空间几何体单元测试卷答案
人教A版(2019)必修二第八章立体几何初步单元测试卷(4)(提高版)解析版
人教A版(2019)必修二第八章立体几何初步单元测试卷(4)(提高版)1.正三棱锥中,,,AB的中点为M,若一只小蜜蜂沿锥体侧面经过棱PB由点M爬到点C,则最短路程是A. B. C. D.2.在棱长为6的正方体中,点E,F分别是棱,的中点,过A,E,F三点作该正方体的截面,则截面的周长为A. B. C. D.3.如图,已知是水平放置的根据斜二测画法得到的直观图,在轴上,与轴垂直,且,则的边AB上的高为A. 3B. 6C.D.4.一个正四棱台的两底面边长分别为m,,侧面积等于两个底面积之和,则这个棱台的高为A. B. C. D.5.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有,图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体,本图中的斗是由棱台与长方体形凹槽长方体去掉一个小长方体组成.若棱台两底面面积分别是,,高为9 cm,长方体形凹槽的体积为,斗的密度是那么这个斗的质量是注:台体体积公式是A. 3990 gB. 3010 gC. 7000 gD. 6300 g6.已知三棱锥的四个顶点在球O的球面上,,是边长为2的正三角形,E,F分别是PA,AB的中点,,则球O的体积为A. B. C. D.7.设A,B,C,D是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.8.如图,等边三角形ABC的中线AF与中位线DE相交于G,已知是绕DE旋转过程中的一个图形,下列命题中,错误的是A. 恒有B. 异面直线与BD不可能垂直C. 恒有平面平面BCDED. 动点在平面ABC上的射影在线段AF上9.如图,正方体的棱长为1,线段上有两个动点,且,则下列说法中正确的是A. 存在点使得B. 异面直线EF与所成的角为C. 三棱锥的体积为定值D. 到平面AEF的距离为10.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中,把沿着DE翻折至位置,使得二面角为,则下列选项中正确的是A. 点到平面BCED的距离为3B. 直线与直线CE所成的角的余弦值为C.D. 四棱锥的外接球半径为11.如图,在三棱锥中,D、E、F分别为棱PC、AC、AB的中点,平面ABC,,则A. 三棱锥的体积为6B. 直线PB与直线DF垂直C. 平面DEF截三棱锥所得的截面面积为12D. 点P与点A到平面BDE的距离相等12.如图,在四棱锥中,底面ABCD为菱形,,侧面PAD为正三角形,且平面平面ABCD,则下列说法正确的是A. 直线AD与PB是异面直线B. 在棱AD上存在点M,使平面PMBC. 平面PAD与平面PBC的交线平面ABCDD. 当时,四棱锥的体积为613.如图是一正方体的表面展开图B、N、Q都是所在棱的中点则在原正方体中与CD异面;平面PQC;平面平面CQN;与平面AQB形成的线面角的正弦值是;二面角的余弦值为其中真命题的序号是__________14.如图,在正方体中,点P在面对角线AC上运动,给出下列四个命题:①平面;②;③平面平面;④三棱锥的体积不变.则其中所有正确的命题的序号是__________.15.如图所示,在矩形ABCD中,,,点E为CD的中点,F为线段端点除外上一动点.现将沿AF折起,使得平面平面ABCF,设直线DF与平面ABCF所成的角为,则的最大值为__________.16.如图,在三棱锥中,若底面ABC是正三角形,侧棱长,M、N分别为棱SC、BC的中点,并且,则异面直线MN 与AC所成角为___________;三棱锥的外接球的体积为__________.17.如图,在正三棱柱中,,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:该最短路线的长及点M的位置;平面与平面所成锐二面角的正切值.18.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,,EF交BD于点H,将沿EF折到的位置.证明:;若,,,,求五棱锥体积.19.如图,在正方体中,已知E是AB的中点,F是的中点,求证:E,C,,F四点共面;求证:直线CE,,DA三线共点;求直线与所成角的正切值.20.如图,在四棱锥中,底面ABCD为直角梯形,且,,侧面底面若求证:平面PAC;侧棱PA上是否存在点E,使得平面若存在,指出点E的位置并证明,若不存在,请说明理由;求二面角的余弦值.21.如图,在四棱锥,底面ABCD为平行四边形,为等边三角形,平面平面PCD,,,,设G,H分别为PB,AC的中点,求证:平面PAD;求证:平面PCD;求直线AD与平面PAC所成角的正弦值.22.如图1,在边长为4的菱形中,,于点E,将沿折起到的位置,使,如图求证:;求二面角的余弦值;判断在线段上是否存在一点P,使?若存在,求出的值;若不存在,说明理由.答案和解析【答案】1. C2. D3. D4. A5. C6. D7. B8. B9. BCD10. ABD11. ACD12. ABC13. ①②④14. ①③④15.16.17. 解:将侧面,展开在一个平面内,如图,连交于,,,所以A为BC中点,,所以所以最短路线的长为,此时M为中点.取中点D,连接,过D作,垂足为E,连接在正三棱柱中,底面是正三角形,D为中点,所以,又面,面,所以平面平面,又平面平面,平面,所以平面因面,则,又,,面,面,所以面,又面,所以,所以为平面与平面所成锐二面角的平面角.,,所以,,又,所以,在直角三角形中,所以平面与平面所成锐二面角的正切值为18. 证明:菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,,,且,将沿EF折到的位置,则,,;若,,则,,,,,,,,,,,,,满足,则为直角三角形,且,又,,AC,底面ABCD,即底面ABCD,即是五棱锥的高.底面五边形的面积,则五棱锥体积19. 证明:如图,在正方体中,连接EF,,因为E为AB的中点,F为的中点,又,,四边形为平行四边形.,从而所以,且,所以E,F,,C四点共面.因为,,所以CE与必相交,设交点为P,则由直线CE,平面ABCD,得平面同理,平面又平面平面,所以直线所以CE,,DA三线共点.在正方体中,,则与所成角即为,在中, .20. 解:因为,所以又因为侧面底面ABCD,且侧面底面,所以底面而底面ABCD,所以在底面ABCD中,因为,,所以,所以又因为,,所以平面在PA上存在中点E,使得平面PCD,证明如下:设PD的中点是F,连结BE,EF,FC,则,且由已知,所以,又,所以,且,所以四边形BEFC为平行四边形,所以因为平面PCD,平面PCD,所以平面设G为AD中点,连结CG,则又因为平面平面PAD,侧面底面,,所以平面又,故,过G作于H,连结CH,由,,故,又,故所以是二面角的平面角.设,则,在中,,所以所以,即二面角的余弦值为21. 证明:如图:证明:连接BD,由题意得,,又由,得,平面PAD,平面PAD,平面PAD;证明:取棱PC中点N,连接DN,依题意得,又平面平面PCD,平面平面,平面PCD,平面PAC,又平面PAC,,又,,平面PCD,平面PCD,平面PCD;解:连接AN,由中平面PAC,知是直线AD与平面PAC所成角,是等边三角形,,且N为PC中点,,又平面PAC,,,在中,直线AD与平面PAC所成角的正弦值为22. 证明:,,,,,,平面,平面,又平面,,,,DC,平面BCDE,平面BCDE;解:由题意,以EB,ED,分别为x,y,z轴,建立坐标系,则,,,,,,,平面的一个法向量为,设平面的一个法向量为,则,令,,,,钝二面角的余弦值为;解:在线段EB上不存在一点P,使平面平面,设,则,,设平面的法向量为,则,令,,平面平面,由第二问可得平面的一个法向量,由得,,,,在线段EB上不存在一点P,使平面平面【解析】1. 【分析】本题考查多面体表面上的最短距离的计算,考查分析问题解决问题的能力,属于中档题.将侧面PAB与侧面PBC展开到一个平面,则中,CM为最短路线长.【解答】解:由题意,将侧面PAB与平面PBC展开到一个平面,则中,,,,,即最短路线长是,故选2. 【分析】本题考查棱柱的结构特征,考查空间想象能力和思维能力,是中档题.由题意画出截面五边形,再由已知利用勾股定理求得边长得答案.【解答】解:如图所示:延长EF、相交于M,连接AM交于H,延长FE、相交于N,连接AN交于G,可得截面五边形是边长为6的正方体,且E,F分别是棱,的中点,,,截面的周长为故选3. 【分析】本题考查了平面图形的直观图画法与有关计算问题,熟记平面图形的直观图与原图形的面积比,是解题的关键.根据平面图形的直观图与原图形的面积比为1:,列方程求出结果.【解答】解:在坐标系下的面积为;根据水平放置的平面图形的直观图画法知,在xOy坐标系下的面积为,由,且,所以,即的边AB上的高为故选:4. 【分析】本题考查棱台的侧面积,关键是要搞清楚棱台的高、斜高与上下底面的边长之间的关系,难点在于复杂的计算,属于中档题.设该棱台的高为h,斜高,于是,从而可求得【解答】解:设该棱台的高为h,则斜高,该棱台侧面积等于两个底面积之和,,,,故选5. 【分析】本题主要考查台体的体积计算,是中档题.由题意,求出“斗”的体积,再利用求解即可.【解答】解:依题意,,又长方体形凹槽的体积为4300,故“斗”的体积为,其质量为故选:6. 【分析】本题考查球的体积的求法,涉及到余弦定理.设,,,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求出球O的体积.【解答】解:设,,,因为E,F分别是PA,AB的中点,所以,,在中,,在中,,整理得,①因为是边长为2的正三角形,所以,又,则,②,由①②得,所以,所以,即,同理可得,,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为,所以球O的体积为故选7. 【分析】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.求出等边三角形的边长,画出图形,判断D的位置,然后求解即可.【解答】解:为等边三角形且面积为,可得,解得,设球心为O,三角形ABC 的外心为,显然D为的延长线与球的交点时,三棱锥的体积最大.如图:,,则三棱锥高的最大值为:6,则三棱锥体积的最大值为:故选:8. 【分析】本题平面图形的旋转为载体,综合考查线面、面面垂直的判定定理、性质定理的运用,考查空间线线、线面的位置关系及所成的角的概念,考查空间想象能力,属较难题.先推导出平面,从而恒有,从而判断A正确;由异面直线所成的角的概念可判断B不正确;由面面垂直的判定定理,可判断C正确;由斜线的射影定理可判断D正确.【解答】解:在A中,,,是正三角形,,又,平面平面,又平面,恒有,故A正确;在B中,、F为线段AC、BC的中点,,就是异面直线与BD所成的角,当时,直线与BD垂直,故B不正确;在C中,因为平面,平面BCDE,平面平面BCDE,故C正确;在D中,,是正三角形,,又,平面,从而平面平面,且两平面的交线为AF,在平面ABC上的射影在线段AF上,故D正确.故选:9. 【分析】本题以正方体为载体,考查了空间中的平行关系、空间角、距离和体积问题,考查转化与化归的思想,属于拔高题.