指数函数、对数函数、幂函数教案

合集下载

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作logaN=b,其中a叫做底数,N叫做真数,式子logaN叫做对数式.练习1 把下列指数式写成对数形式:练习2 把下列对数形式写成指数形式:练习3 求下列各式的值:因为22=4,所以以2为底4的对数等于2.因为53=125,所以以5为底125的对数等于3.师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么?生:a>0且a≠1;b∈R;N∈R.师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.)生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数.师:要特别强调的是:零和负数没有对数.师:定义中为什么规定a>0,a≠1?生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1.师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28…….练习4 计算下列对数:lg10000,lg0.01,2log24,3log327,10lg105,5log51125.师:请同学说出结果,并发现规律,大胆猜想.生:2log24=4.这是因为log24=2,而22=4.生:3log327=27.这是因为log327=3,而33=27.生:10lg105=105.生:我猜想alogaN=N,所以5log51125=1125.alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线)证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N.师:你是根据什么证明对数恒等式的?生:根据对数定义.师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知识只有定义,所以显然要利用定义加以证明.而对数定义是建立在指数基础之上的,所以必须先设出指数等式,从而转化成对数等式,再进行证明.师:掌握了对数恒等式的推导之后,我们要特别注意此等式的适用条件.生:a>0,a≠1,N>0.师:(板书)2log28=?2log42=?生:2log28=8;2log42=2.师:第2题对吗?错在哪儿?师:(继续追问)在运用对数恒等式时应注意什么?生:当幂的底数和对数的底数相同时,才可以用公式alogaN=N.师:负数和零有没有对数?并说明理由.生:负数和零没有对数.因为定义中规定a>0,所以不论b是什么数,都有ab>0,这就是说,不论b是什么数,N=ab永远是正数.因此,由等式b=logaN可以看到,负数和零没有对数.师:(板书)性质1:负数和零没有对数.师:1的对数是多少?生:因为a0=1(a>0,a≠1),所以根据对数定义可得1的对数是零.师:(板书)1的对数是零.师;底数的对数等于多少?生:因为a1=a,所以根据对数的定义可得底数的对数等于1.师:(板书)底数的对数等于1.生:同底数幂相乘,底数不变,指数相加,即am·an=am+n.同底数幂相除,底数不变,指数相减,即am ÷an=am-n.还有(am)n=amn;师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)(1)正因数积的对数等于同一底数各个因数的对数的和.即loga(MN)=logaM+logaN.(请两个同学读法则(1),并给时间让学生讨论证明.)师:(分析)我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.师:(板书)设logaM=p,logaN=q,由对数的定义可以写成M=ap,N=aq.所以M·N=ap·aq=ap+q,所以loga(M·N)=p+q=logaM+logaN.即loga(MN)=logaM+logaN.师:这个法则的适用条件是什么?生:每个对数都有意义,即M>0,N>0;a>0且a≠1.师:观察法则(1)的结构特点并加以记忆.生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.师:非常好.例如,(板书)log2(32×64)=?生:log2(32×64)=log232+log264=5+6=11.师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化.师:(板书)log62+log63=?生:log62+log63=log6(2×3)=1.师:正确.由此例我们又得到什么启示?生:这是法则从右往左的使用.是升级运算.师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.师:仿照研究法则(1)的四个步骤,自己学习.(给学生三分钟讨论时间.)生:(板书)设logaM=p,logaN=q.根据对数的定义可以写成M=ap,N=aq.所以师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?生:(板书)师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.师:法则(2)的适用条件是什么?生:M>0,N>0;a>0且a≠1.师:观察法则(2)的结构特点并加以记忆.生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.师:(板书)lg20-lg2=?师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.例1 计算:生:(板书)解(1)log93+log927=log93×27=log981=2;(3)log2(4+4)=log24+log24=4;(由学生判对错,并说明理由.)生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)生:第(3)题错!法则(1)的内容是:生:第(4)题错!法则(2)的内容是:生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(1)、(2).师:(板书)(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即loga(N)n=n·logaN.师:(分析)欲证loga(N)n=n·logaN,只需证Nn=an·logaN=(a·logaN)n,只需证N=alogaN.由对数恒等式,这是显然成立的.师:(板书)设N>0,根据对数恒等式有N=alogaN.所以Nn=(alogaN)n=an·logaN.根据对数的定义有loga(N)n=n·logaN.师:法则(3)的适用条件是什么?生:a>0,a≠1;N>0.生:从左往右仍然是降级运算.师:例如,(板书)log332=log525=5log52.练习计算(log232)3.错解:(log232)3=log2(25)3=log2215=15.正确解:(log232)3=(log225)3=(5log22)3=53=125.师:(板书)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即师:法则(4)的适用条件是什么?生:a>0,a≠1;N>0.师:法则(3)和法则(4)可以合在一起加以记忆.即logaNα=αlogaN(α∈R).(师板书)例2 用logax,logay,logaz表示下列各式:解(注意(3)的第二步不要丢掉小括号.)例3 计算:解(1)log2(47×25)=log247+log225=7log24+5log22=7×2+5×1=19.。

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

教案:幂函数、指数函数和对数函数·对数及其运算法则第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为f(x) = x^a,其中a 是实数。

性质:幂函数的图像是一条曲线,随着a 的不同取值,曲线的形状也会发生变化。

当a > 1 时,函数在x > 0 的区间上是增函数;当0 < a < 1 时,函数在x > 0 的区间上是减函数;当a = 0 时,函数是常数函数;当a < 0 时,函数在x >0 的区间上是增函数。

1.2 幂函数的图像与性质图像:通过绘制不同a 值的幂函数图像,观察曲线的形状和变化趋势。

性质:当a > 0 时,函数在x = 0 时无定义,但在x > 0 的区间上有定义;当a < 0 时,函数在x = 0 时无定义,但在x < 0 的区间上有定义;当a 为正整数时,函数在x > 0 的区间上是增函数;当a 为负整数时,函数在x < 0 的区间上是增函数。

