高考数学专题—参数方程

合集下载

高考数学知识点参数方程

高考数学知识点参数方程

高考数学知识点参数方程高考数学知识点:参数方程数学在高考中占据着重要的地位,其中一个重要的知识点就是参数方程。

参数方程是描述物体运动以及数学曲线的一种有效方式。

本文将从基本概念开始,逐步深入探讨参数方程的相关内容。

一、什么是参数方程?参数方程是一种使用参数表示变量关系的表达方式。

在平面直角坐标系中,我们通常使用 x 和 y 坐标轴来表示一个点的位置。

但在有些情况下,一个点的位置需要通过另外的变量来确定。

例如,我们可以使用时间作为参数来描述物体的运动轨迹。

二、参数方程的表示方法通常,参数方程可以用以下形式表示:x = f(t)y = g(t)其中,f(t) 和 g(t) 是关于参数 t 的函数。

通过不同的 t 值,我们可以得到一组点 (x, y) 的坐标。

三、平面曲线的参数方程1. 点的轨迹考虑一个点 P(x, y),沿着一条轨迹运动。

如果我们能够找到一个参数 t,能够唯一确定点的位置,那么我们可以使用参数方程来描述点的轨迹。

2. 直线的参数方程对于直线,我们可以使用参数方程表示。

例如,一条直线的参数方程可以写作:x = at + by = ct + d其中 a、b、c、d 是常数。

3. 圆的参数方程对于一个圆,我们可以使用参数方程表示。

以原点 O 为圆心,半径为 r 的圆的参数方程可以写作:x = r*cos(t)y = r*sin(t)其中,t 是参数,范围在[0, 2π]。

四、参数方程的应用1. 物体运动在物理学中,参数方程常常用于描述物体的运动轨迹。

例如,一个抛体运动的轨迹可以使用参数方程来表示。

2. 曲线绘制在计算机图形学中,参数方程可以用于生成各种复杂的曲线。

通过调整参数的取值,我们可以绘制出各种形状的曲线,如椭圆、双曲线等。

3. 函数的参数化有些函数无法用解析式直接表示,但可以通过参数方程来表示。

例如,钟摆的运动可以通过一个参数方程来描述。

五、参数方程的优点和不足1. 灵活性参数方程具有很大的灵活性,可以描述出各种复杂的曲线。

高考数学参数方程

高考数学参数方程

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得 222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高三数学参数方程知识点

高三数学参数方程知识点

高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。

本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。

一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。

通常用t作为参数,表示自变量的取值范围。

在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。

二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。

1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。

例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。

2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。

例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。

三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。

下面分别介绍参数方程在平面曲线和空间曲线中的应用。

1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。

通过参数方程,可以对曲线的形状和性质进行更深入的研究。

例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。

通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。

2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。

通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。

四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。

高三参数方程知识点

高三参数方程知识点

高三参数方程知识点高三学生在学习数学的过程中,会接触到各种不同的知识点和概念。

其中,参数方程是高三数学学习中的一个重要内容。

本文将详细介绍高三参数方程的相关知识点,帮助同学们更好地理解和掌握该知识。

一、参数方程的概念参数方程是指以一个或多个参数表示的函数关系,其中参数的取值范围可以是任意的。

一般来说,参数方程可以将曲线或曲面上的点表示为参数的函数。

二、参数方程的表示方法1. 一元一次方程组参数方程最简单的形式是一元一次方程组。

例如,对于平面上的曲线,可以用两个一元一次方程来表示。

常见的一元一次方程组形式为:x = f(t)y = g(t)其中,x和y是曲线上的点的坐标,t是参数。

2. 二元一次方程组在三维空间中,参数方程可以用二元一次方程组表示。

形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y和z是曲面上的点的坐标,u和v是参数。

三、参数方程的应用参数方程在几何图形的描述和计算中具有广泛的应用。

以下是几个常见的应用场景:1. 曲线的参数方程参数方程可以描述各种曲线,如直线、圆、椭圆、抛物线和双曲线等。

通过参数方程,我们可以很方便地计算曲线上的点的坐标,进而绘制曲线。

2. 曲线的长度和曲率参数方程在计算曲线的长度和曲率时非常有用。

通过确定参数的取值范围,并计算相邻点的距离,我们可以求得曲线的长度。

此外,通过求导数和二阶导数,我们还可以计算曲线的曲率和曲率半径等重要指标。

3. 曲面的参数方程参数方程可以用于描述各种曲面,如球面、圆柱、圆锥和双曲面等。

通过参数方程,我们可以计算曲面上的点的坐标,进而绘制出复杂的三维图形。

四、参数方程的特点和优势参数方程具有一些独特的特点和优势,使其在数学领域得到广泛应用:1. 灵活性:参数方程中的参数可以取任意实数值,因此可以描述各种不同的几何图形。