由异面直线的判定判断A;异面直线EF与所成的角即为与所成的角,据此可判断B;由可计算体积,判断C;将到平面AEF 的距离转化为到平面的距离,利用等体积法可求距离,判断【解答】解:如图所示,AB与为异面直线,故AE与BF也为异面直线,A错误;异面直线EF与所成的角即为与所成的角,即与所成的角,连接,,易得三角形是正三角形,,即异面直线EF与所成的角为,故B正确;连结BD交AC于O,则AO为三棱锥的高,,易知:,则,所以,为定值,故C正确;到平面AEF的距离即到平面的距离,,设到平面AEF的距离为h,由得,即,解得,故D正确.故选10. 【分析】本题考查棱锥的结构特征,异面直线的夹角,点到平面的距离,二面角,锥体的外接球问题,属于困难题.取ED,BC的中点分别为F,G,连接FG,取FG的中点为H,通过题中的数据,结合线面垂直的性质得出平面BCED,从而分析各选项即可.【解答】解:如图,取ED,BC的中点分别为F,G,连接FG,取FG的中点为H,连接,因为正中,D,E分别为边AB,AC的中点,所以,,又易知,,,平面,所以平面,且为的二面角,即,由,可知,所以为正三角形,所以,又平面,平面,所以,又,DE,平面BCED,所以平面BCED,在中,因为,所以,故A正确;连接EG,DG,因为且,所以四边形EDGC为平行四边形,故,即为直线与直线CE所成的角,可知,,,故,故B正确;易知,即,故与BD不垂直,故C错误;易知,所以四棱锥的外接球球心O在过G点且与平面BCED垂直的直线上,记,四棱锥的外接球半径为R,则有,即,解得,故D正确.故选11. 【分析】本题考查空间几何体的结构特征,考查空间距离及几何体体积求法,空间中的线线关系和线面关系.根据棱锥的体积公式即可判断A;假设,推出平面PAB,结合平面PAB即可判断B;取PB的中点Q,连DQ,FQ,计算截面DEFQ的面积即可判断C;证出平面BDE即可判断【解答】解:D,E分别为棱PC,AC的中点,则,又平面ABC,则平面ABC,即平面FBE,,,,所以,,所以三棱锥的体积为,故A正确;假设,平面ABC,平面ABC,,又,,PA,平面PAB,平面PAB,,F分别为AC,AB的中点,,平面PAB,平面PAB,,平面ABC,平面ABC,,,EF,平面DEF,平面DEF,平面DEF,,又假设,,AB,平面PAB,平面PAB,显然不成立,不符合题意,故假设不成立,故B错误;取PB的中点Q,连DQ,FQ,则,,四边形DQFE为平行四边形,平面EFB,平面EFB,,所以平行四边形DEFQ为矩形,,,所以截面面积为12,故C正确;因为,平面BDE,平面BDE,所以平面所以点P与点A到平面BDE的距离相等,故D正确;故选12. 【分析】本题考查空间几何体中线面平行、线面垂直的判定,考查三棱锥的体积求解问题,属于较难题.根据空间中异面直线的概念即可推出选项A正确;取AD的中点M,根据线面垂直的判定定理即可推出选项B成立;根据线面平行的判定定理和性质定理即可得选项C正确;根据面面垂直的性质定理可证得平面ABCD,计算四棱锥的体积,继而可判断出选项D的正误.【解答】解:如图所示,选项A:因为平面ABCD,平面ABCD,,平面ABCD,所以根据异面直线的概念可知选项A正确;选项B:取AD的中点M,连接PM,BM,连接对角线AC,BD相交于点侧面PAD为正三角形,又底面ABCD为菱形,,是等边三角形,又M为AD中点,又,PM、平面平面PMB,故选项B正确;选项C:因为底面ABCD为菱形,所以,又平面PBC,平面PBC,所以平面设平面PAD与平面PBC的交线为l,因为平面PAD,平面PBC,平面平面,所以又因为平面ABCD,平面ABCD,所以平面ABCD,故选项C正确;选项D:由选项B的证明过程可知,又因为平面平面ABCD,平面平面,平面PAD,所以平面因为为正三角形,,所以底面ABCD为菱形,,,所以菱形ABCD的面积为:所以四棱锥的体积为:,故选项D错误.故选13. 【分析】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是难题.将正方体的表面展开图进行还原成正方体,利用正方体中的直线位置关系分别判断.【解答】解:根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线MN与CD异面,命题①正确;对于命题②,、Q分别为所在棱的中点,易证四边形MNQP为平行四边形,所以,,平面PQC,平面PQC,平面PQC,命题②正确;对于命题③,在正方体中,平面PQC,由于四边形MNQP为平行四边形,,平面、平面PQC,,则二面角所成的角为,显然不是直角,则平面MPQ与平面CQN不垂直,命题③错误;对于命题④,设正方体的棱长为2,易知平面AQB,则EQ与平面AQB所成的角为,由勾股定理可得,,在中,,即直线EQ与平面AQB所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面MEFG,且,平面、平面MEFG,,所以,二面角的平面角为,在中,由勾股定理得,由余弦定理得,命题⑤错误.故答案为①②④.14. 【分析】本题主要考查空间直线和平面平行和垂直的位置关系的判断,综合考查学生的推理能力,属于中档题.①根据面面平行的性质定理进行判断平面;②利用特殊值法,即可判断不成立;③根据面面垂直的判断条件即可判断平面平面;④将三棱锥的体积进行等价转化,即可判断三棱锥的体积不变.【解答】解:①在正方体中,,且平面,平面,平面,同理平面,又、平面,且,平面平面;在面对角线AC上运动,平面;①正确.②当P位于AC的中点时,不成立,②错误;③平面,平面,,同理,平面,,平面平面;③正确.④三棱锥的体积等于三棱锥的体积.的面积为定值,B到平面的距离为高,为定值,三棱锥的体积不变,④正确.故答案为:①③④.15. 【分析】本题主要考查了线面角,难度较大.首先在矩形ABCD中,过点D作AF的垂线交AF于O点,交AB于M点,证明是直线DF与平面ABCF所成的角,求出最大,进而即可解答【解答】解:如图,在矩形ABCD中,过点D作AF的垂线交AF于O点,交AB于M点,设,,由且四边形ABCD是矩形可知,,所以,所以在翻折后的几何体中,连接DM,因为,,,OD,平面ODM,所以平面ODM,又AF在平面ABCF内,所以平面平面ABCF,又平面平面ABCF,平面平面,所以平面连接MF,则是直线DF与平面ABCF所成的角,所以为锐角因为,,所以,又,故当,即时,取得最大值,此时有最大值,即有最大值故答案为16. 【分析】本题主要考查了线面垂直的性质与判定、异面直线所成的角、正三棱锥的外接球的体积. 根据三棱锥的底面为正三角形且侧棱长相等得到正三棱锥,得到面ABC,接着根据线面垂直的性质、正三角形的性质及线面垂直的判定得到面SBE,进而得到,最后根据中位线的性质证明出根据已知及线面垂直的判定得到面SAC,从而结合正三棱锥得到其为相应正方体的一部分,求出球的半径及球的体积.【解答】解:如图所示,在三棱锥中,若底面ABC是正三角形,侧棱长知,三棱锥是正三棱锥,则点S在底面ABC中的投影为底面的中心O,所以面ABC,因此,又E为AC中点,,,所以平面SBE,平面SBE,,又M、N分别为棱SC、BC的中点,则,因此,异面直线MN与AC所成角为;,,,平面SAC ,又,则平面SAC,又三棱锥是正三棱锥,因此三棱锥可以看成正方体的一部分且S,A,B,C为正方体的四个顶点,故球的直径为,则球的体积为故答案为:17. 本题重点考查棱柱的侧面展开图求最短距离和二面角的求法,考查推理能力、计算能力和空间想象能力.将侧面,展开在一个平面内,连交于M,利用最短路线为即可求解;取中点D,连接,过D作,垂足为E,连接说明为平面与平面所成锐二面角的平面角,解直角三角形即可.18. 本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.根据直线平行的性质以及菱形对角线垂直的性质进行证明即可.根据条件求出底面五边形的面积,结合平行线段的性质证明是五棱锥的高,即可得到结论.19. 本题考查四点共线的证明,考查三条直线交于一点的证明,异面直线所成角,属于拔高题.分别连接EF、、,推导出四边形为平行四边形,由此能证明E、F、、C四点共面.推导出直线和CE必相交,设,推导出P是平面ABCD与平面的公共点,由此能证明CE、、DA三线共点.由题意与所成角即为,在中求解即可.20. 本题重点考查线面垂直和线面平行的判定,以及二面角的求法,考查空间想象能力、推理能力和计算能力,属于拔高题.通过求证,即可求证平面PAC;设PD的中点是F,通过求证,即可求证存在中点E,使得平面PCD;设G为AD中点,连结CG,过G作于H,连结CH,先说明是二面角的平面角,再利用解三角形知识求解即可.21. 本题考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力,属于拔高题.连接BD ,由题意得,,由,得,由此能证明平面PAD;取棱PC中点N,连接DN,推导出,从而平面PAC,进而,再上,能证明平面PCD;连接AN ,由平面PAC ,知是直线AD与平面PAC所成角,由此能求出直线AD与平面PAC所成角的正弦值.22. 本题考查线面垂直的判定与性质及利用空间向量求二面角和平面与平面垂直.属于拔高题.证明平面,可得,利用,,可得平面BCDE;以EB,ED ,分别为x,y,z 轴,建立坐标系,求出平面、平面的一个法向量,利用向量的夹角公式求二面角的余弦值;设,求出平面的法向量,利用平面平面,可得结论.第31页,共31页。
高一数学(必修二)立体几何初步单元测试卷及答案
高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
新人教版高中数学选修一第一单元《空间向量与立体几何》测试卷(答案解析)
一、选择题1.设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则x y z ++=( ).A .14B .12C .34D .12.直三棱柱111ABC A B C -中,1AC BC AA ==,90ACB ∠=,则直线1A C 与平面11A BC 所成的角的大小为( )A .30B .60C .90D .1203.如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A 6B 3C 6D .234.如图,在四面体A BCD -中,已知AD a →→=,AB b →→=,AC c →→=,12BE EC →→=,则DE →等于( )A .2133a b c →→→-++B .2133a b c →→→++ C .2133a b c →→→-+ D .2133a b c →→→-+5.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为( ) A .241B .41C .17D .2176.在三棱锥P ABC -中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为( )A .1111B .21111C .311D .411117.已知正四面体ABCD 的棱长为a ,点E ,F 分别是,BC AD 的中点,则AE AF ⋅的值为( ) A .2aB .212a C .214a D .23a 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭9.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c =,M 是1D D 的中点,点N 是1AC 上的点,且113AN AC =,用,,a b c 表示向量MN 的结果是( )A .12a b c ++ B .114555a b c ++C .1315105a b c --D .121336a b c --10.