第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为f(x) = a^x,其中a 是正实数。

性质:指数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。

指数函数的图像经过点(0, 1),并且随着a 的增大,曲线的斜率也会增大。

2.2 指数函数的图像与性质图像:通过绘制不同a 值的指数函数图像,观察曲线的形状和变化趋势。

性质:当a > 1 时,函数在整个实数域上是增函数;当0 < a < 1 时,函数在整个实数域上是减函数;指数函数的图像具有反射性,即f(x) = a^x 和f(x) = a^(-x) 的图像关于y 轴对称。

第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为f(x) = log_a(x),其中a 是正实数。

性质:对数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。

高一数学教案幂函数指数函数和对数函数

高一数学教案幂函数指数函数和对数函数

高一数学教案:幂函数指数函数和对数函数教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.(指图说明.)师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)生:较大的函数值的函数.师:那么减函数呢?生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整.)师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?(学生思索.)学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?生:不能.因为此时函数值是一个数.师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.师:还有没有其他的关键词语?生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的提示.)师:“属于”是什么意思?生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.师:如果是闭区间的话,能否取自区间端点?生:可以.师:那么“任意”和“都有”又如何理解?生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻.)生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.师:那么如何来说明“都有”呢?生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的`能力.)三、概念的应用例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?(用投影幻灯给出图象.)生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.(指出用定义证明的必要性.)师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b 就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数.师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)调函数吗?并用定义证明你的结论.师:你的结论是什么呢?上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.上是减函数.(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分.(2)要说明三个代数式的符号:k,x1·x2,x2-x1.要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)四、课堂小结师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.五、作业1.课本P53练习第1,2,3,4题.数.=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].(*)+b>0.由此可知(*)式小于0,即f(x1)<f(x2).课堂教学设计说明是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.。

4指数函数、幂函数、对数函数增长的比较-北师大版高中数学必修第一册(2019版)教案

4指数函数、幂函数、对数函数增长的比较-北师大版高中数学必修第一册(2019版)教案

4 指数函数、幂函数、对数函数增长的比较-北师大版高中数学必修第一册(2019版)教案1. 教学目标•了解指数函数、幂函数、对数函数的定义和特征;•掌握指数函数、幂函数、对数函数的图像和性质;•掌握指数函数、幂函数、对数函数的增长速度及其比较方法;•掌握指数函数、幂函数、对数函数的应用。

2. 教学重点和难点2.1 教学重点•指数函数、幂函数、对数函数的定义和特征;•指数函数、幂函数、对数函数的图像和性质;•指数函数、幂函数、对数函数的增长速度及其比较方法。

2.2 教学难点•对数函数的性质和增长速度比较;•指数函数和幂函数的增长速度比较。

3. 教学内容及方法3.1 指数函数的基本性质1.指数函数的定义;2.指数函数的图像和性质;3.指数函数的增长速度及其比较方法;4.指数函数的应用。

教学方法:讲解、演示、练习。

3.2 幂函数的基本性质1.幂函数的定义;2.幂函数的图像和性质;3.幂函数的增长速度及其比较方法;4.幂函数的应用。

教学方法:讲解、演示、练习。

3.3 对数函数的基本性质1.对数函数的定义;2.对数函数的图像和性质;3.对数函数的增长速度及其比较方法;4.对数函数的应用。

教学方法:讲解、演示、练习。

3.4 比较指数函数、幂函数、对数函数的增长速度1.指数函数和幂函数的比较;2.对数函数的增长速度比较。

教学方法:讲解、演示、练习。

3.5 应用综合运用指数函数、幂函数、对数函数的特性,解决实际问题。

教学方法:案例分析和讨论。

4. 教学资源教材:北师大版高中数学必修第一册(2019版)5. 教学步骤及时间安排5.1 第一课时(40分钟)课时内容:指数函数的基本性质1.讲解指数函数的定义及性质(10分钟);2.演示指数函数的图像和性质(10分钟);3.练习指数函数的增长速度及其比较方法(15分钟);4.介绍指数函数的应用(5分钟)。

5.2 第二课时(40分钟)课时内容:幂函数的基本性质1.讲解幂函数的定义及性质(10分钟);2.演示幂函数的图像和性质(10分钟);3.练习幂函数的增长速度及其比较方法(15分钟);4.介绍幂函数的应用(5分钟)。

指数函数幂函数对数函数增长的比较教案

指数函数幂函数对数函数增长的比较教案

指数函数幂函数对数函数增长的比较教案
指数函数、幂函数和对数函数增长的比较教案
教学目标
通过本教案的学习,学生将能够:
理解指数函数、幂函数和对数函数的定义;
理解指数函数、幂函数和对数函数的增长特点;
比较指数函数、幂函数和对数函数在不同增长情况下的差异。

教学步骤
1.引入
引导学生回顾函数的基本概念,并复习函数的图像、定义域和值域的表示方法。

2.指数函数
定义:指数函数是形如y=a^x的函数,其中a是常数且大于0,x是自变量。

指数函数的图像特点:
当a>1时,函数呈现上升的指数增长趋势;
当0<a<1时,函数呈现下降的指数增长趋势。

3.幂函数
定义:幂函数是形如y=x^a的函数,其中a是常数,x是自变量。

幂函数的图像特点:
当a>1时,函数呈现上升的幂函数增长趋势;
当0<a<1时,函数呈现下降的幂函数增长趋势。

4.对数函数
定义:对数函数是形如y=log<sub>a</sub>(x)的函数,其中a是常数且大于0,x是自变量。

对数函数的图像特点:
当a>1时,函数呈现上升的对数增长趋势;
当0<a<1时,函数呈现下降的对数增长趋势。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案一、教学目标知识与技能:1. 理解幂函数、指数函数的定义和性质。

2. 掌握对数的定义和性质,了解对数函数的图像和应用。

3. 掌握对数的运算法则,并能应用于实际问题中。

过程与方法:1. 通过实例和图形,培养学生的观察和分析能力,提高学生对幂函数、指数函数和对数函数的理解。

2. 通过小组讨论和探究活动,培养学生的合作和沟通能力,提高学生对对数运算法则的掌握。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心,激发学生对幂函数、指数函数和对数函数的学习热情。