2. 简洁性:用参数方程表示几何图形时,通常可以用更简洁的形式表示,较少出现复杂的运算和方程。

高考数学一轮复习考点知识专题讲解71---参数方程

高考数学一轮复习考点知识专题讲解71---参数方程

高考数学一轮复习考点知识专题讲解参数方程考点要求1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.知识梳理1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么此方程就叫做这条曲线的参数方程. 2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y -y 0=tan α·(x -x 0)⎝⎛⎭⎪⎫α≠π2错误!(t 为参数)圆 x 2+y 2=r 2 错误!(θ为参数)椭圆 x 2a 2+y 2b 2=1(a >b >0) 错误!(φ为参数)抛物线y 2=2px (p >0)错误!(t 为参数)思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.(√)(2)方程⎩⎨⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.(√)(3)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为3.(×) (4)参数方程⎩⎨⎧x =2cos θ,y =5sin θ(θ为参数且θ∈⎣⎢⎡⎦⎥⎤0,π2)表示的曲线为椭圆.(×)教材改编题1.将参数方程⎩⎨⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为()A .y =x -2B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1) 答案C解析代入法,将方程化为y =x -2,但x ∈[2,3],y ∈[0,1]. 2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心()A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上 答案B解析由⎩⎨⎧x =-1+cos θ,y =2+sin θ得⎩⎨⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心坐标为(-1,2),在直线y =-2x 上. 3.已知直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为________. 答案±1515解析由⎩⎨⎧x =t cos α,y =t sin α(t 为参数),得y =x tan α,设k =tan α,得直线的方程为y =kx ,由x 2+y 2-4x +3=0,得(x -2)2+y 2=1,圆心坐标为(2,0),半径为1, ∴圆心到直线y =kx 的距离为12-|AB |24=12=|2k |k 2+1,得k =±1515.题型一 参数方程与普通方程的互化例1(2021·全国乙卷)在直角坐标系xOy 中,⊙C 的圆心为C (2,1),半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.解(1)因为⊙C 的圆心为(2,1),半径为1,所以⊙C 的参数方程为⎩⎨⎧x =2+cos θ,y =1+sin θ(θ为参数).(2)当直线斜率不存在时,直线方程为x =4,此时圆心到直线距离为2>r ,舍去; 当直线斜率存在时,设切线为y =k (x -4)+1,即kx -y -4k +1=0, 故|2k -1-4k +1|1+k 2=1,即|2k |=1+k 2,4k 2=1+k 2,解得k =±33. 故直线方程为y =33(x -4)+1或y =-33(x -4)+1.故两条切线的极坐标方程为ρsin θ=33ρcos θ-433+1或 ρsin θ=-33ρcos θ+433+1. 即ρsin ⎝ ⎛⎭⎪⎫θ+5π6=2-32或ρsin ⎝ ⎛⎭⎪⎫θ+π6=2+32.教师备选在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-5+22t ,y =5+22t (t 为参数),以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ= 4cos θ.(1)求曲线C 的直角坐标方程及直线l 的普通方程;(2)将曲线C 上的所有点的横坐标缩短为原来的12,再将所得到的曲线向左平移1个单位长度,得到曲线C 1,求曲线C 1上的点到直线l 的距离的最小值. 解(1)曲线C 的直角坐标方程为x 2+y 2=4x , 即(x -2)2+y 2=4.直线l 的普通方程为x -y +25=0.(2)将曲线C 上的所有点的横坐标缩短为原来的12,得(2x -2)2+y 2=4, 即(x -1)2+y 24=1,再将所得曲线向左平移1个单位长度, 得曲线C 1:x 2+y 24=1,则曲线C 1的参数方程为⎩⎨⎧x =cos θ,y =2sin θ(θ为参数).设曲线C 1上任一点P (cos θ,2sin θ),则点P 到直线l 的距离 d =|cos θ-2sin θ+25|2=|25-5sin (θ+φ)|2,其中φ满足sin φ=-55,cos φ=255, 由三角函数知,当sin(θ+φ)=1时,d 取最小值102,所以点P 到直线l 的距离的最小值为102. 思维升华 消去方程中的参数一般有三种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活地选用一些方法从整体上消去参数. 跟踪训练1已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4, 解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ]. 题型二 参数方程的应用例2在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =4sin θ(θ为参数),直线l的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 解(1)由曲线C 的参数方程⎩⎨⎧x =2cos θ,y =4sin θ(θ为参数),得⎩⎪⎨⎪⎧cos θ=x2,sin θ=y4,所以⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 42=1,即x 24+y 216=1,所以曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2. 教师备选(2022·安阳模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),直线l 过点M (1,0)且倾斜角为α. (1)求出直线l 的参数方程和曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,且|MA |·|MB |||MA |-|MB ||=33,求cos α的值.解(1)曲线C 的参数方程⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),转换为普通方程为x 22+y 2=1;直线l 过点M (1,0)且倾斜角为α,则参数方程为⎩⎨⎧x =1+t cos α,y =t sin α(t 为参数).(2)把直线l 的参数方程⎩⎨⎧x =1+t cos α,y =t sin α(t 为参数)代入x 22+y 2=1.得到(1+sin 2α)t 2+2t cos α-1=0, 所以t 1+t 2=-2cos α1+sin 2α,t 1t 2=-11+sin 2α(t 1和t 2分别为A 和B 对应的参数),t 1t 2<0,则t 1,t 2异号,||MA |-|MB ||=||t 1|-|t 2||=|t 1+t 2|,由|MA |·|MB |||MA |-|MB ||=33,整理得|t 1+t 2|=⎪⎪⎪⎪⎪⎪-2cos α1+sin 2α=3|t 1t 2|=31+sin 2α, 解得cos α=±32. 思维升华 (1)解决直线与曲线的参数方程的应用问题时,一般是先化为普通方程,再根据直线与曲线的位置关系来解决. (2)对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.跟踪训练2在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =-1-t ,y =2+t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ρ2sin 2θ=2,直线l 与曲线C 交于A ,B 两点. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)已知点P 的极坐标为⎝ ⎛⎭⎪⎫22,π4,求|PA |·|PB |的值.解(1)l 的普通方程为x +y -1=0. ∵ρ2+ρ2sin 2θ=2, ∴x 2+y 2+y 2=2,即曲线C 的直角坐标方程为x 22+y 2=1. (2)方法一P ⎝ ⎛⎭⎪⎫12,12在直线l 上,直线l 的参数方程为⎩⎪⎨⎪⎧x =12-22t ′,y =12+22t ′(t ′为参数),代入曲线C 的直角坐标方程得⎝ ⎛⎭⎪⎫12-22t ′2+2⎝ ⎛⎭⎪⎫12+22t ′2-2=0,即32t ′2+22t ′-54=0, 设A ,B 两点对应的参数分别为t ′1,t ′2,则 |PA |·|PB |=|t ′1|·|t ′2|=|t ′1t ′2|=56.方法二由⎩⎨⎧y =1-x ,x 2+2y 2=2,消去y ,得3x 2-4x =0,解得x 1=0,x 2=43.不妨设A (0,1),B ⎝ ⎛⎭⎪⎫43,-13,又P ⎝ ⎛⎭⎪⎫12,12,则|PA |=⎝⎛⎭⎪⎫0-122+⎝ ⎛⎭⎪⎫1-122=22,|PB |=⎝ ⎛⎭⎪⎫43-122+⎝ ⎛⎭⎪⎫-13-122=526,|PA |·|PB |=22×526=56. 题型三 极坐标方程和参数方程的综合应用例3(2021·全国甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点. 解(1)由ρ=22cos θ,得ρ2=22ρcos θ, 即x 2+y 2=22x , 整理得(x -2)2+y 2=2. (2)设P 的坐标为(x ,y ),则AP →=(x -1,y ),因为AP →=2AM →, 所以AM →=⎝ ⎛⎭⎪⎫22x -22,22y ,所以M ⎝ ⎛⎭⎪⎫22x -22+1,22y ,因为M 为C 上的动点,所以⎝ ⎛⎭⎪⎫22x -22+1-22+⎝ ⎛⎭⎪⎫22y 2=2,化简得(x +2-3)2+y 2=4,即P 点的轨迹C 1的方程为(x +2-3)2+y 2=4, 化成参数方程为 ⎩⎨⎧x =3+2cos t -2,y =2sin t(t 为参数),圆心C 1(3-2,0),r 1=2,C (2,0),r =2,因为|3-2-2|<2-2,所以C 与C 1没有公共点. 教师备选(2022·郑州模拟)在直角坐标系xOy 中,以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=22,曲线C 的极坐标方程为ρ2()1+3sin 2θ=4.(1)写出直线l 和曲线C 的直角坐标方程;(2)已知点A (1,0),若直线l 与曲线C 交于P ,Q 两点,PQ 的中点为M ,求|AP |+|AQ ||AM |的值.解(1)因为直线l :ρcos ⎝ ⎛⎭⎪⎫θ+π4=22,故ρcos θ-ρsin θ-1=0,即直线l 的直角坐标方程为x -y -1=0, 因为曲线C :ρ2()1+3sin 2θ=4,则曲线C 的直角坐标方程为x 2+4y 2=4, 即x 24+y 2=1. (2)点A (1,0)在直线l 上,设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+22t ,y =22t (t 为参数),代入曲线C 的直角坐标方程得 5t 2+22t -6=0.设P ,Q 对应的参数分别为t 1,t 2, 则t 1t 2=-65,t 1+t 2=-225,所以M 对应的参数t 0=t 1+t 22=-25, 故|AP |+|AQ ||AM |=|t 1|+|t 2||t 0|=|t 1-t 2||t 0|=⎝⎛⎭⎪⎫-2252-4×⎝ ⎛⎭⎪⎫-6525=8.思维升华 参数方程和极坐标的综合应用涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.跟踪训练3(2022·石嘴山模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,点A 为曲线C 1上的动点,点B 在线段OA 的延长线上且满足|OA |·|OB |=8,点B 的轨迹为C 2. (1)求曲线C 1,C 2的极坐标方程;(2)设点M 的极坐标为⎝ ⎛⎭⎪⎫2,3π2,求△ABM 面积的最小值.解(1)由曲线C 1的参数方程⎩⎨⎧x =1+cos α,y =sin α(α为参数),消去参数,可得普通方程为(x -1)2+y 2=1,即x 2+y 2-2x =0, 又由x =ρcos θ,y =ρsin θ,代入可得曲线C 1的极坐标方程为ρ=2cos θ,设点B 的极坐标为(ρ,θ),点A 点的极坐标为(ρ0,θ0), 则|OB |=ρ,|OA |=ρ0,ρ0=2cos θ0,θ=θ0, 因为|OA |·|OB |=8, 所以ρ·ρ0=8, 即8ρ=2cos θ,即ρcos θ=4,所以曲线C 2的极坐标方程为ρcos θ=4. (2)由题意,可得|OM |=2,则S △ABM =S △OBM -S △OAM =12|OM |·|x B -x A |=12×2×|4-2cos 2θ|=|4-2cos 2θ|,即S △ABM =4-2cos 2θ,当cos 2θ=1时,可得S △ABM 的最小值为2.课时精练1.(2020·全国Ⅲ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2-t -t 2,y =2-3t +t 2(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 解(1)令x =0,则t 2+t -2=0, 解得t =-2或t =1(舍去), 则y =2+6+4=12,即A (0,12). 令y =0,则t 2-3t +2=0, 解得t =2或t =1(舍去),则x =2-2-4=-4, 即B (-4,0).∴|AB |=(0+4)2+(12-0)2=410. (2)由(1)可知k AB =12-00-(-4)=3,则直线AB 的方程为y =3(x +4), 即3x -y +12=0.由x =ρcos θ,y =ρsin θ可得,直线AB 的极坐标方程为3ρcos θ-ρsin θ+12=0.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的参数方程为⎩⎨⎧x =t cos α,y =1+t sin α(t 为参数,α∈[0,π)),曲线C 的极坐标方程为ρ=4sin θ.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于P ,Q 两点,若|PQ |=15,求直线l 的斜率. 解(1)∵ρ=4sin θ, ∴ρ2=4ρsin θ,由ρ2=x 2+y 2,ρsin θ=y , 得x 2+y 2=4y .∴曲线C 的直角坐标方程为x 2+(y -2)2=4. (2)把⎩⎨⎧x =t cos α,y =1+t sin α代入x 2+y 2=4y ,整理得t 2-2t sin α-3=0,设P ,Q 两点对应的参数分别为t 1,t 2,则t 1+t 2=2sin α,t 1t 2=-3,∴|PQ |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+12=15, 得sin α=32,α=π3或α=2π3, ∴直线l 的斜率为± 3.3.(2022·曲靖模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,已知圆C 的圆心的极坐标为C ⎝ ⎛⎭⎪⎫2,π4,半径r = 3.(1)求圆C 的极坐标方程;(2)已知过点P (0,1)且倾斜角为α的直线l 交圆C 于A ,B 两点,且|PA |+|PB |=11,求角α.解(1)圆心C ⎝ ⎛⎭⎪⎫2,π4的直角坐标为C (1,1),圆C 的半径r =3,则圆C 的直角坐标方程为(x -1)2+(y -1)2=3. 将公式⎩⎨⎧x =ρcos θ,y =ρsin θ代入(x -1)2+(y -1)2=3中,整理得圆C 的极坐标方程为ρ2-2ρcos θ-2ρsin θ-1=0. (2)过点P (0,1)且倾斜角为α的直线l 的参数方程为⎩⎨⎧x =t cos α,y =1+t sin α(t 是参数),代入圆C 的直角坐标方程(x -1)2+(y -1)2=3中整理得t 2-2t cos α-2=0.设交点A ,B 对应的参数分别为t 1,t 2,由根与系数的关系得t 1+t 2=2cos α,t 1t 2=-2<0, 则|PA |+|PB |=|t 1|+|t 2|=|t 1-t 2|=11, 平方得(t 1+t 2)2-4t 1t 2=11, 则4cos 2α+8=11,所以cos α=±32(0≤α<π),α=π6或α=5π6. 4.(2022·宝鸡模拟)在平面直角坐标系xOy 中,曲线C 1的方程为⎩⎨⎧x =4cos θ+cos α,y =3sin θ+sin α(θ∈R ,α为参数).(1)求曲线C 1的普通方程并说明曲线C 1的形状;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=0,求曲线C 1的对称中心到曲线C 2的距离的最大值. 解(1)由曲线C 1的方程⎩⎨⎧x =4cos θ+cos α,y =3sin θ+sin α(θ∈R ,α为参数)可知,⎩⎨⎧x -4cos θ=cos α,y -3sin θ=sin α(θ∈R ,α为参数),消去参数α得曲线C 1的普通方程为(x -4cos θ)2+(y -3sin θ)2=1, ∴曲线C 1是以C 1()4cos θ,3sin θ为圆心,1为半径的圆. (2)将曲线C 2的极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ-π4=0,即ρsin θ-ρcos θ=0, 化为直角坐标方程为x -y =0.曲线C 1的对称中心即为圆心C 1(4cos θ,3sin θ), ∴曲线C 1的对称中心到曲线C 2的距离d =|4cos θ-3sin θ|2=|5sin (θ-φ)|2,其中φ满足sin φ=-45,cos φ=-35,∵-1≤sin(θ-φ)≤1,∴曲线C 1的对称中心到曲线C 2的距离的最大值为522.5.(2022·萍乡模拟)在平面直角坐标系中,P 为曲线C 1:⎩⎨⎧x =2+2cos α,y =sin α(α为参数)上的动点,将P 点的横坐标变为原来的一半(纵坐标不变)得Q 点,记Q 点的轨迹为C 2,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 2的极坐标方程;(2)A ,B 是曲线C 2上异于极点的两点,且∠AOB =π6,求|OA |-3|OB |的取值范围.解(1)曲线C 1:⎩⎨⎧x =2+2cos α,y =sin α化为普通方程为(x -2)24+y 2=1,设P 点坐标为(x ,y ),Q 点坐标为(x ′,y ′), 则有(x -2)24+y 2=1,x ′=x 2,y ′=y ,消去x ,y 有(x ′-1)2+y ′2=1,即x ′2+y ′2=2x ′,此式即为C 2的普通方程. ∴曲线C 2的极坐标方程为ρ=2cos θ.(2)设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π6⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫-π2,π3,∴|OA |-3|OB |=ρ1-3ρ2 =2cos θ-23cos ⎝ ⎛⎭⎪⎫θ+π6=3sin θ-cos θ=2sin ⎝⎛⎭⎪⎫θ-π6,∵θ-π6∈⎝⎛⎭⎪⎫-2π3,π6, ∴|OA |-3|OB |的取值范围是[-2,1).。