()2,23,1a m =-,()4,2,32b n =--.若//a b .则实数mn 的值是( )A .-2B .13C .2D .011.如图四边形ABCD 中,2AB BD DA ===,2BC CD ==,现将ABD △沿BD折起,当二面角A BD C --的大小为56π时,直线AB 与CD 所成角的余弦值是( )A .52B .32C .32D .2 12.已知ABC ,AB AC =,D 是BC 上的点,将ABD ∆沿AD 翻折到1AB D ∆,设点A 在平面1B CD 上的射影为O ,当点D 在BC 上运动时,点O ( )A .位置保持不变B .在一条直线上C .在一个圆上D .在一个椭圆上13.如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别是对边,OB AC 的中点,点G 在线段MN 上,2MG GN =,现用基向量,,OA OB OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( )A .111333x y z ===,, B .111336x y z ===,, C .111363x y z ===,, D .111633x y z ===,, 二、填空题14.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为______.15.已知(5,3,1)a =,22,,5b t ⎛⎫=-- ⎪⎝⎭.若a 与b 的夹角为钝角,则实数t 的取值范围是________.16.如图,在正四棱柱1111ABCD A B C D -中,底面边长为2,直线1CC 与平面1ACD 所成角的正弦值为13,则正四棱柱的高为_____.17.写出直线210x y ++=的一个法向量n =______.18.已知向量()()2,1,3,1,2,1a b =-=-,若()a ab λ⊥-,则实数λ的值为______. 19.在空间直角坐标系中, ()()()2,1,1,3,4,,2,7,1,A B C AB CB 若λ-⊥,则λ=____ 20.如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别是棱111,,AA BC C D 的中点,设M 是该正方体表面上的一点,若(,)EM xEF yEG x y =+∈R ,则点M 的轨迹所形成的长度是________.21.如图,在棱长为2的正方体中,点P 在正方体的对角线AB 上,点Q 在正方体的棱CD 上,若P 为动点,Q 为动点,则PQ 的最小值为_____.22.设向量(2,23,2),(4,21,32)a m n b m n =-+=+-,且//a b ,则a b ⋅的值为__________.23.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.24.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.25.已知空间四边形ABCD 的每条边和对角线的长都等于2,点E ,F 分别是边BC ,AD 的中点,则AE AF ⋅的值为_____.26.在空间直角坐标系中,(2,0,1)a x =--,(1,,2)b y =,且|2|13a b +=2m x y =+的取值范围是_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】利用空间向量的基本定理可计算得出1111333OG OA OB OC =++,由已知条件可得出134OG OG =,进而可求得x 、y 、z 的值,由此可求得结果.【详解】如下图所示,连接1AG 并延长交BC 于点D ,则点D 为BC 的中点,1G 为ABC 的重心,可得123AG AD =, 而()()111222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+, ()1122123333OG OA AG OA AD OA OD OA OA OD =+=+=+-=+ ()()12113323OA OB OC OA OB OC =+⋅+=++,所以,13311111144333444OG OG OA OB OC OA OB OC ⎛⎫==++=++ ⎪⎝⎭, 所以,14x y z ===,因此,34x y z ++=. 故选:C. 【点睛】方法点睛:对于空间向量的基底分解的问题,一般需要利用向量的加减法法则进行处理,也可以借助一些相应的结论对运算进行简化.2.A解析:A 【分析】以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1A C 与平面11A BC 所成的角.在直三棱柱111ABC A B C -中,1CC ⊥平面ABC , 又90ACB ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如下图所示:设11AC BC AA ===,则()11,0,1A 、()0,1,0B 、()0,0,0C 、()10,0,1C , ()111,0,0A C =-,()10,1,1=-BC ,()11,0,1=--AC , 设平面11A BC 的法向量为(),,n x y z =,由11100n AC x n BC y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可得0x y z =⎧⎨=⎩,令1y =,可得0x =,1z =,所以,平面11A BC 的一个法向量为()0,1,1n =,1111cos ,222n A C n A C n A C⋅<>==-⨯⋅,所以,直线1A C 与平面11A BC 所成角的正弦值为12,则直线1A C 与平面11A BC 所成角为30.故选:A. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.3.C【解析】如图,以A 为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a ,a,0),F(a,0,0),AG =(a ,a,0),AC =(0,2a,2a),BG =(a ,-a ,0),BC =(0,0,2a),设平面AGC 的法向量为n 1=(x 1,y 1,1), 由110{AG n AC n ⋅=⋅=⇒⇒111{1x y ==-⇒n 1=(1,-1,1).sinθ=11BG n BG n ⋅⋅=23a ⨯6. 4.A解析:A 【分析】利用向量三角形法则与向量共线定理可得:DE BE BD →→→=-,13BE BC →→=,BC AC AB →→→=-,BD AD AB →→→=-,代入即可得出.【详解】解:已知AD a →→=,AB b →→=,AC c →→=,12BE EC →→=,利用向量三角形法则和向量共线定理得出:DE BE BD →→→=-,13BE BC →→=,BC AC AB →→→=-,BD AD AB →→→=-, ∴112()()333DE AC AB AD AB c a b →→→→→→→→=---=-+,即:2133DE a b c →→→→=-++.故选:A.本题考查向量的三角形法则和向量基本定理的应用,考查了推理能力.5.D解析:D 【分析】画出图形,作,AC CD BD CD ⊥⊥,则6,8,4AC BD CD ===,可得0,0AC CD BD CD ⋅=⋅=,沿x 轴将坐标平面折成60︒的二面角,故两异面直线,CA DB所成的角为60︒,结合已知,即可求得答案. 【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒.可得:.cos6024CA DB CA DB ︒⋅=⋅= 故由AB AC CD DB =++ 得22||||AB AC CD DB =++2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅= 2222+22AC CD DB AC CD CD DB CA DB +++⋅⋅-⋅=36166448=++-68=||17AB ∴=故选:D. 【点睛】本题考查了立体几何体中求线段长度,解题的关键是作图和掌握空间向量的距离求解公式,考查了分析能力和空间想象能力,属于中档题.6.C解析:C 【分析】首先利用线面角的定义,可知当D 为PC 的中点时,AD 取得最小值,此时BD 与平面PAC 所成角最大,再以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,利用向量坐标法求线面角的正弦值. 【详解】,AB AC AB PA ⊥⊥,且PA AC A =, AB ∴⊥平面PAC ,易证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值 在等腰Rt PAC ∆中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D , 则(0,1,1)AD =,(0,2,2)PC=-,(3,2,0)BC =-设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=,即220320y z x y -=⎧⎨-+=⎩令3y =,得(2,3,3)n =.因为311cos ,11222n AD 〈〉==⨯,所以AD 与平面PBC 311. 故选:C 【点睛】关键点点睛:本题重点考查线面角,既考查了几何法求线面角,又考查向量法求线面角,本题关键是确定点D 的位置,首先利用线面角的定义确定点D 的位置,再利用向量法求线面角.7.C解析:C把要求数量积的两个向量表示成以四面体的棱长为基底的向量的表示形式,写出向量的数量积,问题转化成四面体的棱之间的关系,因为棱长和夹角已知,得到结果.【详解】 解:11()22AE AF AB AC AD =+ 1()4AB AD AC AD =+ 1(cos60cos60)4a a a a =⨯⨯︒+⨯⨯︒ 2221111()4224a a a =+= 故选:C.【点睛】本题考查空间向量的数量积,解题的关键是把要用的向量写成以已知几何体的一个顶点为起点的向量为基地的形式,再进行运算.8.C解析:C【分析】设(,,)Q x y z ,根据点Q 在直线OP 上,求得(,,2)Q λλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB ⋅取得最小值,即可求解. 【详解】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选:C.本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得出关于λ的二次函数是解答的关键,着重考查运算与求解能力. 9.D解析:D【分析】在平行六面体1111ABCD A B C D -中根据空间向量的加法合成法则,对向量MN 进行线性表示,即可求得答案.【详解】连接1C M113AN AC = 可得:1123C N C A = ()111AC AA AC AA AD AB c a b =+=++=++ ∴1122223333C N C A c a b ==--- 又112C M a c =-- ∴11MN C N C M =-22213332c a b a c ⎛⎫=------ ⎪⎝⎭ 121336a b c --= ∴121336a b N c M =-- 故选: D.