2. 培养学生的耐心和细心,提高学生在解决实际问题中的数学应用能力。

二、教学内容第一节:幂函数1. 幂函数的定义和性质2. 幂函数的图像和应用第二节:指数函数1. 指数函数的定义和性质2. 指数函数的图像和应用第三节:对数函数1. 对数的定义和性质2. 对数函数的图像和应用第四节:对数的运算法则1. 对数的加法和减法法则2. 对数的乘法和除法法则3. 对数的幂法则三、教学重点与难点重点:1. 幂函数、指数函数和对数函数的定义和性质。

2. 对数的运算法则。

难点:1. 对数函数的图像和应用。

2. 对数的幂法则的理解和应用。

四、教学方法与手段教学方法:1. 讲授法:讲解幂函数、指数函数和对数函数的定义和性质。

2. 案例分析法:分析实际问题中的应用,展示对数函数的图像。

3. 小组讨论法:分组讨论对数的运算法则,促进学生之间的交流和合作。

教学手段:1. 多媒体课件:展示幂函数、指数函数和对数函数的图像和实例。

2. 练习题:提供练习题,帮助学生巩固所学知识和技能。

1. 课堂参与度:观察学生在课堂中的积极参与和提问情况,评价学生的学习兴趣和主动性。

2. 练习题完成情况:检查学生完成练习题的正确率和解题思路,评价学生的理解和应用能力。

3. 小组讨论报告:评估学生在小组讨论中的表现和合作能力,以及对数运算法则的理解和应用。

必修1示范教案3.6指数函数、幂函数、对数函数增长的比较

必修1示范教案3.6指数函数、幂函数、对数函数增长的比较

§6指数函数、幂函数、对数函数增长的比较整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的,通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图像),并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排1课时教学过程导入新课思路1.(情境导入)国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、幂函数的增长差异.思路2.(直接导入)我们知道,对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、幂函数的增长差异.推进新课新知探究提出问题①在区间,+上判断y=log2x,y=2x,y=x2的单调性.②列表并在同一坐标系中画出三个函数的图像.③结合函数的图像找出其交点坐标.④请在图像上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.⑤由以上问题你能得出怎样结论?讨论结果:①在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为单调增函数.063图1③从图像看出y=log2x的图像与另外两函数的图像没有交点,且总在另外两函数的图像的下方,y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16).④不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).9162536图2容易看出:y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.但是,当自变量x越来越大时,可以看到,y=2x的图像就像与x轴垂直一样,2x的值2x图3一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,a x会小于x n,但由于a x 的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.同样地,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.综上所述,尽管对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.虽然幂函数y=x n(n>0)增长快于对数函数y=log a x(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.应用示例思路1例1 试利用计算器来计算2500的近似值.活动:学生思考,教师提示,计算这样一个大的数,用计算器无法直接计算.如何计算呢?我们可以充分利用幂的运算性质,再结合计算器的利用来求其近似值.解:第一步,利用科学计算器算出210=1 024=1.024×103;第二步,再计算2100,因为2100=(210)10=(1.024×103)10=1.02410×1030,所以,我们只需要用科学计算器算出1.02410≈1.267 7,则2100≈1.267 7×1030;第三步,再计算2500,因为(2100)5≈(1.267 7×1030)5,我们只需要用科学计算器算出1.267 75≈3.274 0,从而算出2500≈3.27×10150.点评:在设计计算方法时,要考虑到科学计算器能计算的位数.如果函数值非常大,我们常常用科学记数法表示,并且根据需要保留一定数目的有效数字.例 2 在自然界中,有些种群的世代是隔离,即每一代的生活周期是分离的,例如很多一年生草本植物,在当年结实后死亡,第二年种子萌发产生下一代.假设一个理想种群,其每个个体产生2个后代,又假定种群开始时有10个个体,到第二代时,种群个体将上升为20个,以后每代增加1倍,依次为40,80,160,…,试写出计算过程,归纳种群增长模型,说明何种情况种群上升,种群稳定,种群灭亡.活动:学生仔细审题,理解题目的含义,教师指导,注意归纳总结.解:设N t表示t世代种群的大小,N t+1表示t+1世代种群的大小,则N0=10;N1=10×2=20;N2=20×2=40;N3=40×2=80;N4=80×2=160;….由上述过程归纳成最简单的种群增长模型,由下式表示:N t+1=R0·N t,其中R0为世代净繁殖率.如果种群的R 0速率年复一年地增长,则 N 1=R 0N 0, N 2=R 0N 1=R 20N 0, N 3=R 0N 2=R 30N 0, … N t =R t 0N 0.R 0是种群离散增长模型的重要参数,如果R 0>1,种群上升;R 0=1,种群稳定;0<R 0<1,种群下降;R 0=0,雌体没有繁殖,种群在一代中死亡.思路2例3 一工厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100时,每多订购1个,订购的全部零件的单价就降低0.02元,但最低出厂单价不低于51元.(1)一次订购量为多少个时,零件的实际出厂价恰为51元?(2)设一次订购量为x 个时,零件的实际出厂价为p 元,写出p =f (x ).(3)当销售商一次订购量分别为500,1 000个时,该工厂的利润分别为多少? (一个零件的利润=实际出厂价-成本)解:(1)设一次订购量为a 个时,零件的实际出厂价恰好为51元,则a =100+60-510.02=550个.(2)p =f (x )=⎩⎪⎨⎪⎧60,0<x ≤100,62-x50,100<x <550,其中x ∈N+.51,x ≥550,(3)当销售商一次订购量为x 个时,该工厂的利润为y ,则y =(p -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤100,22x -x 250,100<x <550,11x ,x ≥550.其中x ∈N +,故当x =500时,y =6 000;当x =1 000时,y =11 000.点评:方程中的未知数设出来后可以参与运算,函数解析式为含x ,y 的等式.例4 甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:图4甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只. 乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由.(3)哪一年的规模(即总产量)最大?请说明理由.活动:观察函数图像,学生先思考或讨论后再回答,教师点拨、提示: 先观察图像得出相关数据,利用数据找出函数模型. 解:由题意可知,甲图像经过(1,1)和(6,2)两点, 从而求得其解析式为y 甲=0.2x +0.8, 乙图像经过(1,30)和(6,10)两点, 从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲·y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.(2)第1年出产鳗鱼1×30=30(万只),第6年出产鳗鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设当第m 年时的规模总产量为n ,那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34)=-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25.因此,当m =2时,n max =31.2, 即第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只. 知能训练某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图5(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图5(2)的抛物线段表示.(1)写出图5(1)表示的市场售价与时间的函数关系式P =f (t ); 写出图5(2)表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(1) (2)图5 (注:市场售价和种植成本的单位:元/102kg ,时间单位:天) 活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正. 解:(1)由图5(1)可得市场售价与时间的函数关系式为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300. 由图5(2)可得种植成本与时间的函数关系式为g (t )=1200(t -150)2+100,0≤t ≤300.(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎩⎪⎨⎪⎧-1200t 2+12t +1752,0≤t ≤200,-1200t 2+27t -1 0252,200<t ≤300.当0≤t ≤200时,配方整理,得h (t )=-1200(t -50)2+100,所以当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理,得h (t )=-1200(t -350)2+100,所以当t =300时,h (t )取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.拓展提升 探究内容①在函数应用中如何利用图像求解析式. ②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的国内外市场销售情况进行调研,结果如图6(1)、(2)、(3)所示.其中图6(1)的折线表示的是国外市场的日销售量与上市时间的关系;图6(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图6(3)的折线表示的是每件产品A 的销售利润与上市时间的关系.图6(1)分别写出国外市场的日销售量f (t )、国内市场的日销售量g (t )与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元?分析:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式. 2.在t ∈[0,40]上,有几个分界点,请同学们思考应分为几段. 3.回忆函数最值的求法.解:(1)f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40,g (t )=-320t 2+6t (0≤t ≤40).(2)每件A 产品销售利润h (t )=⎩⎪⎨⎪⎧3t ,0≤t ≤20,60,20≤t ≤40.该公司的日销售利润F (t )=⎩⎪⎨⎪⎧3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,0≤t ≤20,60⎝ ⎛⎭⎪⎫-320t 2+8t ,20≤t ≤30,60⎝ ⎛⎭⎪⎫-320t 2+240,30≤t ≤40,当0≤t ≤20时,F (t )=3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,先判断其单调性. 设0≤t 1<t 2≤20,则F (t 1)-F (t 2)=3t 1⎝ ⎛⎭⎪⎫-320t 21+8t 1-3t 2⎝ ⎛⎭⎪⎫-320t 22+8t 2 =-920(t 1+t 2)(t 1-t 2)2.∴F (t )在[0,20]上为增函数. ∴F (t )max =F (20)=6 000<6 300.当20<t ≤30时,令60⎝ ⎛⎭⎪⎫-320t 2+8t >6 300, 则703<t <30; 当30<t ≤40时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+240<60⎝ ⎛⎭⎪⎫-320×302+240=6 300.故在第24,25,26,27,28,29天日销售利润超过6 300万元.点评:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t ∈[0,40]上,有几个分界点,t =20,t =30两点把区间分为三段. 3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一. 课堂小结本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.作业习题3—6 1,2.设计感想本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图像转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.备课资料[备选例题]某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x 万元,可获得利润P =-1160(x -40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x 万元,可获利润Q =-159160(60-x )2+1192(60-x )万元.问从10年的累积利润....看,该规划方案是否可行? 解:在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.则10年的总利润为W 1=100×10=1 000(万元).实施规划后的前5年中,由题设P =-1160(x -40)2+100,知每年投入30万元时,有最大利润P max =7958(万元).前5年的利润和为7958×5=3 9758(万元).设在公路通车的后5年中,每年用x 万元投资于本地的销售,而用剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=⎣⎢⎡⎦⎥⎤-1160x -2+100×5+⎝ ⎛⎭⎪⎫-159160x 2+1192x ×5=-5(x -30)2+4 950. 当x =30时,(W 2)max =4 950(万元).从而10年的总利润为3 9758+4 950(万元).∵3 9758+4 950>1 000,∴该规划方案有极大实施价值.(设计者:邓新国)。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为y = x^a,其中x是变量,a是常数。