高考参数方程知识点归纳

高考参数方程知识点归纳

高考参数方程知识点归纳高考数学中的参数方程作为一个重要的知识点,是考查学生对于坐标系、直线方程和解析几何的基本理解和应用能力的一种方式。

参数方程是通过引入参数的方式来描述一条曲线或者曲面的方程,它与直角坐标系有着密切的联系,可以方便地表达出不同形状和特征的图形。

在这篇文章中,我们将对高考中常见的参数方程知识点进行归纳和总结。

1. 参数方程的基本概念和应用参数方程是一种用参数的形式来表示曲线或者曲面上的点的方程,它通常以参数的形式给出,通过改变参数的取值范围,可以得到不同位置的点,从而形成一条曲线或者曲面。

在解析几何中,参数方程可以用来描述直线、圆、椭圆、抛物线、双曲线等各种不同形状的曲线。

2. 参数方程与直线的关系直线可以通过参数方程的形式来表示,这种表示方式可以使得直线的方程更加简洁和直观。

一般而言,一条直线在参数方程中可以表示为x=at+b,y=ct+d,其中a、b、c、d 是常数。

通过给定不同的参数值,我们可以得到直线上的不同点,从而构成整条直线。

3. 参数方程与曲线的关系参数方程在描述曲线时可以给出曲线上每个点的坐标,从而实现对曲线形状的准确描述。

例如,给定一个参数方程 x=f(t),y=g(t),通过给定不同的参数 t 值,我们可以获得曲线上的不同点的坐标。

参数方程不仅可以表达直线,还可以表达各种曲线,如圆、椭圆、抛物线、双曲线等。

4. 参数方程的转换和应用有时候,我们需要将参数方程转换为直角坐标方程,或者将直角坐标方程转换为参数方程。

对于参数方程转换为直角坐标方程,我们可以通过将参数方程中的参数表示用 x、y 表示,然后通过联立方程求解得到直角坐标方程。

而对于直角坐标方程转换为参数方程,我们可以通过引入参数来对直角坐标进行参数化,从而得到参数方程。

5. 参数方程与面积的计算通过参数方程,我们还可以计算曲线所围成的面积。

对于曲线上的两个相邻点 P 和 Q,我们可以用线段 PQ 所围成的面积近似代替曲线围成的面积,并且随着线段 PQ 的长度逐渐缩小,所得到的近似值也会越来越接近实际面积。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高中数学参数方程知识点大全一、参数方程的定义和基本概念参数方程是指用一个或多个参数表示一个点在平面或空间上的坐标,一般形式为x=f(t),y=g(t)或x=f(u,v),y=g(u,v),z=h(u,v)等形式。

1. 参数的取值范围参数的取值范围是指t,u,v等参数的取值范围,有些问题中可能要求特定的参数取值范围,例如0≤t≤1。

2. 参数方程的解析式参数方程的解析式是指将参数方程中的参数用其他变量(如x,y,z)表示出来的式子,通常要具体分析题目所求的内容,才能得到具体的解析式。

二、参数方程表示的图形及其性质参数方程表示的图形是指用参数方程所描述的点的集合,常见的有平面曲线、空间曲线和曲面。

1. 平面曲线的参数方程平面曲线的参数方程一般形式为x=f(t),y=g(t),t∈[a,b],其中a,b为常数。

2. 空间曲线的参数方程空间曲线的参数方程一般形式为x=f(t),y=g(t),z=h(t),t∈[a,b],其中a,b为常数。

3. 曲面的参数方程曲面的参数方程一般形式为x=f(u,v),y=g(u,v),z=h(u,v),u,v∈D,其中D为平面区域。

三、参数方程在计算机绘制图形中的应用在计算机绘制图形中,参数方程可以方便地表示出各种曲线和曲面,并通过计算机程序实现绘制,除此之外还可以进行各种变换和操作。

1. 坐标变换坐标变换是指通过参数方程的变换操作实现图形的变形、旋转、平移等操作。

2. 光照模拟通过参数方程计算表面法向量、光照强度和光照颜色,实现真实的光照模拟。

3. 碰撞检测通过参数方程计算图形的表面或体积信息,实现碰撞检测的功能,以及物体的相交等计算。

四、参数方程的求导1. 参数方程的一阶导数参数方程的一阶导数是指对参数t求导数得到的结果,常用来表示曲线的斜率和切线方向。

2. 参数方程的二阶导数参数方程的二阶导数是指对参数t进行二次求导得到的结果,常用来表示曲线的曲率和弧度的变化率。

五、参数方程的应用示例1. 斜抛运动斜抛运动的轨迹可以用参数方程表示,通过求解初始速度、角度等参数可以得到斜抛运动的轨迹方程,从而计算两点之间的距离和时间等参数。