【点睛】本题考查了空间向量的加法运算,解题关键是掌握向量的加法运算和数形结合,属于基础题. 10.D解析:D根据平行得到()()()()2,23,14,2,324,2,32m n n λλλλ-=--=--,计算得到答案.【详解】 ()2,23,1a m =-,()4,2,32b n =--,//a b ,则λa b ,即()()()()2,23,14,2,324,2,32m n n λλλλ-=--=--故()24232132m n λλλ⎧=-⎪-=⎨⎪=-⎩解得1,1,02m n λ=-==,故0mn = 故选:D【点睛】本题考查了根据向量平行计算参数,意在考查学生的计算能力.11.A解析:A【分析】取BD 中点O ,连结AO ,CO ,以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出直线AB 与CD 所成角的余弦值.【详解】解:取BD 中点O ,连结AO ,CO ,2AB BD DA ===.BC CD ==CO BD ∴⊥,AO BD ⊥,且1CO =,AO =AOC ∴∠是二面角A BD C --的平面角,因为二面角A BD C --的平面角为56π, 56AOC π∴∠= 以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则(0B ,1-,0),(1C ,0,0),(0D ,1,0),3(2A -,∴3(2BA =-,(1,1,0)CD =-, 设AB 、CD 的夹角为α,则3|1|||cos ||||2AB CD AB CD α+===, 故选:A .【点睛】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.12.C解析:C【分析】为计算简便,不妨设ABC 为等腰直角三角形,建立空间直角坐标系,取BC 中点M ,利用AO OC ⊥,AO OM ⊥即可得到轨迹方程.【详解】为计算简便,不妨设ABC 为等腰直角三角形,令2BC =,且令190B DC ∠=︒, 以BC 中点M 为空间原点,MA 为z 轴,建立空间直角坐标系,设(02)BD a a =<<,12B A BA =(,,)O x y z ,则()010C ,,,(001A ,,),(000M ,,),()0,1,0D a -,所以(AO x =,y ,1z -),(),1,CO x y z =-,(),,MO x y z =, 因为AO OC ⊥,所以()()2110AO CO x y y z z ⋅=+-+-=, 同理AO OM ⊥,所以()2210AO MO x y z z ⋅=++-=, 两式相减得0y =,代入得()222111()24x z z x z +-=+-=, 故选:C .【点睛】本题考查点的轨迹方程,考查空间向量位置关系等,建立空间直角坐标系是关键,属于中档题.13.D解析:D【分析】根据向量的加减法运算和数乘运算原则可表示出OG ,进而得到结果.【详解】()1212121223232323OG OM MG OA MN OA MA AN OA OA AN =+=+=++=+⨯+()525221636332OA AB BN OA AB BC =++=++⨯()()521111633633OA OB OA OC OB OA OB OC =+-+-=++ 16x ∴=,13y =,13z = 故选:D【点睛】本题考查用基底表示向量,关键是能够熟练掌握向量的加减法运算和数乘运算原则.二、填空题14.【分析】本题首先可结合题意绘出空间直角坐标系然后根据空间直角坐标系得出以及最后根据即可得出结果【详解】因为四棱柱使直四棱柱为直角所以可以以为坐标原点以所在直线分别为轴轴轴建立如图所示的空间直角坐标系【分析】本题首先可结合题意绘出空间直角坐标系,然后根据空间直角坐标系得出()0,1,0DC =以及()12,3,2BC =--,最后根据111cos ,DC BC DC BC DC BC ⋅=⋅即可得出结果.【详解】因为四棱柱1111ABCD A B C D -使直四棱柱,A ∠为直角,//AB CD ,所以可以以D 为坐标原点,以DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则()0,0,0D ,()2,4,0B ,()0,1,0C ,()10,1,2C ,故()0,1,0DC =,()12,3,2BC =--, 因为1DC =,222123217BC =++=, 所以1113317cos ,1717DC BC DC BC D BC C ⋅-===⋅, 故异面直线DC 与1BC 所成的角的余弦值为31717, 317 【点睛】 方法点睛:求空间中两条异面直线所成角的大小是立体几何中最为常见的基本题型之一.这类问题的求解一般有两条途径:其一是平移其中的一条直线或两条直线,将其转化为共面直线所成角,然后再构造三角形,通过解三角形来获得答案;其二是建立空间直角坐标系,借助空间向量的数量积公式求出两向量的夹角的大小,从而得出结果. 15.【分析】由根据与的夹角为钝角由且求解【详解】因为所以因为与的夹角为钝角所以且由得所以若与的夹角为则存在使即所以解得故答案为:【点睛】本题主要考查平面向量的数量积的应用还考查了运算求解的能力属于中档题解析:6652,,5515⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭ 【分析】由(5,3,1)a =,22,,5b t ⎛⎫=-- ⎪⎝⎭,根据a 与b 的夹角为钝角,由0a b ⋅<且,180a b ︒〈〉≠求解.【详解】因为(5,3,1)a =,22,,5b t ⎛⎫=-- ⎪⎝⎭, 所以2525(2)31355a b t t ⎛⎫⋅=⨯-++⨯-=- ⎪⎝⎭,因为a 与b 的夹角为钝角,所以0a b ⋅<且,180a b ︒〈〉≠,由0a b ⋅<,得52305t -<, 所以5215t <. 若a 与b 的夹角为180︒,则存在0λ<,使a b λ=, 即2(5,3,1)2,,5t λ⎛⎫=--⎪⎝⎭, 所以523215t λλλ⎧⎪=-⎪=⎨⎪⎪=-⎩, 解得65t =-, 故答案为: 6652,,5515⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭ 【点睛】本题主要考查平面向量的数量积的应用,还考查了运算求解的能力,属于中档题. 16.4【分析】以为坐标原点所在直线分别为轴轴轴建立空间直角坐标系设求出平面的一个法向量则则可以得到答案【详解】解:以为坐标原点所在直线分别为轴轴轴建立如图所示的空间直角坐标系设则故设平面的一个法向量为则 解析:4【分析】以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 设1DD a =,求出平面1ACD 的一个法向量n ,则11cos ,3n CC <>=,则可以得到答案. 【详解】解:以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设1DD a =,则(2,0,0)A ,(0,2,0)C ,1(0,0,)D a ,故(2,2,0)=-AC ,1(2,0,)AD a =-,1(0,0, )CC a =,设平面1ACD 的一个法向量为(,,)n x y z =,则122020n AC x y n AD x az ⎧⋅=-+=⎨⋅=-+=⎩,可取21,1,n a ⎛⎫=⎪⎝⎭, 故11212cos ,||||4242n CC n CC n CC a a a⋅<>===+⋅+, 又直线1CC 与平面1ACD 所成角的正弦值为13, 21324a ∴=+,解得4a =. 故答案为:4.【点睛】本题考查根据线面角,利用向量法求柱体的高,属于中档题.17.【分析】化直线方程为斜截式求出直线的斜率得到直线的一个方向向量进而可求得直线的一个法向量得到答案【详解】由题意化直线的方程为斜截式可得直线的斜率为-2所以直线的一个方向向量为所以直线的一个法向量为故解析:()21, 【分析】化直线方程为斜截式,求出直线的斜率,得到直线的一个方向向量,进而可求得直线的一个法向量,得到答案.【详解】由题意,化直线210x y ++=的方程为斜截式21y x =--,可得直线的斜率为-2,所以直线的一个方向向量为12-(,),所以直线的一个法向量为21(,). 故答案为21(,)【点睛】本题主要考查了直线的方向向量和法向量的意义、数量积的运算是解题的关键,是基础题.18.2【分析】由题意知向量所以由空间向量的坐标运算即可求解【详解】由题意知向量所以又由解得【点睛】本题主要考查了空间向量的坐标运算及空间向量的数量积的运算其中解答中熟记空间向量的数量积的运算公式准确运算 解析:2【分析】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,由空间向量的坐标运算,即可求解.【详解】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,又由()()()()22222132112311470a a b a a b λλλλ⎛⎡⎤⋅-=-⋅=-++--⨯-+⨯+⨯=-= ⎪⎣⎦⎝⎭, 解得2λ=.【点睛】 本题主要考查了空间向量的坐标运算,及空间向量的数量积的运算,其中解答中熟记空间向量的数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.19.【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题然后利用向量的数量积坐标运算计算的值即可【详解】又即解得故答案为【点睛】本题主要考查空间向量的应用向量垂直的充分必要条件等知识意在考 解析:3±【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题,然后利用向量的数量积坐标运算计算λ的值即可.【详解】()()()2,1,1,3,4,,2,7,1A B C λ-, ∴AB ()1,3,1,λ=+CB ()1,3,1λ=--, 又,AB CB ⊥0AB CB ∴⋅=,即()()()1133110λλ⨯+⨯-++-=,解得3λ=±,故答案为3±.【点睛】本题主要考查空间向量的应用,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.20.【分析】首先确定点的轨迹再求长度【详解】在平面上取的中点则点的轨迹是正六边形轨迹长度是正六边形的周长故答案为:【点睛】关键点点睛:本题的关键是确定在平面上并能作出平面与正方体的交线解析:【分析】首先确定点M 的轨迹,再求长度.【详解】(,)EM xEF yEG x y =+∈R ,M ∴在平面EFG 上,取11A D ,AB ,1CC 的中点,,N H P ,则点M 的轨迹是正六边形EHFPGN ,轨迹长度是正六边形的周长,632l EN ==.故答案为:32【点睛】关键点点睛:本题的关键是确定M 在平面EFG 上,并能作出平面EFG 与正方体的交线. 21.