性质:幂函数的图像是一条曲线,取决于指数a的值。

当a为正整数时,函数在x轴的正半轴上递增。

当a为负整数时,函数在x轴的正半轴上递减。

当a为分数时,函数的图像呈现出特殊的变化规律。

1.2 幂函数的图像与性质绘制幂函数的图像,观察不同指数a对图像形状的影响。

分析幂函数的单调性、奇偶性、渐近线等性质。

第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为y = a^x,其中a是底数,x是变量。

性质:指数函数的图像是一条递增的曲线,底数a大于1时,曲线向上弯曲;底数a 小于1时,曲线向下弯曲。

指数函数的渐近线是y轴。

指数函数的值域是正实数集。

2.2 指数函数的应用分析指数函数的增长速度,比较不同底数的指数函数。

应用指数函数解决实际问题,如人口增长、放射性衰变等。

第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为y = log_a(x),其中a是底数,x是变量。

性质:对数函数的图像是一条递减的曲线,底数a大于1时,曲线向下弯曲;底数a 小于1时,曲线向上弯曲。

对数函数的渐近线是x轴。

对数函数的定义域是正实数集。

3.2 对数函数的应用分析对数函数的单调性,比较不同底数的对数函数。

应用对数函数解决实际问题,如测量、数据压缩等。

第四章:对数运算法则4.1 对数的基本性质回顾对数的定义,巩固对数函数的基本性质。

学习对数的换底公式、对数的反对数等基本性质。

4.2 对数的运算法则学习对数的加法、减法、乘法、除法等运算法则。

运用对数的运算法则进行复杂对数表达式的化简和求值。

第五章:对数函数的应用5.1 对数函数在实际问题中的应用分析实际问题,识别可以用对数函数表示的关系。

应用对数函数解决实际问题,如人口增长、放射性衰变等。

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。

2. 掌握对数的定义及其运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

教学内容:第一章:幂函数1.1 幂函数的定义与性质1.2 幂函数图像的特点1.3 幂函数的应用第二章:指数函数2.1 指数函数的定义与性质2.2 指数函数图像的特点2.3 指数函数的应用第三章:对数函数3.1 对数的定义与性质3.2 对数函数图像的特点3.3 对数函数的应用第四章:对数及其运算法则4.1 对数的换底公式4.2 对数的运算法则4.3 对数函数的图像与性质第五章:实际问题中的应用5.1 利用幂函数、指数函数和对数函数解决实际问题5.2 练习题及解答教学方法:1. 采用讲授法,讲解幂函数、指数函数和对数函数的定义、性质及应用。