高考数学(理)总复习讲义: 参数方程

高考数学(理)总复习讲义: 参数方程

第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎝⎛⎭⎫α≠π2,点斜式⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆(x -a )2+(y -b )2=r 2 ⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数) [熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,255 5.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0.(2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ. (1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tanα·x +2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2,则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ, 得ρ2=43ρcos θ+4ρsin θ,则圆C 的直角坐标方程为(x -23)2+(y -2)2=16,所以圆C 的圆心C (23,2),半径为4,且经过原点O ,数形结合得,若OA ⊥OB ,则直线l 经过圆心C ,即23+3×2=3+3m ,解得m =3, 即直线l 的普通方程为x +3y -43=0. (2)由P (3,1)是直线l 上的点,得m =1,此时直线l 的参数方程为⎩⎨⎧x =3-32t ,y =1+12t (t 为参数),代入到圆C 的方程(x -23)2+(y -2)2=16中,得t 2+2t -12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1t 2=-12,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4+48=213, 又|PC |=2,|AB |=λ|PC |,所以λ=13.。

文科高考参数方程知识点

文科高考参数方程知识点

文科高考参数方程知识点一、引言在文科高考中,参数方程是数学中的一个重要知识点。

它不仅在数学领域有广泛的应用,还在物理、经济等领域中发挥着重要作用。

本文将从概念、表示形式、性质和应用等方面,对文科高考中的参数方程知识点进行探讨。

二、概念参数方程是指用含参数的方程组来描述曲线或曲面的方程。

一般形式为x=f(t),y=g(t),其中x、y为变量,t为参数。

参数方程的出现减少了几何图形的限制,并可以描述复杂的几何问题。

三、表示形式参数方程可以通过函数关系、极坐标等方式来表示。

以函数关系为例,若已知函数y=f(x)的图形为曲线C,可以通过参数方程x=t,y=f(t)来表示C。

这种表示形式可以将曲线表示成一个点的运动轨迹,更加灵活。

四、性质1. 连续性:参数方程在参数变化的过程中,曲线上的点也在不断变化。

因此,参数方程可以描述曲线上的连续运动。

2. 奇点与极值:参数方程中的奇点是指参数取某些值时,曲线上出现的特殊点。

而极值则是指曲线上某一段的局部最高点或最低点。

参数方程可以通过求导等方法来确定奇点和极值。

五、应用参数方程在文科高考中有着广泛的应用,以下为几个常见的应用场景:1. 几何图形:参数方程可以描述出各种几何图形,如曲线、曲面等。

通过掌握参数方程的表示形式和性质,可以准确描述和分析几何图形的特点。

2. 物理问题:在物理学中,往往需要描述物体的运动轨迹。

通过使用参数方程,可以更准确地描述出物体的运动情况,如抛体运动、弹性碰撞等。

3. 经济学模型:参数方程在经济学中的应用也非常广泛。

经济学模型中往往包含多个变量,通过使用参数方程,可以更好地描述经济活动的复杂性和变化规律。

六、总结参数方程是文科高考中的重要知识点,它不仅扩展了几何图形的表示形式,还在物理学和经济学等领域中有广泛的应用。

通过掌握参数方程的概念、表示形式、性质和应用,可以更好地理解和应用数学知识,提高在文科高考中的成绩。

希望本文对读者在参数方程知识点的学习中有所帮助。

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线(为参数)的普通方程为___________.【答案】【解析】联立消可得,故填.【考点】参数方程2.直线与直线为参数)的交点到原点O的距离是()A.1B.C.2D.2【答案】C【解析】将直线化普通方程为.解得两直线交点为,此交点到原点的距离为.故C正确.【考点】1参数方程和普通方程间的互化;2两点间的距离公式.3.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

【答案】【解析】由参数方程知: 曲线C1与C2的普通方程分别为,,所以解方程组可得交点坐标为.【考点】本题考查直线与圆的参数方程与普通方程的互化,以及它们交点坐标的求解.4.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程5.如图,以过原点的直线的倾斜角为参数,则圆的参数方程为 .【答案】(为参数)【解析】x2+y2-x=0圆的半径为,圆心为C(,0).连接CP,则∠PCx=2所以P点的坐标为:(为参数)6.在极坐标系中,圆上的点到直线的距离的最小值为________.【答案】1【解析】圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.【考点】直角坐标与极坐标、距离公式.7.已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.【答案】(1);(2).【解析】本题主要考查参数方程与普通方程的互化、中点坐标公式等基础知识,考查学生的转化能力、分析能力、计算能力.第一问,将曲线C的坐标直接代入中,得到曲线的参数方程,再利用参数方程与普通方程的互化公式,将其转化为普通方程;第二问,设出P、A点坐标,利用中点坐标公式,得出,由于点A在曲线上,所以将得到的代入到曲线中,得到的关系,即为中点的轨迹方程.试题解析:(1)将代入,得的参数方程为∴曲线的普通方程为. 5分(2)设,,又,且中点为所以有:又点在曲线上,∴代入的普通方程得∴动点的轨迹方程为. 10分【考点】参数方程与普通方程的互化、中点坐标公式.8.若直线的参数方程为,(t为参数),求直线的斜率.【答案】-【解析】k=.∴直线的斜率为-.9.将参数方程化为普通方程,并说明它表示的图形.【答案】y=1-2x2,抛物线的一部分.【解析】由可得即+x2=1,化简得y=1-2x2.又-1≤x2=sin2θ≤1,则-1≤x≤1,则普通方程为y=1-2x2,在时此函数图象为抛物线的一部分.10.已知点P(x,y)是圆x2+y2=2y上的动点.(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.【答案】(1)-+1≤2x+y≤+1.(2)a≥-1【解析】(1)设圆的参数方程为2x+y=2cosθ+sinθ+1=sin(θ+φ)+1,∴-+1≤2x+y≤+1.(2)x+y+a=cosθ+sinθ+1+a≥0,∴a≥-(cosθ+sinθ)-1=-sin-1,∴a≥-1.11.在椭圆=1上找一点,使这一点到直线x-2y-12=0的距离最小.【答案】(2,-3)【解析】设椭圆的参数方程为,d=,当cos=1时,dmin=,此时所求点为(2,-3)12.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.13.已知点P是曲线为参数,上一点,O为原点.若直线OP的倾斜角为,则点的直角坐标为.【答案】【解析】不妨设点(),则由两点斜率的计算公式得,由题知(),则,故填【考点】参数方程倾斜角14.在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.(1)求动点P的轨迹方程;(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)x2+2y2=2(2)存在点P为(0,±1)【解析】(1)设点P的坐标为(x,y).由题意知=|2-x|,化简,得x2+2y2=2,所以动点P的轨迹方程为x2+2y2=2.(2)设直线FP的方程为x=ty+1,点P(x1,y1),Q(x2,y2),因为△AQN∽△APM,所以有PM=3QN,由已知得PF=3QF,所以有y1=-3y2,①由得(t2+2)y2+2ty-1=0,Δ=4t2+4(t2+2)=8>0y 1+y2=-②,y1·y2=-③,由①②③得t=-1,y1=1,y2=-或t=1,y1=-1,y2=,所以存在点P为(0,±1).15.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.16.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.17.已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.【答案】(1);(2)【解析】(1)写出过点P(2,0)的直线方程的参数方程,联立抛物线的方程得到一个含参数t 二次方程.通过韦达定理即定点到中点的距离可得故填.(2)弦长公式|AB|=|t2-t1|再根据韦达定理可得故填.本题主要知识点是定点到弦所在线段中点的距离.弦长公式.这两个知识点都是参数方程中的长测知识点.特别是到中点的距离的计算要理解清楚.试题解析:(1)∵直线l过点P(2,0),斜率为设直线的倾斜角为α,tanα=sinα=cosα=∴直线l的参数方程为 (t为参数)(*) 1分∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y2=2x中,整理得8t2-15t-50=0,且Δ=152+4×8×50>0,设这个一元二次方程的两个根为t1、t2,由根与系数的关系,得t1+t2=t1t2= 3分由M为线段AB的中点,根据t的几何意义,得 4分(2)|AB|=|t2-t1|= 7分【考点】1.直线的参数方程的表示.2.定点到中的距离公式.3.弦长公式.18.在直角坐标系xOy中,过椭圆(为参数)的右焦点,斜率为的直线方程为【答案】【解析】由,即,所以右焦点坐标为(4,0).又斜率为,故易得所求直线方程为.即.【考点】参数方程、直线的点斜式方程19.已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为.(Ⅰ)求曲线直角坐标方程;(Ⅱ)若曲线、交于A、B两点,定点,求的值.【答案】(Ⅰ)曲线直角坐标方程为;(Ⅱ).【解析】(Ⅰ)由已知,两边都乘以,得,结合即可求得曲线的直角坐标方程(普通方程);(Ⅱ)由已知条件,把的参数方程为参数)代入,得由韦达定理可得:,进一步可计算出的值.试题解析:(Ⅰ)由已知,得,.3分(Ⅱ)把的参数方程代入,得.5分.7分【考点】直线的参数方程与极坐标方程.20.(坐标系与参数方程选做题)在极坐标系中,圆的圆心到直线的距离是 .【答案】.【解析】化圆的方程为直角坐标方程为,化为标准方程为,圆心坐标为,直线的直角坐标方程为,它的一般方程为,故圆的圆心到直线的距离是.【考点】1.极坐标方程与直角坐标方程之间的转化;2.点到直线的距离21.(坐标系与参数方程选做题)圆的极坐标方程为,则圆的圆心的极坐标是.【答案】【解析】圆的圆心为,半径为的圆的极坐标方程为.因为,所以此圆的圆心坐标为.【考点】圆的极坐标方程22.在平面直角坐标系中,过椭圆的右焦点,且与直线(为参数)平行的直线截椭圆所得弦长为.【答案】【解析】椭圆的普通方程为,则右焦点为(1,0);直线的普通方程为,过(1,0)与直线平行的直线为,由得,所以所求的弦长为.【考点】1.参数方程与普通方程的互化;2.两点间的距离公式和弦长公式.23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.25.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为()(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程【答案】(Ⅰ)、;(Ⅱ)或【解析】(Ⅰ) 利用参数方程化普通方程、极坐标方程化直角坐标方程来求;(Ⅱ)利用点到直线的距离来求试题解析:(Ⅰ)曲线的普通方程为:; 2分由得,∴曲线的直角坐标方程为: 4分(或:曲线的直角坐标方程为: )(Ⅱ)曲线:与轴负半轴的交点坐标为,又直线的参数方程为:,∴,得,即直线的参数方程为:得直线的普通方程为:, 6分设与直线平行且与曲线相切的直线方程为: 7分∵曲线是圆心为,半径为的圆,得,解得或 9分故所求切线方程为:或 10分【考点】参数方程化普通方程、极坐标方程转化为直角坐标方程,考查学生分析问题、解决问题的能力26.已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交?若相交,请求出公共弦长,若不相交,请说明理由.【答案】(1),;(2)相交,两圆的相交弦长为.【解析】本题考查坐标系与参数方程、极坐标与直角坐标方程的互化,考查学生的转化能力和计算能力.第一问,利用互化公式将参数方程化为普通方程,将极坐标方程化为直角坐标方程;第二问,通过数形结合,利用几何性质求相交弦长.试题解析:(1)由(为参数),得,由,得,即,整理得,. 5分(2)由于圆表示圆心为原点,半径为2的圆,圆表示圆心为,半径为2的圆,又圆的圆心在圆上,由几何性质易知,两圆的相交弦长为. 10分【考点】1.参数方程与普通方程的互化;2.极坐标方程与直角坐标方程的互化;3.相交弦问题.27.在直角坐标系中,已知曲线的参数方程是(是参数),若以为极点,轴的正半轴为极轴,则曲线的极坐标方程可写为________________.【答案】或【解析】曲线的标准方程为,令,得到极坐标方程为,也可转化为.【考点】圆的参数方程和极坐标方程.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.30.(坐标系与参数方程)在平面直角坐标系xOy中,直线的参数方程是(t为参数)。