【分析】建立空间直角坐标系利用三点共线设出点P(λλ2﹣λ)0≤λ≤2以及Q(02μ)0≤μ≤2根据两点间的距离公式以及配方法即可求解【详解】建立如图所示空间直角坐标系设P(λλ2﹣λ)Q(02μ)解析:2【分析】建立空间直角坐标系,利用,,A B P 三点共线设出点P (λ,λ,2﹣λ),0≤λ≤2,以及Q (0,2,μ),0≤μ≤2,根据两点间的距离公式,以及配方法,即可求解.【详解】建立如图所示空间直角坐标系,设P (λ,λ,2﹣λ),Q (0,2,μ)(0≤λ≤2且0≤μ≤2),可得PQ =22222(2)(2)2(1)(2)2λλλμλλμ+-+--=-+--+,∵2(λ﹣1)2≥0,(2﹣λ﹣μ)2≥0,∴2(λ﹣1)2+(2﹣λ﹣μ)2+2≥2,当且仅当λ﹣1=2﹣λ﹣μ=0时,等号成立,此时λ=μ=1,∴当且仅当P 、Q 分别为AB 、CD 的中点时,PQ 的最小值为2.故答案为:2.【点睛】本题考查空间向量法求两点间的距离,将动点用坐标表示是解题的关键,考查配方法求最值,属于中档题.22.168【分析】根据向量设列出方程组求得得到再利用向量的数量积的运算公式即可求解【详解】由题意向量设又因为所以即解得所以所以故答案为:【点睛】本题主要考查了向量的共线的坐标运算以及向量的数量积的运算其 解析:168【分析】根据向量//a b ,设λa b ,列出方程组,求得12λ=,得到(2,4,8),(4,8,16)a b ==,再利用向量的数量积的运算公式,即可求解.【详解】由题意,向量//a b ,设λa b ,又因为(2,23,2),(4,21,32)a m n b m n =-+=+-,所以(2,23,2)(4,21,32)m n m n λ-+=+-,即2423(21)2(32)m m n n λλλ=⨯⎧⎪-=+⎨⎪+=-⎩,解得17,,622m n λ===, 所以(2,4,8),(4,8,16)a b ==,所以2448816168a b ⋅=⨯+⨯+⨯=.故答案为:168.【点睛】本题主要考查了向量的共线的坐标运算,以及向量的数量积的运算,其中解答中熟记向量的共线条件,熟练应用向量的数量积的运算公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.23.【分析】利用向量的加法公式得出再由得出的值即可得出的和【详解】即故答案为:【点睛】本题主要考查了用空间基底表示向量属于中档题 解析:78【分析】 利用向量的加法公式得出111222MN OA OB OC =-++,再由1324OG OM MG OA MN =+=+,得出,,x y z 的值,即可得出,,x y z 的和. 【详解】MN MA AB BN =++11111()22222OA OB OA OC OB OA OB OC =+-+-=-++13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC =++ 133,,888x y z ∴=== 即78x y z ++=故答案为:78【点睛】本题主要考查了用空间基底表示向量,属于中档题. 24.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面解析:5【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可.【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-,则这两个平面所成的锐二面角的大小是θ,2cos a ba b θ→→→→===这两个平面所成的锐二面角的余弦值为5.故答案为:5. 【点睛】 本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.25.1【分析】结合已知条件运用向量的数量积运算法则即可求出结果【详解】因为点分别是边的中点则又因为空间四边形ABCD 的每条边和对角线的长都等于2所以原式故答案为:【点睛】本题考查了向量数量积的运算解题过 解析:1【分析】结合已知条件运用向量的数量积运算法则即可求出结果.【详解】因为点E ,F 分别是边BC ,AD 的中点, 则111()()224AE AF AB AC AD AB AD AC AD ⋅=+⋅=⋅+⋅,又因为空间四边形ABCD 的每条边和对角线的长都等于2,所以原式1(22cos6022cos60)14=⨯⨯⨯︒+⨯⨯︒=. 故答案为:1【点睛】 本题考查了向量数量积的运算,解题过程中运用向量的加法运算进行转化,转化为空间四边形边之间的关系,然后再结合题意计算出结果,需要掌握解题方法.26.【分析】推导出由得到从而由此能求出的取值范围【详解】在空间直角坐标系中整理得:的取值范围是故答案为:【点睛】本题考查代数式的取值范围的求法考查空间向量坐标运算法则椭圆的参数方程等基础知识考查运算求解解析:⎡⎣【分析】推导出2(a b x +=,2y ,3),由|2|13a b +=2214x y +=,从而2cos sin x y θθ=⎧⎨=⎩,(02)θπ≤<,由此能求出2m x y =+的取值范围. 【详解】在空间直角坐标系中,(2,0,1)a x =--,(1,,2)b y =,∴2(,2,3)a b x y +=,|2|13a b +=,∴=2244x y +=,∴2214x y +=, ∴2cos sin x y θθ=⎧⎨=⎩,(02)θπ≤<,2sin 4cos )m x y θθθα∴=+=+=+,tan 4α=.2m x y ∴=+的取值范围是[.故答案为:[.【点睛】本题考查代数式的取值范围的求法,考查空间向量坐标运算法则、椭圆的参数方程等基础知识,考查运算求解能力,求解时注意三角函数中辅助角公式及有界性的应用.。
高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)
第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
人教版高一第一章空间几何体单元测试精选(含答案)1
人教版高一第一章空间几何体单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知圆锥的母线长为8,底面圆周长为6π,则它的体积是( )A .B .C .D .【答案】D2.如图,正四棱锥S ABCD -的所有棱长都等于a ,过不相邻的两条棱,SA SC 作截面SAC ,则截面的面积为A .232aB .2aC .212aD .213a 【答案】C3.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( ) A .12B .14C .1D .39129【答案】D4.圆台上、下底面面积分别是π、4π,侧面积是6π,这 个圆台的体积是( )A .π B .C πD .3π 【答案】D5.我国古代数学名著《数书九章》中有“天池盆测雨”题,大概意思如下:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为2尺8寸,盆底直径为l 尺2寸,盆深1尺8寸.若盆中积水深9寸,则平均降雨量是(注:①平均降雨量等于盆中积水体积除以盆口面积;②1尺等于10寸)( ) A .3寸B .4寸C .5寸D .6寸【答案】A6.棱长都是1的三棱锥的表面积为( )A B .C .D .【答案】A7.在ABC ∆中,2, 1.5AB BC ==,0120ABC ∠=,若使该三角形绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .32π B .52πC .72π D .92π 【答案】A8.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为( )A .B .C .D .【答案】B9.半径为R 的半圆卷成一个圆锥,则它的体积为A .3R B .324R C .38R D .38R 【答案】B10.设球内切于圆柱,则此圆柱的全面积与球的表面积之比为( ) A .1:1 B .2:1 C .3:2 D .4:3【答案】C11.某四棱锥的三视图如图所示,则该四棱锥的最长的长度为( ).A .B .C .D .2【答案】A12.矩形ABCD 中,4AB =,3BC =,沿AC 将ABCD 矩形折起,使面BAC ⊥面DAC ,则四面体A BCD -的外接球的体积为( )A .1256π B .1259π C .12512π D .1253π 【答案】A13.下图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等。
2021年人教A版(2019)选择性必修第一册第一章空间向量与立体几何单元测试卷高中数学答案加解析
2021年人教A 版(2019)选择性必修第一册数学第一章 空间向量与立体几何单元测试卷(1)一、选择题1. 已知向量a →=(1,−2,2),b →=(1,1,6),则|a →−b →|=( ) A.25 B.17 C.√17 D.52. 已知向量a →=(λ, 6, 2),b →=(−1, 3, 1),满足a → // b →,则实数λ的值是( ) A.2 B.6 C.−2 D.−63. 在空间直角坐标系O −xyz 中,点A (−1,0,3)关于坐标原点的对称点为B ,则|AB|=( ) A.2 B.√10 C.2√10 D.104. 如图所示,在空间四边形OABC 中, OA →=a →,OB →=b →,OC →=C →,点N 在AB 上,且AN →=2NB →,M 为OC 中点,则MN →=( )A.12a →−23b →−12c →B.−23a →+12b →+12c →C.13a →+12b →−12c →D.13a →+23b →−12c →5. 设P (1,−2,5)是空间直角坐标系中的一点,则点P 关于坐标平面yOz 的对称点的坐标为( ) A.(1,2,−5) B.(−1,−2,5) C.(−1,−2,−5) D.(1,−2,−5)6. 已知平面α内有一点A (2,−1,2),平面α 的一个法向量为n →=(12,16,13),则下列四个点中在平面α内的是( ) A.P 1(1,−1,1) B.P 2(1,3,32)C.P 3(1,−3,32)D.P 4(−1,3,−32)7. 如图,在平行六面体ABCD −A 1B 1C 1D 1中,M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND ,设AB →=a →,AD →=b →,AA 1→=c →,则MN →=( )A.−13a →+13b →+13c →B.a →+13b →−13c →C.13a →−13b →−23c →D.−13a →+b →+13c →8. 空间直角坐标系中A(1, 2, 3),B(−1, 0, 5),C(3, 0, 4),D(4, 1, 3),则直线AB 与CD 的位置关系是( ) A.平行 B.垂直 C.相交但不垂直 D.无法确定9. 已知A (0,0,2),B (1,0,2),C (0,2,0),则点A 到直线BC 的距离为( ) A.2√23B.1C.√2D.2√210. 如图,在正方体ABCD −A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段B 1C 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.[√63,1] B.[√23,1] C.[√23,2√23] D.[√63,2√23]11. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.