2. 利用数形结合法,引导学生观察函数图像,加深对函数性质的理解。

3. 通过例题和实际问题,培养学生的应用能力。

教学评估:1. 课堂提问,检查学生对幂函数、指数函数和对数函数的理解程度。

2. 布置课后作业,巩固所学知识。

3. 进行单元测试,评估学生的掌握情况。

教学资源:1. 教学PPT,展示幂函数、指数函数和对数函数的图像及性质。

2. 教材和辅导书,提供相关知识点的详细讲解和例题。

3. 网络资源,查阅实际问题中的应用案例。

教学时间安排:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时幂函数、指数函数和对数函数·对数及其运算法则·教案(续)教学内容:第六章:指数与对数的互化6.1 指数与对数的关系6.2 指数与对数的互化方法6.3 指数与对数互化在实际问题中的应用第七章:对数函数的图像与性质7.1 对数函数的图像特点7.2 对数函数的性质7.3 对数函数图像与性质的应用第八章:对数函数在实际问题中的应用8.1 对数函数解决生长、衰减问题8.2 对数函数在几何问题中的应用8.3 对数函数在其他领域的应用第九章:对数方程与对数不等式9.1 对数方程的解法9.2 对数不等式的解法9.3 对数方程与对数不等式的应用第十章:总结与拓展10.1 幂函数、指数函数和对数函数的总结10.2 数学思想与方法的拓展10.3 课后习题与思考题教学方法:1. 采用讲授法,讲解指数与对数的关系、互化方法及其应用。

幂函数指数函数和对数函数单元教学设计

幂函数指数函数和对数函数单元教学设计

活动意图说明: 点评 考察定义,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数. 环节二:教师活动2知识点二 五个幂函数的图象与性质 1.在同一平面直角坐标系内函数(1)y =x ;(2)12y x =;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞) 上减, 在(-∞,0) 上减知识点三 一般幂函数的图象特征一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称; (5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列. 学生活动学生把自己的作图结果展示并比较,讨论,校对。

教师最后可以用课件动态展示结果。

并得出正确的图像。

学生先相互讨论,如有不足老师再提醒或补充。

活动意图说明学生通过作图从熟悉的图像到陌生的图像进一步学会做图和看图,学会图像这个工具进一步研究性质。

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案一、教学目标:1. 理解幂函数、指数函数和对数函数的概念及其性质。

2. 掌握对数的定义及其运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

二、教学内容:1. 幂函数:定义、性质及应用。

2. 指数函数:定义、性质及应用。

3. 对数函数:定义、性质及应用。

4. 对数的运算法则:乘法法则、除法法则、幂法则、对数换底公式。

三、教学重点与难点:1. 重点:幂函数、指数函数和对数函数的概念及其性质,对数的运算法则。

2. 难点:对数函数的应用,对数的运算法则的推导和应用。

四、教学方法:1. 采用讲授法,讲解幂函数、指数函数、对数函数的定义、性质和对数运算法则。

2. 利用例题和练习题,让学生通过自主学习和合作交流,巩固所学知识。

3. 运用信息技术辅助教学,展示函数图像,增强学生对函数性质的理解。

五、教学过程:1. 导入:通过复习幂函数、指数函数的概念和性质,引出对数函数的概念。

2. 新课讲解:讲解对数函数的定义、性质和对数运算法则,结合实例进行解释。

3. 例题讲解:分析并解决有关对数函数的例题,让学生掌握对数函数的解题方法。

4. 练习与讨论:学生自主完成练习题,合作交流解题心得,教师进行点评和指导。

6. 课后作业:布置相关练习题,让学生巩固所学知识。

六、教学评估:1. 课堂提问:通过提问了解学生对幂函数、指数函数、对数函数概念及其性质的掌握情况。

2. 练习题完成情况:检查学生对对数函数及其运算法则的应用能力。

3. 课后作业:评估学生对课堂所学知识的巩固程度。

七、教学反思:2. 针对学生的薄弱环节,调整教学策略,提高教学效果。

3. 探索更多有效的教学方法,激发学生的学习兴趣。

八、拓展与延伸:1. 引导学生思考实际生活中的幂函数、指数函数和对数函数现象,提高学生运用所学知识解决实际问题的能力。

2. 介绍对数函数在其他学科领域的应用,如物理学、生物学等,拓宽学生的知识视野。

幂函数指数函数和对数函数对数及其运算法则教案

幂函数指数函数和对数函数对数及其运算法则教案
师:你是根据什么证明对数恒等式的?
生:根据对数定义.
师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知识只有定义,所以显然要利用定义加以证明.而对数定义是建立在指数基础之上的,所以必须先设出指数等式,从而转化成对数等式,再进行证明.
师:掌握了对数恒等式的推导之后,我们要特别注意此等式的适用条件.
教学过程设计
师:(板书)已知国民生产总值每年平均增长率为7.2%,求20年后国民生产总值是原来的多少倍?
生:设原来国民生产总值为1,则20年后国民生产总值y=(1+7.2%)20=1.07220,所以20年后国民生产总值是原来的1.07220倍.
师:这是个实际应用问题,我们把它转化为数学中知道底数和指数,求幂值的问题.也就是上面学习的指数问题.
师:(板书)已知国民生产总值每年平均增长率为7.2%,问经过多年年后国民生产总值是原来的4倍?
师:(分析)仿照上例,设原来国民生产总值为1,需经x年后国民生产总值是原来的4倍.列方程
1.072x=4.
我们把这个应用问题转化为知道底数和幂值,求指数的问题,这是上述问题的逆问题,即本节的对数问题.
师:(板书)一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作
练习4计算下列对数:
lg10000,lg0.01,2log24,3log327,10lg105,5log51125.
师:请同学说出结果,并发现规律,大胆猜想.
生:2log24=4.这是因为log24=2,而22=4.
生:3log327=27.这是因为log327=3,而33=27.
生:10lg105=105.
因为22=4,所以以2为底4的对数等于2.