高三关于参数方程的知识点

高三关于参数方程的知识点

高三关于参数方程的知识点参数方程是解决平面几何问题中一种常见的数学工具,它通过引入参数变量来描述曲线的运动轨迹或者点的位置。

在高三数学学习中,参数方程是一个重要的知识点,下面将详细介绍参数方程相关的内容。

一、参数方程的基本概念参数方程是指使用参数变量表示出曲线上每个点的坐标,常见的参数变量有t、θ等。

一条曲线的参数方程一般为:x = f(t),y =g(t),其中f(t)和g(t)是关于参数t的函数。

通过给定不同的参数值,就可以确定曲线上的各个点的坐标。

二、平面曲线的参数方程表示1. 直线的参数方程直线的参数方程常常选择一个点作为起点,然后给出直线的方向向量,并以参数t确定直线上其他点的位置。

设直线过点P(x₁,y₁),方向向量为v(a, b),则直线的参数方程可以表示为:x = x₁+ at, y = y₁ + bt,其中t为参数。

2. 圆的参数方程对于圆,其参数方程可以通过将x和y表示为两个函数的关系得到。

设圆的圆心为(h, k),半径为r,则圆的参数方程可以表示为:x = h + rcos(t), y = k + rsin(t),其中t为参数,t的取值范围通常为[0, 2π)。

3. 椭圆的参数方程椭圆的参数方程与圆类似,只是在计算x和y的时候引入了椭圆的长轴和短轴。

设椭圆的中心为(h, k),半长轴长为a,半短轴长为b,则椭圆的参数方程可以表示为:x = h + acos(t),y = k + bsin(t),其中t为参数,t的取值范围通常为[0, 2π)。

4. 抛物线的参数方程抛物线的参数方程可以通过将x表示为关于y的函数得到。

常见的抛物线方程为y = ax² + bx + c,通过解这个方程得到x与y之间的关系,可以得到抛物线的参数方程。

三、参数方程在几何问题中的应用参数方程在解决几何问题中具有广泛的应用,例如曲线的切线和曲率、曲线的长度、曲线的弧长等。

1. 曲线的切线和曲率通过参数方程,可以求出曲线上任一点处的切线方程和曲率。

高考数学之参数方程

高考数学之参数方程

x=1+2t,
5、在直角坐标系 xOy 中,曲线 C1 的参数方程为
(t 是参数),以坐标原点为极
y=-2+t
点,x
轴正半轴为极轴建立极坐标系,曲线
C2
的极坐标方程为ρ2= 4 . 1+3sin2θ
(1)求曲线 C1 的普通方程和曲线 C2 的直角坐标方程;
x′=2x,
(2)设曲线 C2 经过伸缩变换
(2)求 C 上的点到 l 距离的最小值.
12、在极坐标系中,O 为极点,点 M(ρ0,θ0)(ρ0>0)在曲线 C:ρ=4sin θ上,直线 l 过点 A(4,0) 且与 OM 垂直,垂足为 P. (1)当θ0=π3时,求ρ0 及 l 的极坐标方程; (2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.
π(ρ∈R).以极点 O 为原点,极轴为 x 轴的正半轴建立平面直角坐标系. 3
(1)求直线 l1,l2 的直角坐标方程以及曲线 C 的参数方程; (2)已知直线 l1 与曲线 C 交于 O,A 两点,直线 l2 与曲线 C 交于 O,B 两点,求△AOB 的面 积.
x= 5cos φ+1
8、在直角坐标系 xOy 中,曲线 C1 的参数方程为
x= 3cos θ
的普通方程为(x-1)2+y2=1,曲线 C2 的参数方程为
(θ为参数).
y= 2sin θ
(1)求曲线 C1 和 C2 的极坐标方程;
(2)设射线θ=π(ρ>0)分别与曲线 C1 和 C2 相交于 A,B 两点,求|AB|的值. 6
3
x=2cos α,
10、在直角坐标系 xOy 中,曲线 C 的参数方程为
得到曲线 C3,M(x,y)是曲线 C3 上任意一点,求点

高考参数方程常见题型及解题技巧

高考参数方程常见题型及解题技巧

高考参数方程常见题型及解题技巧
1.参数方程概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y 都是某个变数t的函数:[1]
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。

相对而言,直接给出点坐标间关系的方程即称为普通方程。

2.直线和圆锥曲线的参数方程和普通方程
1.当求两动点取值范围
方法:先在任意一个曲线上取一个定点,再有定点到动点距离结合,加减半径长度可得,详情看下面例题第二问。

2.求两曲线相交两点的中点的轨迹参数方程
方法:先求直线的标准参数方程,并带入圆锥曲线中,得出一等式,根据韦达定理,得tp=1/2(t1+t2),最后结合定点求出直线标准参数方程,详情看下面例题第二问。

3.直线与抛物线上两点,求最小值
方法1:设与直线Ax+By+C1=0平行的直线方程Ax+ByC2=0,再联立抛物线与直线直角坐标方程,由b2-4ac=0可得C2,最后线线距离可得
方法2:由抛物线参数方程x,y为抛物线上的点,最后可由点线距离式可得
19年一卷参数方程。