在如图所示的阳马P−ABCD中,侧棱PD⊥底面ABCD,且PD=CD=AD,点E是PC 的中点,则PD与BE所成角的余弦值是()A.√33B.√36C.√63D.√6612. 如图,直三棱柱ABC一A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90∘,D是A1B1的中点,F是棱BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为( )A.√510B.√1010C.12D.√105二、填空题13. 已知直线l的一个法向量是n→=(√3,−1),则l的倾斜角的大小是________.14. 已知平面α的法向量为(2, −4, −2),平面β的法向量为(k, 2, 1),若α // β,则实数k的值为________.15. 给出下列命题:①直线l 的方向向量为a →=(1, −1, 2),直线m 的方向向量b →=(2, 1, −12),则l 与m 垂直; ②直线l 的方向向量a →=(0, 1, −1),平面α的法向量n →=(1, −1, −1),则l ⊥α; ③平面α,β的法向量分别为n 1→=(0, 1, 3),n 2→=(1, 0, 2),则α // β;④平面α经过三点A(1, 0, −1),B(0, 1, 0),C(−1, 2, 0),向量n →=(1, u, t)是平面α的法向量,则u +t =1.其中真命题的是________.(把你认为正确命题的序号都填上)16. 如图所示的一块长方体木料中,已知AB =BC =2,AA 1=1,设F 为线段AD 上一点,则该长方体中经过点A 1,F ,C 的截面面积的最小值为________.三、解答题17. 已知向量b →=(−2,1,1),点A(−3,−1,4),B(−2,−2,2),点E 在直线AB 上,使得OE →⊥b →,则点E 的坐标为多少.18. 如图,在空间直角坐标系中,正方体ABCD −A 1B 1C 1D 1棱长为2,E 为正方体的棱AA 1的中点,F 为棱AB 上的一点,若∠C 1EF =90∘,则点F 的坐标是多少.19.如图,正四棱柱ABCD −A 1B 1C 1D 1中,设AD =1,D 1D =λ(λ>0),若棱C 1C 上存在唯一的一点P 满足A 1P ⊥PB ,求实数λ的值.20.在如图所示的几何体中,△FCB是等边三角形,四边形ABCD是等腰梯形,AB//CD,AB,平面FCB⊥平面ABCD.CB=CD=12(1)求证:AC⊥平面FCB;(2)求二面角F−BD−C的余弦值.21. 在直四棱柱ABCD−A1B1C1D1中,AD // BC,∠BAD=90∘,AB=√3,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.22. 如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE中点.将△ABE沿BE折起到A′BE,使得平面A′BE⊥平面BCDE(如图2).(1)求证:A′O⊥CD;(2)求直线A′C与平面A′DE所成角的正弦值;(3)在线段A′C上是否存在点P,使得OP//平面A′DE?若存在,求出A′P的值;若不存在,A′C请说明理由.参考答案与试题解析2021年人教A 版(2019)选择性必修第一册数学第一章 空间向量与立体几何单元测试卷(1)一、选择题 1.【答案】 D【考点】空间向量运算的坐标表示 向量的模向量的减法及其几何意义 【解析】先求出a →−b →=(0,−3,−4),再利用模长公式求解即可. 【解答】解:∵ a →=(1,−2,2),b →=(1,1,6), ∴ a →−b →=(0,−3,−4),∴ |a →−b →|=√02+(−3)2+(−4)2=5. 故选D . 2.【答案】 C【考点】共线向量与共面向量 【解析】利用向量平行的性质直接求解. 【解答】解:∵ 向量a →=(λ, 6, 2),b →=(−1, 3, 1),满足a → // b →, ∴ λ−1=63=21,解得λ=−2, ∴ 实数λ的值是−2. 故选C . 3.【答案】 C【考点】空间中的点的坐标 空间两点间的距离公式求出B 点的坐标,再根据空间中两点间的距离公式即可得解. 【解答】解:设B (a,b,c ), 由中点坐标公式可得:a−12=0,b+02=0,c+32=0,解得a =1,b =0,c =−3, 所以B (1,0,−3),所以点|AB |=√(−1−1)2+(0−0)2+(3+3)2=2√10. 故选C . 4. 【答案】 D【考点】空间向量的加减法 【解析】利用向量的加法,MN →=MO →+OB →+BN →,利用中点公式代入. 【解答】解:MN → =MO → +OB → +BN →,MO → =−12OC →,BN → = 13BA → = 13(OA → −OB →), 所以MN →=−12OC → + 23OB → + 13OA →=−12c →+23b →+13a →. 故选D . 5. 【答案】 B【考点】空间直角坐标系 【解析】根据空间点的对称性分别进行判断即可. 【解答】解:因为点P(a, b, c)与点P ′关于坐标平面yOz 对称,则y ,z 不变,x 相反, 所以对称点P ′(−a, b, c),所以P (1,−2,5)关于坐标平面yOz 的对称点的坐标为(−1,−2,5). 故选B . 6.【答案】 B【考点】 平面的法向量向量的减法及其几何意义若点P 在平面α内,则P 2A →⋅n →=0,经过验证即可判断出结论. 【解答】解:由题意得P 1A →=(1,0,1),P 1A →⋅n →=56≠0,排除选项A . 同理,可排除选项C ,D . 因为P 2A →=(1,−4,12),所以P 2A →⋅n →=0. 故选B . 7.【答案】 A【考点】空间向量的基本定理及其意义 向量的加法及其几何意义 【解析】充分利用向量加法、减法的平行四边形、三角形法则以及数乘运算,将MN →表示出来,易知MN →=MA →+AA 1→+A 1N →,然后将三个向量分别用基底表示出来代入即可. 【解答】解:因为M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND , 所以AM →=13AC →,A 1N →=23A 1D →. 又由已知平行六面体ABCD −A 1B 1C 1D 1, 且AB →=a →,AD →=b →,AA 1→=c →得: AC →=a →+b →,A 1D →=b →−c →,所以MN →=MA →+AN →=−AM →+AA 1→+A 1N →=−13(a →+b →)+c →+23(b →−c →). 化简得MN →=−13a →+13b →+13c →.故选A . 8. 【答案】 A【考点】共线向量与共面向量 【解析】由已知得AB →=(−2, −2, 2),CD →=(1, 1, −1),AB →=−2CD →,从而得到直线AB 与CD 平行. 【解答】解:在空间直角坐标系中,A(1, 2, 3),B(−1, 0, 5),C(3, 0, 4),D(4, 1, 3), ∴ AB →=(−2, −2, 2),CD →=(1, 1, −1), ∴ AB →=−2CD →, ∴ 直线AB 与CD 平行. 故选A . 9. 【答案】 A【考点】空间向量的夹角与距离求解公式 【解析】求出|AB →|=(1,0,0), |BC →|=(−1,2,−2),根据空间向量的夹角与距离公式即可求解点A 到直线BC 的距离. 【解答】解:∵ A (0,0,2) ,B (1,0,2) ,C (0,2,0), ∴ AB →=(1,0,0), BC →=(−1,2,−2), ∴ 点A 到直线BC 的距离为: d =|AB →|√1−(cos <AB →,BC →>)2 =|AB →|√1−(AB →⋅BC→|AB →|⋅|BC →|)2=1×√1−(−11×3)2=2√23. 故选A . 10.【答案】 C【考点】用空间向量求直线与平面的夹角 【解析】设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出sin α的取值范围. 【解答】解:设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则A 1(2, 0, 2),B(2, 2, 0),D(0, 0, 0),O(1, 1, 0),P(a, 2, 2),0≤a ≤2,DA 1→=(2, 0, 2),DB →=(2, 2, 0),OP →=(a −1, 1, 2),设平面A 1BD 的法向量n →=(x, y, z),则{n →⋅BD →=2x +2y =0,n →⋅DA 1→=2x +2z =0,取x =1,得n →=(1, −1, −1),∴ sin α=|cos <OP →,n →>|=|OP →⋅n →|OP →|⋅|n →|| =√(a−1)2+5⋅√3=√33⋅√(a−1)2+5, ∵ 0≤a ≤2,∴ a =2时,sin α取最小值 (sin α)min =√33√(2−1)2+5=√23, a =0时,sin α取最大值 (sin α)max =√33×√(0−1)2+5=2√23. ∴ sin α的取值范围是[√23,2√23]. 故选C .11. 【答案】D【考点】用空间向量求直线间的夹角、距离【解析】此题暂无解析【解答】解:建立空间直角坐标系如图所示,设PD =CD =AD =2,则E(0, 1, 1),B(2, 2, 0),P(0, 0, 2),D(0, 0, 0),∴ PD →=(0, 0, −2),BE →=(−2, −1, 1),设PD 与BE 的夹角为θ,则cos θ=|PD →⋅BE →||PD →|⋅|BE →| =22√6 =√66. 故选D .12.【答案】C【考点】点、线、面间的距离计算向量语言表述线面的垂直、平行关系【解析】以C 1为原点,C 1A 1为x 轴,C 1B 1为y 轴,C 1C 为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1F 的长.【解答】解:以C 1为原点,C 1A 1为x 轴,C 1B 1为y 轴,C 1C 为z 轴,建立空间直角坐标系,由题意A 1(1, 0, 0),B 1(0, 1, 0),D(12,12, 0),C 1(0, 0, 0),A(1, 0, 2),设F(0, 1, t),0≤t ≤2,C 1D →=(12,12, 0),AB 1→=(−1, 1, −2),C 1F →=(0, 1, t),因为AB 1⊥平面C 1DF ,{AB 1→⋅C 1D →=0,AB 1→⋅C 1F →=0,所以1−2t =0,解得t =12,所以B 1F →=(0,0,12),所以线段B 1F 的长为12.故选C .二、填空题13.【答案】π3【考点】直线的方向向量直线的倾斜角【解析】设直线l 的倾斜角为θ,θ∈[0, π).设直线的方向向量为u →=(x, y),则u →∗n →=0,可得tan θ=y x .【解答】解:设直线l 的倾斜角为θ,θ∈[0, π).设直线的方向向量为u →=(x, y),则u →⋅n →=√3x −y =0,∴ tan θ=y x =√3, 解得θ=π3.故答案为:π3.14.【答案】−1【考点】向量语言表述面面的垂直、平行关系向量的数量积判断向量的共线与垂直【解析】设平面α的法向量为a →,平面β的法向量为b →.由于α // β,可得a → // b →,因此∃实数λ使得a →=λb →.