数对比指标的表现形式的不同
分为总量指标指数和平均指标指数
第六章 统计指数
.
1
第六章 统 计 指 数
学习目的:
通过本章学习,应在了解指数基本概念与分 类的基础上,正确理解总指数的编制原理; 熟练掌握综合指数和平均数指数的计算方法、 特点及其应用;掌握运用指数体系对社会客 观现象进行因素分析。重点掌握总量指标和 平均指标的两因素分析方法。
.
2
第六章 统计指数
.
4
例如:某厂生产三种工业产品,相关
生产资料如下: 表6-1
产品 计量 名称 单位
产品产量
产品单价(元)
基期 报告期 基期 报告期
(甲) (乙) q0
q1
p0
p1甲ຫໍສະໝຸດ 台 250 300 180
184
乙 米 1740 1860 45
42
丙
吨
120 110 720
730
.
5
(二)统计指数的作用 指数在统计分析中的作用,可以归结为两点:
个体指数:是反映个别单一现象数量变动 的相对数。
类指数:是指复杂现象总体中反映各类别 现象总体变动的相对数。
总指数: 是反映复杂现象全部总体数量综 合变动的相对数。
.
7
为了更好掌握指数的计算方法,便于使用计
算公式,我们选定相关的计算符号:
q— 数量指标;
p—质量指标
统计指数分析法 PPT
利用指数从数量上分析复杂经济现象总变动中各个因素 变动影响的方法,称为指数分析法。任务是测定各因素 的变动情况极其产生影响的程度和绝对效果。
(二)平均指标的两因素分析
总平均指标受到各组平均指标和各组单位数占总体比重 变动的影响。
可变构成指数=固定构成指数×结构影响指数
(3)一般原则:以报告期的数量指标作为同度量因素。
第三节 平均指数的编制
一、概念 是总指数的另一种形式,是个体指数的加权平均数 加权算术平均数和加权调和平均数 二、平均指数的编制
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
(一)加权算术平均数指数 由K=Q1/Q0得 Q1=KQ0代入得:
KQ Q 1P0 KQ 0P0
Q0P0
Q0P0
(二)加权调和平均数指数
由K=P1/P0 得P0=P1/K代入物价指数:
KP
P1Q1 P0Q1
P1Q1 1 KP1Q1
第四节 指数体系和因素分析
一、指数体系 基本含义: 数量指标指数和质量指标指数的乘积等于总变动指数; 各个因素的变动所引起的差额之和等于实际产生的总变动
二、综合指数的编制
(一)数量指标指数
反映生产、经营等数量和总体规模变动情况的指数。
同度量因素:将不能相加、对比的数量过渡到可以相加、 可以对比的那个因素,起着权数的作用
1.以基期价格为同度量因素(拉氏公式)
KQ
Q1P0 Q0P0
2.以报告期价格为同度量因素(派氏公式)
KQ
Q1P1 Q0P1
3.一般原则:以基期的质量指标为同度量因素
K Q
Q1P0 Q0P0
统计学原理任务六统计分析——指数分析法
• 导入案例
商品 计量 名称 单位 基期q0 报告期q1 6000 甲 公斤 5000 某商场商品销售资料 销售量 销售价格(元) 基期p0 报告期p1 230 250
乙
件
2400
9000 ——
2200
12000 ——
50
100 ——
65
80 ——
丙 盒 合计 —— 问题:
1.该商场所有商品销售量报告期与基期比较是增加还是减少?增减了 多少?
报告期p1 q0p0
丙
合计
盒
——
9000
——
12000
——
100
——
80
——
90
96
120
269
217 260.3
(一)引入同度量因素(销售价格p),将不能相加的指数化指 标(销售量q)转化为其它能相加的指标(销售额qp),然后相加 对比。
任务六
统计分析——指数分析法 认识指数 编制综合指数 编制平均指数 进行因素分析 识记几种常用的经济指数 运用Excel
分任务一 分任务二 分任务三 分任务四 分任务五 分任务六
分任务一 认识指数
• 导入案例
商品 计量 名称 单位 基期q0 报告期q1 基期p0 报告期p1 甲 公斤 5000 6000 230 250
统
计
指
数
狭义上说,指数是用来表明复杂社会经济现象总体数 量的综合变动方向和程度的相对数。如商品销售量总 指数、商品销售价格总指数、上证综指、深证成指数 等。
任务六 统计分析——指数分析法
问题的提出
指数起源于人们对价 格动态的关注。
广义指数
今年每公斤大米的价格 去年每公斤大米的价格
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。—,倚靠在明眼的跛子肩上。——叔本华
谢谢!
42