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:一、知识与技能:1. 理解幂函数、指数函数和对数函数的定义及其性质。

2. 掌握对数的定义及其运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

二、过程与方法:1. 通过实例探究幂函数、指数函数和对数函数的图象与性质。

2. 通过对数函数的图象和性质,理解对数及其运算法则。

3. 运用幂函数、指数函数和对数函数解决实际问题,提高数学建模能力。

三、情感态度与价值观:1. 培养对数学的兴趣和好奇心,感受数学的运用价值。

2. 培养学生的团队合作精神,提高学生的解决问题的能力。

教学重点与难点:重点:幂函数、指数函数和对数函数的定义及其性质;对数的定义及其运算法则。

难点:幂函数、指数函数和对数函数在实际问题中的应用。

教学过程:一、导入(5分钟)1. 复习幂函数、指数函数的定义及其性质。

2. 引导学生思考:幂函数、指数函数在实际生活中有哪些应用?二、新课讲解(15分钟)1. 讲解对数的定义:以2为底的对数表示为log2(x),意义为2的几次方等于x。

2. 引导学生通过实例理解对数的意义。

3. 讲解对数的性质:对数的真数必须大于0;对数的底数必须不等于1;对数的相反数、对数的倒数、对数的乘积和除法等性质。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固对数的定义及其性质。

2. 解答学生疑问,指导学生掌握对数的运算法则。

四、应用拓展(10分钟)1. 让学生举例说明幂函数、指数函数和对数函数在实际生活中的应用。

2. 引导学生运用幂函数、指数函数和对数函数解决实际问题。

五、课堂小结(5分钟)2. 强调对数的运算法则及其应用。

教学反思:本节课通过讲解幂函数、指数函数和对数函数的定义及其性质,让学生掌握对数的定义及其运算法则。

在教学过程中,注重引导学生思考实际生活中的应用,提高学生的数学建模能力。

通过课堂练习和应用拓展,巩固所学知识,提高学生的解决问题的能力。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案一、教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。

2. 掌握对数的定义、性质及运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

二、教学内容:1. 幂函数的定义与性质2. 指数函数的定义与性质3. 对数的定义与性质4. 对数的运算法则5. 实际问题中的应用三、教学重点与难点:1. 重点:幂函数、指数函数和对数函数的定义与性质,对数的运算法则。

2. 难点:对数函数的理解和应用,对数运算法则的推导。

四、教学方法:1. 采用讲授法,讲解幂函数、指数函数、对数函数的定义与性质。

2. 采用案例分析法,分析实际问题中的幂函数、指数函数和对数函数。

3. 采用小组讨论法,探讨对数运算法则的推导。

五、教学过程:1. 导入:通过生活中的实例,引入幂函数、指数函数和对数函数的概念。

2. 讲解:讲解幂函数、指数函数和对数函数的定义与性质。

3. 案例分析:分析实际问题中的幂函数、指数函数和对数函数。

4. 小组讨论:探讨对数运算法则的推导。

6. 练习:布置课后作业,巩固所学知识。

教学反思:在教学过程中,关注学生的学习反馈,针对学生的掌握情况,调整教学节奏和难度。

注重引导学生思考,激发学生的学习兴趣。

加强实际问题中的应用,提高学生的解决问题的能力。

对数函数的理解和应用是教学难点,可通过举例、小组讨论等方式,帮助学生理解和掌握。

六、教学评价:1. 课后作业:布置相关的习题,巩固学生对幂函数、指数函数、对数函数的理解和应用。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

3. 小组讨论:评估学生在小组讨论中的表现,包括思考问题的深度和广度,以及团队合作能力。

七、教学资源:1. 教材:提供相关的教材或教学参考书,以便学生可以在家中复习和学习。

2. 课件:制作详细的课件,辅助学生理解和记忆幂函数、指数函数、对数函数的概念和性质。

3. 实际问题案例:收集一些实际问题,用于课堂分析和讨论,帮助学生理解函数的应用。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数及其运算法则教案章节一:幂函数的概念与性质1. 引入幂函数的定义:一般形式为f(x) = x^a,其中a为常数,x 为自变量。

2. 讲解幂函数的性质:a) 当a为正整数时,函数在定义域内单调递增;b) 当a为负整数时,函数在定义域内单调递减;c) 当a为分数时,函数的单调性取决于分子和分母的大小关系;d) 当a为实数时,函数的定义域为全体实数。

章节二:指数函数的概念与性质1. 引入指数函数的定义:一般形式为f(x) = a^x,其中a为底数,x 为指数。

2. 讲解指数函数的性质:a) 当a > 1时,函数在定义域内单调递增;b) 当0 < a < 1时,函数在定义域内单调递减;c) 当a = 1时,函数为常值函数;d) 当a = 0时,函数无定义。

章节三:对数函数的概念与性质1. 引入对数函数的定义:一般形式为f(x) = log_a(x),其中a为底数,x为真数。

2. 讲解对数函数的性质:a) 当a > 1时,函数在定义域内单调递增;b) 当0 < a < 1时,函数在定义域内单调递减;c) 当a = 1时,函数无定义;d) 当a = e(自然底数)时,函数为自然对数函数,其在定义域内单调递增。

章节四:对数运算法则1. 讲解对数的换底公式:log_a(b) = log_c(b) / log_c(a),其中a、b、c为任意正数,且a、c不为1。

2. 讲解对数的乘法法则:log_a(mn) = log_a(m) + log_a(n)。

3. 讲解对数的除法法则:log_a(m/n) = log_a(m) log_a(n)。

4. 讲解对数的幂法法则:log_a(m^n) = n log_a(m)。

章节五:指数函数与对数函数的关系1. 讲解指数函数与对数函数的反函数关系:如果y = f(x) = a^x,x = log_a(y),即指数函数与对数函数互为反函数。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质学习幂函数的定义:f(x) = x^a,其中a为常数。