高考参数方程知识点讲解

高考参数方程知识点讲解

高考参数方程知识点讲解高考数学中,参数方程是一个比较重要的知识点。

参数方程是一种以参数形式表示的函数,通过引入一个或多个参数,可以更灵活地描述图形在坐标平面上的运动轨迹。

接下来,我们将对参数方程的相关知识点进行讲解。

1. 参数方程的概念及表示方式在解析几何中,参数方程是用参数表示一个集合点的位置所满足的运算关系。

一般来说,参数方程通过引入独立变量(或称为参数),从而将平面上的点与参数之间建立起一种对应关系。

参数方程的标准形式可以写作:x = f(t),y = g(t),其中x和y是平面上的坐标,t是参数,f(t)和g(t)是定义在参数域上的函数。

2. 参数方程的图形表示参数方程可以用于描述一条曲线在平面上的运动轨迹。

以二维平面为例,我们可以通过改变参数t的取值范围,使得曲线上的点在平面上运动。

通过适当地选择参数的取值范围,可以得到曲线的各个特点,例如曲线的形状、方向等。

3. 参数方程与直角坐标方程的转换在解题时,有时我们需要将参数方程转换为直角坐标方程,或者将直角坐标方程表示为参数方程。

这种转换可以帮助我们更好地理解和分析问题。

将直角坐标方程转换为参数方程时,我们可以通过引入适当的参数,将曲线上的点与参数建立起一一对应的关系,从而得到参数方程的表示式。

相反地,将参数方程转换为直角坐标方程时,我们需要通过消元法或代数运算将参数方程表示为关于x和y的等式。

这样,在直角坐标系下,我们可以得到曲线的方程。

4. 参数方程的应用参数方程在物理学、力学等领域有着广泛的应用。

通过引入参数,我们可以更好地描述和分析运动过程中物体的位置、速度、加速度等物理量。

在几何学中,参数方程可以用于描述曲线的性质和形状。

例如,通过引入角度参数,我们可以得到单位圆的参数方程,进而分析圆的性质。

参数方程也可以用于描述曲线的运动轨迹、曲率等特征。

此外,参数方程还可以用于解决几何题。

在解题过程中,我们可以通过构造合适的参数方程,将问题转化为方程组求解或参数边界求解等数学问题。

【高考数学】参数方程

【高考数学】参数方程

y= 5+ 22t
(t 为参
数).在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,
以 x 轴正半轴为极轴)中,圆 C 的方程为 ρ=2 5sin θ. (1)求圆 C 的直角坐标方程;
(2)设圆 C 与直线 l 交于点 A,B,若点 P 的坐标为(3, 5),求|PA|+|PB|.
(2)若把曲线 C1 上各点的横坐标压缩为原来的12,纵坐标压缩为原来的 23, 得到曲线 C2,设点 P 是曲线 C2 上的一个动点,求它到直线 l 距离的最小值.
[解]
(1)l 的普通方程为 y=
3(x-1),C1
的普通方程为
x2+y2=1,联立,得y= 3x-参数方程和参数的几何意义; 2.会进行参数方程和普通方程的互化; 3.能用直线、圆、椭圆参数方程解决一些基本问题.
高考怎么考
考查参数方程与普通方程的互化、直线参数方 程中参数的几何意义,直线和圆锥曲线参数方程的 应用.
知识梳理
自主学习
1.参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变数 t 的函数:
x 2cosθ,
x 1 t cos α,

y

4
sin
θ

θ
为参数),直线
l
的参数方程为

y

2

t
sin
α

t
为参
数).
(1)求 C 和 l 的直普角通坐方标程方;程;
(2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2),求 l 的斜率.
精讲互动
例 3、(2017·全国卷Ⅰ)在直角坐标系 xOy 中,曲线 C 的参数方程为

高考数学专题复习:参数方程知识与习题

高考数学专题复习:参数方程知识与习题

专题突破:参数方程一.常见直曲线的参数方程1、直线参数方程的标准式是2、圆心在点(a,b),半径为r 的圆的参数方程是3、4、双曲线12222=-b y a x 的参数方程是5、抛物线y 2=2px 的参数方程是备注:参数t 的几何意义:Tips:判断参数方程表示的是什么曲线题中,关键是“消参”。

常用方法:平方法——三角函数、tt 1+型。

注意观察是否规定参数的范围练习1:将参数方程化为普通方程(1) (2)练习2:已知椭圆16410022=+y x 有一内接矩形ABCD ,求矩形ABCD 的最大面积。

练习3:如图,已知点P 是圆x 2+y 2=16上的一个懂点,点A 坐标为(12,0)。

当点P 在圆上运动时,线段PA 中点M 的轨迹是什么?一、直线参数方程中的参数的几何意义1、已知直线l 经过点(1,1)P ,倾斜角6πα=,①写出直线l 的参数方程; ②设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.2、已知直线).3cos(2.32),2,1(πθρπ+=-圆方程的直线倾斜角为是过点P l(I )求直线l 的参数方程;(II )设直线l 与圆相交于M 、N 两点,求|PM|·|PN|的值。

二、巧用参数方程解最值题 1、在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。

2、已知点(,)P x y 是圆222x y y +=上的动点,(1)求2x y +的取值范围; (2)若0x y a ++≥恒成立,求实数a 的取值范围。

3、在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ的圆心为(,)P x y , 求2x y 的取值范围参考答案:专题:参数方程练习1:(1) y=1-x 2(x ∈[-1,1]) (2) 12222=-b y a x练习2:设椭圆的参数方程为 θθsin 8cos 10==y x ,设点A 坐标为(10cos θ,8sin θ),θ∈[0,2π] 则由椭圆的对称性知:B(10cos θ, - 8sin θ),D(-10cos θ,8sin θ)|AB|=16sin θ , |AD|= 20cos θS 矩形ABCD=|AB|·|AD|=320 sin θ cos θ=160sin2θ ∵θ∈[0,2π], sin 2θ∈[-1,1]∴当2θ=π/2时sin2θ取得最大值1,此时矩形面积最大值为S max =160练习3设圆的参数方程为θθsin 4cos 4==y x ,设点P 坐标为(4cos θ,4sin θ),θ∈[0,2π] 则PA 中点M(2cos θ+6,2sin θ),即θθsin 26cos 2=+=y x (移项、平方、相加) 得(x-6)2+y 2=4∴M 轨迹为圆巩固练习一、1解 (1)直线的参数方程为,312112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩ 运用 快速写出(2)则点P 到,A B 两点的距离之积为22解:(Ⅰ)l 的参数方程为,11,2()32.2x t t y t ⎧=--⎪⎪⎨⎪=+⎪⎩为参数 (Ⅱ)12||||||623PM PN t t ==+)3/cos(π+θ∈[-1,1]当cos()13πθ+=时,min 5d =,此时所求点为(2,3)-。

高考参数方程知识点总结

高考参数方程知识点总结

高考参数方程知识点总结高中数学中,参数方程是重要的知识点之一。

它可以帮助我们更好地理解和描述各种曲线,以及解决与曲线相关的问题。

在高考中,参数方程也是经常会涉及到的考点之一。

本文将对高考中常考的参数方程知识点进行总结。

一、参数方程的定义参数方程是一种用参数表示自变量和因变量关系的方程。

通常用t来表示参数,在平面直角坐标系中,参数方程可以表示为x=f(t),y=g(t),其中x和y分别是平面上某点的横坐标和纵坐标,f(t)和g(t)是关于t的函数。

二、参数方程的图像通过参数方程可以绘制出曲线的图像。

对于一条曲线上的任意一点,它的坐标可以由参数方程来表示。

通过改变参数t的取值范围,我们可以绘制出完整的曲线图像。

例如,在参数方程x=2cost,y=sint中,我们可以将t的取值范围设定为0到2π。

当t=0时,点的坐标为(2cos0, sin0)=(2, 0),当t=π/2时,点的坐标为(2cos(π/2), sin(π/2))=(0, 1),以此类推。

连接这些点,我们就可以得到一条完整的曲线。

三、常见的参数方程曲线1. 抛物线抛物线是一种常见的参数方程曲线。

通常用参数方程x=t,y=t^2来表示。

通过改变t的取值范围,我们可以绘制出抛物线的多个点,从而得到抛物线的图像。

2. 圆圆也可以用参数方程来表示。

常用的参数方程为x=rcost,y=rsint。

其中r表示圆的半径,t的取值范围可以是0到2π。

通过改变r的值,我们可以绘制出不同大小的圆。

3. 椭圆椭圆是另一种常见的参数方程曲线。

通常用参数方程x=acos(t),y=bsin(t)来表示。

其中a和b分别表示椭圆的长轴和短轴的长度,t的取值范围可以是0到2π。

通过改变a和b的值,我们可以绘制出不同形状的椭圆。

四、参数方程的应用参数方程不仅能够描述各种曲线,还可以解决与曲线相关的问题。

1. 曲线的切线和法线通过参数方程,我们可以求出曲线上任意一点的切线和法线方程。

高考数学中的参数方程及其应用

高考数学中的参数方程及其应用

高考数学中的参数方程及其应用一、参数方程简介在数学中,参数方程指的是一种用参数来描述几何图形的方式。

与常规的直角坐标系不同,参数方程使用的是另一种坐标系,叫做参数坐标系。

在这种坐标系中,每一个点用两个参数来表示,分别是横坐标参数和纵坐标参数。

举个简单的例子,如果要描述一个圆形,我们可以使用直角坐标系中的圆方程x²+y²=r²,但是在参数坐标系中,我们可以使用以下的参数方程:x = r * cosθy = r * sinθ其中θ是角度参数,r是半径。