再利用向量共线定理的坐标运算即可得出.【解答】解:∵ 平面α的法向量为(2, −4, −2),平面β的法向量为(k, 2, 1),且α // β, ∴ a → // b →,∴ 存在实数λ使得a →=λb →.∴ {2=kλ,−4=2λ,−2=λ,解得k =−1.故答案为:−1.15.【答案】①④【考点】平面的法向量共线向量与共面向量数量积判断两个平面向量的垂直关系用向量证明平行【解析】①根据直线l 、m 的方向向量a →与b →垂直,得出l ⊥m ;②根据直线l 的方向向量a →与平面α的法向量n →垂直,不能判断l ⊥α;③根据平面α、β的法向量n 1→与n 2→不共线,不能得出α // β;④求出向量AB →与BC →的坐标表示,再利用平面α的法向量n →,列出方程组求出u +t 的值.【解答】解:①,∵ a →=(1, −1, 2),b →=(2, 1, −12),∴ a →⋅b →=1×2−1×1+2×(−12)=0,∴ a →⊥b →,∴ 直线l 与m 垂直,故①正确;②,a →=(0, 1, −1),平面法向量为n →=(1, −1, −1),∴ a →⋅n →=0×1+1×(−1)+(−1)×(−1)=0,∴ a →⊥n →,∴ l // α或l ⊂α,故②错误;③,∵ n 1→=(0, 1, 3),n 2→=(1, 0, 2),∴ n 1→与n 2→不共线,∴ α // β不成立,故③错误;④,∵ 点A(1, 0, −1),B(0, 1, 0),C(−1, 2, 0),∴ AB →=(−1, 1, 1),BC →=(−1, 1, 0),向量n →=(1, u, t)是平面α的法向量,∴ {n →⋅AB →=0,n →⋅BC →=0,即{−1+u +t =0,−1+u =0,∴ u +t =1,故④正确.综上,以上真命题的序号是①④.故答案为:①④.16.【答案】6√55【考点】空间向量的数乘运算空间直角坐标系棱柱的结构特征【解析】根据题意,建立建立空间直角坐标系O −xyz ,用坐标表示向量, 通过向量计算截面面积,求出截面面积的最小值.【解答】解:如图所示,以DA 为x 轴,AB 为y 轴,AA 1为z 轴,建立空间直角坐标系A −xyz ,设截面与交B 1C 1点K ,F(−2λ, 0, 0),则FC →=(−2+2λ, 2, 0),FA 1→=(2λ, 0, 1);∴ S =|FC →|⋅|FA 1→|sin θ,S 2=|FC →|2⋅|FA 1→|2−(FC →⋅FA 1→)2=[(−2+2λ)2+4](4λ2+1)−[(−2+2λ)⋅2λ]2=20λ2−8λ+8=20(λ−15)2+365, 当λ=15时,S 2取最小值365,∴ S 的最小值为6√55. 故答案为:6√55. 三、解答题17.【答案】解:AB →=OB →−OA →=(1,−1,−2),∵ 点E 在直线AB 上,∴ OE →=OA →+λAB →=(−3,−1,4)+λ(1,−1,−2)=(−3+λ,−1−λ,4−2λ), ∴ OE →⋅b →=−2(−3+λ)+(−1−λ)+(4−2λ)=0,解得λ=95,∴ OE →=(−65,−145,25), ∴ E 点坐标为(−65,−145,25). 【考点】空间向量运算的坐标表示共线向量与共面向量【解析】此题暂无解析【解答】解:AB →=OB →−OA →=(1,−1,−2),∵ 点E 在直线AB 上,∴ OE →=OA →+λAB →=(−3,−1,4)+λ(1,−1,−2)=(−3+λ,−1−λ,4−2λ), ∴ OE →⋅b →=−2(−3+λ)+(−1−λ)+(4−2λ)=0,解得λ=95,∴ OE →=(−65,−145,25), ∴ E 点坐标为(−65,−145,25).18.【答案】解:由正方体的性质可得E(2,0,1),C 1(0,2,2),设F(2,y,0),则EC 1→=(−2,2,1),EF →=(0,y,−1).因为∠C 1EF =90∘,所以EC 1→⋅EF →=2y −1=0,解得y =12, 则点F 的坐标为(2,12,0). 【考点】空间向量的数量积运算空间中的点的坐标【解析】此题暂无解析【解答】解:由正方体的性质可得E(2,0,1),C 1(0,2,2),设F(2,y,0),则EC 1→=(−2,2,1),EF →=(0,y,−1).因为∠C 1EF =90∘,所以EC 1→⋅EF →=2y −1=0,解得y =12, 则点F 的坐标为(2,12,0).19.【答案】解:如图,以点D 为原点O ,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系O −xyz ,则D(0, 0, 0),B(1, 1, 0),A 1(1, 0, λ),设P(0, 1, x),其中x ∈[0, λ],因为A 1P ⊥PB ,所以A 1P →⋅BP →=0,即(−1, 1, x −λ)⋅(−1, 0, x)=0,化简得x 2−λx +1=0,x ∈[0, λ],由点P(0, 1, x)的唯一性知方程x 2−λx +1=0只有唯一解,所以,判别式Δ=λ2−4=0,且λ>0,解得λ=2.【考点】空间向量的数量积运算【解析】以点D 为原点O ,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系O −xyz ,利用向量法能求出实数λ的值.【解答】解:如图,以点D 为原点O ,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系O −xyz ,则D(0, 0, 0),B(1, 1, 0),A 1(1, 0, λ),设P(0, 1, x),其中x ∈[0, λ],因为A 1P ⊥PB ,所以A 1P →⋅BP →=0,即(−1, 1, x −λ)⋅(−1, 0, x)=0,化简得x 2−λx +1=0,x ∈[0, λ],由点P(0, 1, x)的唯一性知方程x 2−λx +1=0只有唯一解,所以,判别式Δ=λ2−4=0,且λ>0,解得λ=2.20.【答案】证明:(1)在等腰梯形ABCD 中,过点C 作CE ⊥AB 交AB 于点E ,设BC 长为1, 则AB =2,BE =12,CE =√32,AC =√3,可得BC 2+AC 2=AB 2,即∠ACB =90∘,所以AC ⊥BC .因为面FCB 与面ABCD 交线为BC ,又AC ⊂面ABCD ,所以AC ⊥面FCB .(2)解:过点C 作CM ⊥平面BCD ,以点C 为原点,CA,CB,CM 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.则C(0,0,0),B(0,1,0),D (√32,−12,0),F (0,12,√32), 所以BD →=(√32,−32,0),BF→=(0,−12,√32), 设平面BDF 的法向量为m →=(x,y,z),则{m →⋅BD →=0m →⋅BF →=0即{√32x −32y =0−12y +√32z =0,取z =1,则y =√3,x =3,得m →=(3,√3,1),取平面BCD 的法向量为n →=(0,0,1) ,所以cos <m →,n →>=m →⋅n →|m →|⋅|n →|=1√9+3+1=√1313由图形知该二面角的平面角为锐角,所以二面角F −BD −C 的余弦值为√1313.【考点】用空间向量求平面间的夹角直线与平面垂直的判定【解析】此题暂无解析【解答】证明:(1)在等腰梯形ABCD 中,过点C 作CE ⊥AB 交AB 于点E ,设BC 长为1, 则AB =2,BE =12,CE =√32,AC =√3,可得BC 2+AC 2=AB 2,即∠ACB =90∘,所以AC ⊥BC .因为面FCB 与面ABCD 交线为BC ,又AC ⊂面ABCD ,所以AC ⊥面FCB .(2)解:过点C 作CM ⊥平面BCD ,以点C 为原点,CA,CB,CM 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.则C(0,0,0),B(0,1,0),D (√32,−12,0),F (0,12,√32), 所以BD →=(√32,−32,0),BF→=(0,−12,√32), 设平面BDF 的法向量为m →=(x,y,z),则{m →⋅BD →=0m →⋅BF →=0即{√32x −32y =0−12y +√32z =0,取z =1,则y =√3,x =3,得m →=(3,√3,1),取平面BCD 的法向量为n →=(0,0,1) ,所以cos <m →,n →>=m →⋅n →|m →|⋅|n →|=1√9+3+1=√1313由图形知该二面角的平面角为锐角,所以二面角F −BD −C 的余弦值为√1313. 21.【答案】(1)证明:以AB →,AD →,AA 1→方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.A(0,0,0),C(√3,1,0),B 1(√3,0,3),D(0,3,0),C 1(√3,1,3),D 1(0,3,3),∴ AC →=(√3,1,0),B 1D →=(−√3,3,−3),∴ AC →⋅B 1D →=0,∴ AC ⊥B 1D .(2)解:设平面ACD 1的一个法向量为m →=(x,y,z),AC →=(√3,1,0),AD 1→=(0,3,3),则{√3x +y =03y +3z =0, ∴ m →=(1,−√3,√3)设直线B 1C 1与平面ACD 1所成角为θ,∵ B 1C 1→=(0,1,0),∴ sin θ=|B 1C 1→⋅m →||B 1C 1→||m →|=√217, ∴ 直线B 1C 1与平面ACD 1所成角的正弦值为√217. 【考点】用空间向量求直线与平面的夹角向量语言表述线线的垂直、平行关系两条直线垂直的判定【解析】(Ⅰ)以AB →,AD →,AA 1→方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.求出相关点的坐标;通过计算AC →⋅B 1D →=0,证明AC ⊥B 1D .(Ⅱ)求出平面ACD 1的法向量,设直线B 1C 1与平面ACD 1所成角为θ,求出B 1C 1→=(0,1,0),利用向量的数量积求解直线B 1C 1与平面ACD 1所成角的正弦值.【解答】(1)证明:以AB →,AD →,AA 1→方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.A(0,0,0),C(√3,1,0),B 1(√3,0,3),D(0,3,0),C 1(√3,1,3),D 1(0,3,3),∴ AC →=(√3,1,0),B 1D →=(−√3,3,−3),∴ AC →⋅B 1D →=0,∴ AC ⊥B 1D .(2)解:设平面ACD 1的一个法向量为m →=(x,y,z),AC →=(√3,1,0),AD 1→=(0,3,3),则{√3x +y =03y +3z =0, ∴ m →=(1,−√3,√3)设直线B 1C 1与平面ACD 1所成角为θ,∵ B 1C 1→=(0,1,0),∴ sin θ=|B 1C 1→⋅m →||B 1C 1→||m →|=√217, ∴ 直线B 1C 1与平面ACD 1所成角的正弦值为√217. 22.【答案】(1)证明:由已知AB =AE =2,因为O 为BE 中点,所以A ′O ⊥BE .因为平面A ′BE ⊥平面BCDE ,且平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A ′O ⊥CD .