探讨幂函数的性质,如奇偶性、单调性等。

1.2 幂函数的图像与解析式绘制常见的幂函数图像,如f(x) = x^2,f(x) = x^-1等。

学习如何从图像得出幂函数的解析式。

第二章:指数函数2.1 指数函数的定义与性质学习指数函数的定义:f(x) = a^x,其中a为正常数。

探讨指数函数的性质,如单调性、特殊点等。

2.2 指数函数的图像与解析式绘制常见的指数函数图像,如f(x) = 2^x,f(x) = 3^x等。

学习如何从图像得出指数函数的解析式。

第三章:对数函数3.1 对数函数的定义与性质学习对数函数的定义:f(x) = log_a(x),其中a为正常数。

探讨对数函数的性质,如单调性、特殊点等。

3.2 对数函数的图像与解析式绘制常见的对数函数图像,如f(x) = log_2(x),f(x) = log_3(x)等。

学习如何从图像得出对数函数的解析式。

第四章:对数运算法则4.1 对数的基本运算法则学习对数的加法、减法、乘法和除法法则。

4.2 对数的复合运算法则学习对数的乘方和除方法则。

第五章:对数函数的应用5.1 对数函数在实际问题中的应用探讨对数函数在实际问题中的应用,如人口增长、放射性衰变等。

5.2 对数函数在其他数学领域的应用探讨对数函数在其他数学领域的应用,如微积分中的对数微分等。

第六章:指数函数的应用6.1 指数函数在实际问题中的应用探讨指数函数在实际问题中的应用,如复利计算、生物种群增长等。

6.2 指数函数在其他数学领域的应用探讨指数函数在其他数学领域的应用,如概率论中的指数分布等。

第七章:幂函数和指数函数的综合应用7.1 幂函数和指数函数在实际问题中的应用探讨幂函数和指数函数在实际问题中的应用,如物理学中的能量公式、经济学中的需求函数等。

7.2 幂函数和指数函数在其他数学领域的应用探讨幂函数和指数函数在其他数学领域的应用,如图论中的指数时间算法等。

必修一第二章 指数函数、对数函数、幂函数单元设计 (学生版学历案)

必修一第二章  指数函数、对数函数、幂函数单元设计 (学生版学历案)

第二章 基本初等函数(Ⅰ) 基本初等函数(Ⅰ)单元设计 ---幂函数、指数函数、对数函数单元【学习主题】指数函数、对数函数、幂函数 【设计者】郑州市回民中学 芦国贤【课标要求】指数函数是最基本的、应用最广泛的函的函数,是进一步学习的基础。

本单元的学习,可以帮助学生学会用函数图像和代数运算的方法研究这些函数的性质;理解这些函数中所蕴含的运动规律;运用这些函数建立模型,解决简单的实际问题,体会这些函数在解决实际问题中的作用。

【单元学习目标】目标1:通过对有理数指数幂)0,,;1,0(>∈≠∧>n Z n m a a a nm 、实数指数幂);1,0(R x a a a x ∈≠∧>含义的认识,了解指数幂拓展的过程,掌握指数幂的运算性质。

发展和提升逻辑推理和数学建模素养,学会用数学的语言表达实际问题,能借助描点法,计算工具画出指数函数的图像,探索并理解指数函数的单调性与特殊点。

发展和提升逻辑推理和直观想象素养,学会用数学的思维分析解决问题。

目标2:理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数。

发展和提升逻辑推理和数学运算素养,学会用数学的思维分析问题。

通过具体实例,了解对数函数的概念。

能用描点法或借助计算工具画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点,发展和提升数学直观想象和逻辑推理的数学核心素养。

知道对数函数)1^0(log ≠>=a a x y a 与指数函数)1^0(≠>=a a a y x互为反函数,发展和提升数学直观想象和数学抽象的数学核心素养。

目标3:通过具体实例,结合x y =;1y ±=x ;2±=x y ;3±=x y 的图像,理解他们的变化规律,了解幂函数的概念,发展和提升数学建模和数学抽象的数学核心素养,学会用数学的眼光看待问题,学会用的思维分析问题。

【评价任务】1.任务一至九 ---检测目标1;2.任务十至十七---检测目标2;3.任务十七 ---检测目标3; 【学法建议】学习本单元内容的方法主要是结合第一章函数性质的一般研究法方法进行研究,以及通过简单描点,画函数图像归纳总结出函数的一般性质,也可以利用计算机画出函数图像了解图像的变化趋势等,进而学会利用基本函数的性质来解决复杂函数的问题。

幂函数教学设计(优秀5篇)

幂函数教学设计(优秀5篇)

幂函数教学设计(优秀5篇)1、总体设计说明幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。

函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。

基于以上认识,确定本节课的教学目标如下(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。

(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。

(3)能够利用幂函数的性质比较两个数的大小教学重点与难点如下教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。

本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用2、教学过程剖析2.1创设情境建构概念问题1(1)正方形的边长a与面积S之间是函数关系吗?(2)正方体的边长a与体积V之间是函数关系吗?学生找到两个变量之间的函数关系,并给出函数的解析式:和师:我们把形如的函数称为幂函数。

直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。

师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊,图像长什么样子?生:是一条直线。

师:你确定是一条直线吗?生:是一条直线去掉一个点师:为什么?生:定义域中x不能取到0。

师:我们研究函数一般先看函数的定义域。

师:我们可以先研究的情况,你打算研究为哪些值?【设计意图】引导学生思考如何选取的研究起来比较方便,一般学生会选择为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。

探究幂函数、指数函数与对数函数的关系——幂指对函数教案

探究幂函数、指数函数与对数函数的关系——幂指对函数教案

前言:幂函数、指数函数和对数函数是高中数学中十分重要的函数类型,在微积分、概率论、数论、统计学、物理学、经济学等学科的研究中,它们广泛应用。

因此,了解幂指对函数的关系对我们对这三种函数的研究有重要的助益。

本文将主要围绕着这三种函数的定义、性质以及它们之间的关系展开探究,希望能够在一定程度上提高读者对这三种函数的认知。

一、幂函数幂函数是高中数学中最基本和最普遍的函数类型之一,它的定义和解析式如下:定义:设 a 为正实数且不等于 1,那么幂函数 f ( x ) = a x 就称为幂函数。