二、参数方程在高考数学中的应用在高考数学中,参数方程通常被用于描述曲线的形状。

这种方式非常直观,因为参数方程可以让我们更加清晰地了解曲线的性质。

下面是一些常见的应用场景。

1. 极坐标系与参数方程极坐标系是一种基于极角和极径的坐标系,与参数坐标系非常相似。

因此,参数方程在极坐标系中的应用非常广泛。

比如在物理领域中,有很多通过观察物体运动轨迹来推导出物理定律的案例,这个时候往往需要将轨迹用参数方程进行描述。

2. 参数方程与计算当我们需要计算曲线的长度,面积等参数时,参数方程同样能够提供便利。

在计算方面,通常需要使用微积分的知识,利用已知的数据推导出曲线的性质。

比如,我们可以使用参数方程来计算圆的弧长、圆的面积等等。

3. 参数方程与计算机随着计算机技术的日益发展,参数方程在计算机绘图中的应用也越来越广泛。

因为参数方程具有天然的“可视化”特征,我们可以通过直接输入参数来获取图像。

这种方式非常方便,尤其在建模、绘制等领域中非常实用。

三、基本参数方程除了上面提到的圆形参数方程之外,还有许多其他的基本参数方程。

这些基本参数方程可以用来描述各种不同的曲线类型,比如椭圆、双曲线、抛物线等等。

下面是一些常见的例子:1. 椭圆(a、b分别是长半轴和短半轴)x = a*cosθy = b*sinθ2. 双曲线(a、b分别是双曲线的常量)x = a*coshθy = b*sinhθ3. 抛物线(a是常数)x = a*t²y = 2*a*t四、总结参数方程的引入给我们提供了一种新的描述曲线的方式,不仅可以更加具体地了解曲线的性质,而且还可以方便计算和计算机绘图。

高考参数方程归纳总结

高考参数方程归纳总结

高考参数方程归纳总结一、参数方程的基本概念参数方程是指使用参数表示自变量和因变量之间的关系。

在数学中,参数方程常用于描述曲线、曲面或其他几何体的运动和变化规律。

在高考中,参数方程也是一道经典的考题类型,要求考生对参数方程的性质和特点进行分析和应用。

二、常见的参数方程类型1. 二维平面曲线的参数方程二维平面曲线的参数方程常用于描述平面上的曲线轨迹。

常见的参数方程类型有:- 抛物线的参数方程:x = t, y = at²- 圆的参数方程:x = rcos(t), y = rsin(t)- 椭圆的参数方程:x = acos(t), y = bsin(t)- 双曲线的参数方程:x = asec(t), y = btan(t)2. 三维空间曲线的参数方程三维空间曲线的参数方程常用于描述空间中的曲线轨迹。

常见的参数方程类型有:- 直线的参数方程:x = x₀ + at, y = y₀ + bt, z = z₀ + ct- 空间曲线的参数方程:x = f(t), y = g(t), z = h(t)3. 二维平面曲面的参数方程二维平面曲面的参数方程常用于描述平面上的曲面形状。

常见的参数方程类型有:- 圆柱面的参数方程:x = acos(t), y = asin(t), z = bt- 双曲抛物面的参数方程:x = at, y = bt², z = ct4. 三维空间曲面的参数方程三维空间曲面的参数方程常用于描述空间中的曲面形状。

常见的参数方程类型有:- 球面的参数方程:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ- 椭球面的参数方程:x = a sinφcosθ, y = b sinφsinθ, z = c cosφ- 椭圆抛物面的参数方程:x = at², y = bt, z = ct三、参数方程的性质和应用1. 曲线的方向性在参数方程中,通过参数的增加方向可以确定曲线的运动方向。

2023新高考一卷数学22题参数方程

2023新高考一卷数学22题参数方程

2023新高考一卷数学22题参数方程2023年新高考一卷数学第22题参数方程已知曲线C的参数方程为$\{\begin{matrix} x = 2 + \frac{\sqrt{2}}{2}t \\ y = \frac{\sqrt{2}}{2}t \end{matrix}(t$为参数$)$,以坐标原点为极点,$x$轴的正半轴为极轴建立极坐标系,直线$l$的极坐标方程为$\theta = \frac{\pi}{4}($其中参数$\rho \in \mathbf{R})$.(1)写出曲线C的普通方程和直线$l$的直角坐标方程;(2)设直线$l$与曲线C的交点为$A,B$,求$\frac{1}{OA} +\frac{1}{OB}$的值.【分析】(1)消去参数$t$,能求出曲线C的普通方程;利用互化公式,能求出直线$l$的直角坐标方程.(2)把直线$l$的极坐标方程化为直角坐标方程,与曲线C的普通方程联立,由此能求出$\frac{1}{OA} + \frac{1}{OB}$的值.【解答】(1)$\because$曲线C的参数方程为$\{\begin{matrix} x = 2 +\frac{\sqrt{2}}{2}t \\ y = \frac{\sqrt{2}}{2}t \end{matrix}(t$为参数),$\therefore$消去参数$t$,得曲线C的普通方程为:$x - 2 =y\sin\theta ,\because\theta = \frac{\pi}{4}$,$\therefore x - 2 = y$,即曲线C的普通方程为:$x - 2 = y$.$\because$以坐标原点为极点,$x$轴的正半轴为极轴建立极坐标系,$\therefore\rho\cos\theta = x,\rho\sin\theta = y$,$\because\theta = \frac{\pi}{4}$,$\therefore x = \rho\cos\frac{\pi}{4},y = \rho\sin\frac{\pi}{4}$,$\therefore$直线$l$的直角坐标方程为:$x - y = 0$.(2)由$(1)$知曲线C的普通方程为:$x - 2 = y$,直线$l$的直角坐标方程为:$x - y = 0$.联立$\{\begin{matrix} x - 2 = y \\x - y = 0 \\\end{matrix}$,解得$\{\begin{matrix} x_{1} = 1 + \sqrt{3} \\y_{1} = 1 + \sqrt{3} \\\end{matrix}$或$\{\begin{matrix} x_{2} = 1 - \sqrt{3} \\y_{2} = 1 - \sqrt{3} \\\end{matrix}$,$\therefore A(1 + \sqrt{3},1 + \sqrt{3}),B(1 -\sqrt{3},1 - \sqrt{3})$,$\thereforeOA = OB =$$\sqrt{(1 + \sqrt{3})^{2} + (1 + \sqrt{3})^{2}}$$= 2\sqrt{3} + 2$$\therefore\frac{1}{OA} +\frac{1}{OB} =$$\frac{1}{2\sqrt{3} + 2} + \frac{1}{2\sqrt{3} + 2}$$=\frac{\sqrt{3}}{3}$.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题——参数方程一、基本知识要求1.参数方程和普通方程的互化(1通过消去参数,从参数方程得到普通方程.(2)寻找变量x ,y 中的一个与参数t 的关系,令x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.直线、圆和圆锥曲线的参数方程形式 直线参数方程:{x =x 0+t cos αy =y 0+t sin α(t 为参数)圆的参数方程:{x =x 0+acos θy =y 0+asin θ (θ为参数且0≤θ<2π)椭圆的参数方程:{x =m cos ty =n sin t (t 为参数且0≤t <2π) 抛物线的参数方程:{x =2pt 2y =2pt(t 为参数)二、常考题型要求常考题型:共4种大题型(包含参数方程与普通方程转化问题、求距离问题、直线参数方程t 的几何意义、与动点有关的取值范围和最值问题)1、参数方程与普通方程互化问题:(1)参数方程中可通过代入法、加减法、平方法等直接消去参数时,则直接消参;(2)参数方程中参数为角时,则通过构造sin 2θ+cos 2θ=1消去参数。

例1、【2020年高考全国II 卷理数】[选修4—4:坐标系与参数方程]已知曲线C 1,C 2的参数方程分别为C 1:(θ为参数),C 2:(t 为参数).(1)将C1,C2的参数方程化为普通方程;【解析】(1)的普通方程为.由的参数方程得,,所以.故的普通方程为.例2、【2020·广东省高三其他(理)】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过点的直线的参数方程为(t为参数),直线与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;【答案】(Ⅰ),【解析】(Ⅰ)根据可将曲线C的极坐标方程化为直角坐标,两式相减消去参数得直线的普通方程为.得,由韦达定理有.解之得:或(舍去)试题解析:(Ⅰ)由得,∴曲线的直角坐标方程为.直线的普通方程为.例3、【2020·山西省太原五中高三其他(理)】在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程; 【答案】(1)的极坐标方程为,普通方程为;【解析】(1),,即曲线的普通方程为,依题意得曲线的普通方程为, 令,得曲线的极坐标方程为;2、求距离问题:通过设圆的参数方程,转化为求三角函数的值域问题。

通常会用到点到直线距离公式。

注意点的形式。

例4、【2020·山西省太原五中高三月考(理)】在直角坐标系xOy 中,直线l 的参数方程为9,x y t⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为221613sin ρθ=+. (1)求C 和l 的直角坐标方程;(2)已知P 为曲线C 上的一个动点,求线段OP 的中点M 到直线l 的最大距离.【答案】(1)221164x y +=.90x -=.(2)最大距离为92. 【解析】(1)由221613sin ρθ=+,得2223sin 16ρρθ+=,则曲线C 的直角坐标方程为22416+=x y ,即221164x y +=.直线l的直角坐标方程为90x --=.(2)可知曲线C 的参数方程为4cos ,2sin x y αα=⎧⎨=⎩(α为参数),设()4cos ,2sin P αα,[)0,2απ∈,则()2cos ,sin M αα到直线:90l x -=的距离为92d +==≤,所以线段OP 的中点M 到直线l例5、【2020·山西省山西大附中高三月考】在直角坐标系xOy 中,直线l 的参数方程为42x ty t=⎧⎨=-⎩(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2221cos ρθ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点P 在直线l 上,点Q 在曲线C 上,求PQ 的最小值.【答案】(1)42y x =-,2212y x +=;(2. 【解析】(1)直线l 的普通方程为42y x =-曲线C 的极坐标方程化为直角坐标方程为2212y x +=(2)曲线的参数方程为cos x y αα=⎧⎪⎨=⎪⎩设点Q的坐标为()cos ββPQ =≥=故PQ 的最小值为5. 例6、【2020·辽宁省高三三模】在直角坐标系xOy 中,曲线C 的参数方程为cos sin 1x y ϕϕ=⎧⎨=-⎩(ϕ为参数),以原点O 为极点,以x 轴正半轴为极轴建极坐标系. (1)求C 的极坐标方程;(2)直线1l ,2l 的极坐标方程分别为()6R πθρ=∈,()3R πθρ=∈,直线1l 与曲线C的交点为O 、M ,直线2l 与曲线C 的交点为O 、N ,求线段MN 的长度. 【答案】(1)2sin ρθ=-;(2)1.【解析】(1)由曲线C 的参数方程为cos sin 1x y ϕϕ=⎧⎨=-⎩得曲线C 的直角坐标方程为:()2211x y ++=,所以极坐标方程为2222cos sin 2sin 0ρθρθρθ++=即2sin ρθ=-.(2)将6πθ=代入2sin ρθ=-中有1M ρ=-,即1OM =,将3πθ=代入2sin ρθ=-中有N ρ=ON =,366MON πππ∠=-=,余弦定理得2222cos16MN OM ON OM ON π=+-⋅=,1MN ∴=.例7、【2019·全国1·理T22文T22】在直角坐标系xOy 中,曲线C 的参数方程为{x =1-t 21+t 2,y =4t 1+t2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+√3 ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【解析】(1)因为-1<1-t 21+t2≤1,且x2+(y 2)2=(1-t 21+t2)2+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x≠-1).l 的直角坐标方程为2x+√3y+11=0.(2)由(1)可设C 的参数方程为{x =cosα,y =2sinα(α为参数,-π<α<π). C 上的点到l 的距离为|√3sinα+11|√7=4cos(α-π3)+11√7. 当α=-2π3时,4cos (α-π3)+11取得最小值7,故C 上的点到l 距离的最小值为√7. 3、直线参数方程t 的几何意义:常用做题方法:已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).注意sin 2α+cos 2α=1。

(注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义)常用结论:①若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2;②若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22;例8、已知直线l:(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点M 的直角坐标为(5,),直线l 与曲线C 的交点为A,B,求|MA|·|MB|的值.【解析】(1)ρ=2cos θ等价于ρ2=2ρcos θ. ①将x =ρcos θ,x 2+y 2=ρ2代入①即得曲线C 的直角坐标方程为x 2+y 2−2x =0②(2)将代入②,得t2+5t+18=0.设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知,|MA|·|MB|=|t1t2|=18.例9、在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线的交点为、,求的值.【答案】(1);;(2)4【解析】(1)的参数方程消去参数,易得的普通方程为,曲线:,即,∴,所以曲线的直角坐标方程为:.(2)的参数方程(为参数),设对应参数为,对应参数为,将的参数方程与联立得:,得:,,所以即.例10、在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.【答案】(1)的极坐标方程为,普通方程为;(2)【解析】(1),,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,,,异号,,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,,,异号,,.4、与动点有关的取值范围和最值问题:解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.例11、【2020·广州模拟】在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =2+7cos α,y =7sin α(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos θ,直线l 的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与曲线C 1,C 2在第一象限分别交于A ,B 两点,P 为曲线C 2上的动点,求△P AB 面积的最大值.解:(1)依题意得,曲线C 1的普通方程为(x -2)2+y 2=7,曲线C 1的极坐标方程为ρ2-4ρcosθ-3=0.直线l 的直角坐标方程为y =3x .(2)曲线C 2的直角坐标方程为(x -4)2+y 2=16, 设A ⎝⎛⎭⎫ρ1,π3,B ⎝⎛⎭⎫ρ2,π3, 则ρ21-4ρ1cos π3-3=0,即ρ21-2ρ1-3=0, 得ρ1=3或ρ1=-1(舍),又ρ2=8cos π3=4,则|AB |=|ρ2-ρ1|=1.C 2(4,0)到l 的距离d =|43|4=23,以AB 为底边的△P AB 的高的最大值为4+23,则△P AB 的面积的最大值为12×1×(4+23)=2+ 3.例12、【2020·栖霞模拟】在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-4 2. (1)设P 是曲线C 上的一个动点,当a =23时,求点P 到直线l 的距离的最小值; (2)若曲线C 上所有的点都在直线l 的右下方,求实数a 的取值范围. 解:(1)由ρcos ⎝⎛⎭⎫θ+π4=-42,得到ρ(cos θ-sin θ)=-8, 因为ρcos θ=x ,ρsin θ=y , 所以直线l 的普通方程为x -y +8=0. 设P (23cos t ,2sin t ),则点P 到直线l 的距离d =|23cos t -2sin t +8|2=|4sin ⎝⎛⎭⎫t -π3-8|2=22|sin ⎝⎛⎭⎫t -π3-2|, 当sin ⎝⎛⎭⎫t -π3=1时,d min =22, 所以点P 到直线l 的距离的最小值为2 2.(2)设曲线C 上任意点P (a cos t ,2sin t ),由于曲线C 上所有的点都在直线l 的右下方, 所以a cos t -2sin t +8>0对任意t ∈R 恒成立.a 2+4sin(t -φ)<8,其中cos φ=2a 2+4,sin φ=a a 2+4.从而a 2+4<8.由于a >0,解得0<a <215.即a ∈(0,215).例13、【河北省石家庄市高三数学一模考试】在平面直角坐标系,将曲线1C 上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线2C ,以坐标原点O 为极点, x 轴的正半轴为极轴,建立极坐标系, 1C 的极坐标方程为2ρ=.(Ⅰ)求曲线2C 的参数方程;(Ⅱ)过原点O 且关于y 轴对称的两条直线1l 与2l 分别交曲线2C 于A 、C 和B 、D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线1l 的普通方程.【解析】(Ⅰ)x 24+y 2=1,{x =2cos θy =sin θ(θ为参数) (Ⅱ)设四边形ABCD 的周长为l ,设点A (acos φ,sin φ)l =8cos θ+4sin θ=4√5(√5θ√5θ)=4√5sin (θ+φ)且cos φ=√5sin φ=√5, 所以,当θ+φ=2kπ+π2(k Z )时, l 取最大值,此时θ=2kπ+π2−φ所以2cos θ=2sin φ=45,sin θ=cos φ=√5, 此时A (√5√5), 1l 的普通方程为y =14x。

相关文档
最新文档