解析式:f ( x ) = a x,其中 a 是正实数且不等于 1。

根据幂函数的定义,我们可以得到一些幂函数的基本特征和性质:1、当 a > 1 时,幂函数是增函数;当 0 < a < 1 时,幂函数是减函数。

2、当 a > 1 时,幂函数图像是向上开口的下凸曲线;当 0 < a < 1 时,幂函数图像是向下开口的上凸曲线。

3、当 a = 1 时,幂函数就是 f ( x ) = 1,是一条水平直线。

4、幂函数在 x = 0 处有特殊性质,即 f ( 0 ) = 1。

二、指数函数指数函数也是高中数学中重要的函数类型之一,它的定义和解析式如下:定义:设 a 为正实数且不等于 1,指数函数 f ( x ) = a x 就称为指数函数。

解析式:f ( x ) = a x,其中 a 是正实数且不等于 1。

根据指数函数的定义,我们可以得到一些指数函数的基本特征和性质:1、当 a > 1 时,指数函数是增函数;当 0 < a < 1 时,指数函数是减函数。

2、当 a > 1 时,指数函数图像是像 y = x 函数向上平移的曲线;当 0 < a < 1 时,指数函数图像是像 y = x 函数向下平移的曲线。

3、当 a = 1 时,指数函数就是 f ( x ) = 1,是一条水平直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、指数函数
1.形如(0,0)x y a a a =>≠的函数叫做指数函数,其中自变量是x ,函数定义域是R ,值域是(0,)+∞.
2.指数函数(0,0)x y a a a =>≠恒经过点(0,1).
3.当1a >时,函数x y a =单调性为在R 上时增函数;
当01a <<时,函数x y a =单调性是在R 上是减函数.
二、对数函数
1. 对数定义:
一般地,如果a (10≠>a a 且)的b 次幂等于N , 即N a b =,那么就称b 是以a 为底N 的对数,记作 b N a =log ,其中,a 叫做对数的底数,N 叫做真数。

着重理解对数式与指数式之间的相互转化关系,理解,b a N =与log a b N =所表示的是,,a b N 三个量之间的同一个关系。

2. 对数的性质:
(1)零和负数没有对数;(2)log 10a =;(3)log 1a a =
这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。

3. 两种特殊的对数是:①常用对数:以10作底 10log N 简记为lg N
②自然对数:以e 作底(为无理数),e = 28…… , log e
N 简记为ln N . 4.对数恒等式(1)log b a a b =;(2)log a N a N =
要明确,,a b N 在对数式与指数式中各自的含义,在指数式b a N =中,a 是底数,b 是指数,N 是幂;在对数式log a b N =中,a 是对数的底数,N 是真数,b 是以a 为底N 的对数,虽然,,a b N 在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求
对数log a N 就是求b a N =中的指数,也就是确定a 的多少次幂等于N 。

三、幂函数
1.幂函数的概念:一般地,我们把形如y x α
=的函数称为幂函数,其中x 是自变量,α是
常数;
注意:幂函数与指数函数的区别.
2.幂函数的性质:
(1)幂函数的图象都过点(1,1);
(2)当0α>时,幂函数在[0,)+∞上单调递增;当0α<时,幂函数在(0,)+∞上 单调递减;
(3)当2,2α=-时,幂函数是 偶函数 ;当11,1,3,3α=-时,幂函数是 奇函数 .
四、精典范例
例1、已知f(x)=x 3·(2
1121+-x ); (1)判断函数的奇偶性;
(2)证明:f(x)>0.
【解】:(1)因为2x -1≠0,即2x
≠1,所以x ≠0,即函数f(x)的定义域为{x ∈R|x ≠0} . 又f(x)=x 3(21121+-x )=1212·23-+x x x , f(-x)=1
212·21212·2)(33-+=-+---x x x x x x =f(x), 所以函数f(x)是偶函数。

(2)当x>0时,则x 3>0,2x >1,2x
-1>0,所以f(x)=.01212·23>-+x x x 又f(x)=f(-x),当x<0时,f(x) =f(-x)>0.
综上述f(x)>0.
例2、已知f(x)=),(1
222·R x a a x x ∈+-+若f(x)满足f(-x)=-f(x). (1)求实数a 的值;(2)判断函数的单调性。

【解】:(1)函数f(x)的定义域为R ,又f(x)满足f(-x)= -f(x),
所以f(-0)= -f(0),即f(0)=0.所以02
22=-a ,解得a=1, (2)设x 1<x 2,得0<2x
1<2x
2,则f(x 1) -f(x 2)=121212122211+--+-x x x x =)12)(12()22(22121++-x x x x
所以f(x 1) -f(x 2)<0,即f(x 1)<f(x 2).所以f(x)在定义域R 上为增函数. 例3、已知f(x)=log 2(x+1),当点(x,y)在函数y=f(x)的图象上运动时,点(23y ,x )在函数y=g(x)的图象上运动。

(1)写出y=g(x)的解析式;
(2)求出使g(x)>f(x)的x 的取值范围;
(3)在(2)的范围内,求y=g(x) -f(x)的最大值。

【解】:(1)令t y s x ==2
,3,则x=2s,y=2t. 因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log 2(3s+1),
即t=
21log 2(3s+1),所以g(x)= 2
1log 2(3s+1) (2)因为g(x)>f(x)所以21log 2(3x+1)>log 2(x+1) 即100
1)1(132<<⇒⎩⎨⎧>++>+x x x x (3)最大值是log 23-23 例4、已知函数f(x)满足f(x 2
-3)=lg .622
-x x (1)求f(x)的表达式及其定义域;
(2)判断函数f(x)的奇偶性;
(3)当函数g(x)满足关系f[g(x)]=lg(x+1)时,求g(3)的值.
解:(1)设x 2-3=t ,则x 2=t+3, 所以f(t)=lg 3
3lg 633-+=-++t t t t 所以f(x)=lg
33-+x x 解不等式03
3>-+x x ,得x<-3,或x>3. 所以f(x)-lg 3
3-+x x ,定义域为(-∞,-3)∪(3,+∞). (2)f(-x)=lg 3
3lg 33lg 33-+-=+-=--+-x x x x x x =-f(x). (3)因为f[g(x)]=lg(x+1),f(x)=lg 33-+x x , 所以lg )1lg(3
)(3)(+=-+x x g x g , 所以,13
)(3)(+=-+x x g x g
(01,03
)(3)(>+>-+x x g x g ). 解得g(x)=
x x )2(3+, 所以g(3)=5。

相关文档
最新文档