(2)解:设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点,由已知易得OF ⊥OG .由(1)可知,A ′O ⊥平面BCDE ,所以A ′O ⊥OF ,A ′O ⊥OG .以O 为原点,OF ,OG ,OA ′所在直线分别为x ,y ,z 轴建立空间直角坐标系(如图).因为A ′B =2,BC =4, 所以A ′(0,0,√2),B(1,−1,0),C(1,3,0),D(−1,3,0),E(−1,1,0). 设平面A ′DE 的一个法向量为m →=(x 1,y 1,z 1),因为A ′D→=(−1,3,−√2),DE →=(0,−2,0), 所以{m →⋅A ′D →=0,m →⋅DE →=0,即{−x 1+3y 1−√2z 1=0,−2y 1=0, 取z 1=−1,得m =(√2,0,−1),而A ′C →=(1,3,−√2),所以直线A ′C 与平面A ′DE 所成角的正弦值sin θ=|2√22√3⋅√3|=√23. (3)解:在线段A ′C 上存在点P ,使得OP//平面A ′DE .设P (x 0,y 0,z 0),且A ′PA ′C =λ(0≤λ≤1),则A ′P →=λA ′C →,λ∈[0,1].因为A ′(0,0,√2),C(1,3,0),所以(x 0,y 0,z 0−√2)=(λ,3λ,−√2λ),所以x 0=λ,y 0=3λ,z 0=√2−√2λ,所以P(λ,3λ,√2−√2λ),OP →=(λ,3λ,√2−√2λ),若OP//平面A ′DE ,则OP →⊥m →,即OP →⋅m →=0.由(2)可知,平面A ′DE 的一个法向量m →=(√2,0,−1),即√2λ−√2+√2λ=0,解得λ=12∈[0,1],所以当A ′P A ′C =12时,OP//平面A ′DE .【考点】用空间向量求直线与平面的夹角用向量证明平行直线与平面垂直的性质直线与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:由已知AB =AE =2,因为O 为BE 中点,所以A ′O ⊥BE .因为平面A ′BE ⊥平面BCDE ,且平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A ′O ⊥CD .(2)解:设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点,由已知易得OF ⊥OG .由(1)可知,A ′O ⊥平面BCDE ,所以A ′O ⊥OF ,A ′O ⊥OG .以O 为原点,OF ,OG ,OA ′所在直线分别为x ,y ,z 轴建立空间直角坐标系(如图).因为A ′B =2,BC =4, 所以A ′(0,0,√2),B(1,−1,0),C(1,3,0),D(−1,3,0),E(−1,1,0).设平面A ′DE 的一个法向量为m →=(x 1,y 1,z 1),因为A ′D →=(−1,3,−√2),DE →=(0,−2,0),所以{m →⋅A ′D →=0,m →⋅DE →=0,即{−x 1+3y 1−√2z 1=0,−2y 1=0, 取z 1=−1,得m =(√2,0,−1),而A ′C →=(1,3,−√2),所以直线A ′C 与平面A ′DE 所成角的正弦值sin θ=|2√22√3⋅√3|=√23.(3)解:在线段A ′C 上存在点P ,使得OP//平面A ′DE . 设P (x 0,y 0,z 0),且A ′P A ′C =λ(0≤λ≤1), 则A ′P →=λA ′C →,λ∈[0,1].因为A ′(0,0,√2),C(1,3,0),所以(x 0,y 0,z 0−√2)=(λ,3λ,−√2λ),所以x 0=λ,y 0=3λ,z 0=√2−√2λ, 所以P(λ,3λ,√2−√2λ),OP →=(λ,3λ,√2−√2λ), 若OP//平面A ′DE ,则OP →⊥m →,即OP →⋅m →=0.由(2)可知,平面A ′DE 的一个法向量m →=(√2,0,−1), 即√2λ−√2+√2λ=0,解得λ=12∈[0,1], 所以当A ′P A ′C =12时,OP//平面A ′DE .。
立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)
第二章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1∥l2,在l1上取3个点,在l2上取2个点,由这5个点能确定平面的个数为错误!()A.5B.4C.9D.1[答案] D[解析]由经过两条平行直线有且只有一个平面可知分别在两平行直线上的5个点只能确定一个平面.2.教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线错误!()A.平行B.垂直C.相交D.异面[答案] B[解析]当直尺垂直于地面时,A不对;当直尺平行于地面时,C不对;当直尺位于地面上时,D不对.3.已知m、n是两条不同直线,α、β是两个不同平面,则下列命题正确的是错误!()A.若α、β垂直于同一平面,则α与β平行B.若m、n平行于同一平面,则m与n平行C.若α、β不平行...与β平行的直线...,则在α内不存在D.若m、n不平行...垂直于同一平面...,则m与n不可能[答案] D[解析]A项,α、β可能相交,故错误;B项,直线m、n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m、n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.已知α、β是两个平面,直线l⊄α,l⊄β,若以①l⊥α;②l∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有错误!()A.①③⇒②;①②⇒③B.①③⇒②;②③⇒①C.①②⇒③;②③⇒①D.①③⇒②;①②⇒③;②③⇒①[答案] A[解析]因为α⊥β,所以在β内找到一条直线m,使m⊥α,又因为l⊥α,所以l∥m.又因为l⊄β,所以l∥β,即①③⇒②;因为l∥β,所以过l可作一平面γ∩β=n,所以l∥n,又因为l⊥α,所以n⊥α,又因为n⊂β,所以α⊥β,即①②⇒③.5.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,若过C1作C1H⊥平面ABC,垂足为H,则点H一定在导学号 92180601()A.直线AC上B.直线AB上C.直线BC上D.△ABC的内部[答案] B[解析]∵∠BAC=90°,∴BA⊥AC.又∵BC1⊥AC,∴AC⊥平面ABC1,∴平面ABC⊥平面ABC1.∵平面ABC∩平面ABC1=AB,∴C1在面ABC上的射影在直线AB上.6.设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有错误!() A.1条B.2条C.3条D.4条[答案] B[解析]如图,和α成30°角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°且BC∥l时,直线AC,AB都满足条件,故选B.7.(2016·浙江文)已知互相垂直的平面α、β交于直线l.若直线m、n满足m∥α,n⊥β,则错误!()A.m∥l B.m∥nC.n⊥l D.m⊥n[答案] C[解析]选项A,只有当m∥β或m⊂β时,m∥l;选项B,只有当m⊥β时,m∥n;选项C,由于l⊂β,∴n⊥l;选项D,只有当m∥β或m⊂β时,m⊥n,故选C.8.(2016·南安一中高一检测)如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱BC 和棱CC1的中点,则异面直线AC与MN所成的角为错误!()A.30°B.45°C.60°D.90°[答案] C[解析]如图,连接A1C1、BC1、A1B.∵M、N分别为棱BC和棱CC1的中点,∴MN∥BC1。
空间向量与立体几何检测题及答案
空间向量与立体几何检测题(考试时间:120分钟 满分:150分)一.选择题(本大题共12小题,每小题5分,共60分)1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( )A . 1B .51 C . 53 D . 572.已知的数量积等于与则b a k j i b k j i a 35,2,23+-=-+=( )A .-15B .-5C .-3D .-13.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A .OC OB OA OM ++= B .OC OB OA OM --=2C .OC OB OA OM 3121++= D .OC OB OA OM 313131++= 4.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为 ( )A . 0°B . 45°C . 90°D .180° 5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .56.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为( )A . 0B .1C . 2D .37.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则−→−AB +1()2BD BC +等于( )A .−→−AG B . −→−CG C . −→−BC D .21−→−BC8.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A . +-a b cB .-+a b cC . -++a b cD . -+-a b c 9.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量10.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( )A .715(,,)222-B . 3(,3,2)8-C . 107(,1,)33-D .573(,,)222-11.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB ,则△BCD 是 ( )A .钝角三角形B .直角三角形C .锐角三角形D .不确定12.(文科)在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A .52-B .52C .53D .1010(理科)已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平面EFG 的距离为( ) A .1010 B . 11112 C . 53D . 1 二.填空题(本大题4小题,每小题4分,共16分)13.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是 .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b -c ,则m ,n 的夹角为 . 15.已知向量a 和c 不共线,向量b ≠0,且()()⋅⋅=⋅⋅a b c b c a ,d =a +c ,则,〈〉d b = .16.(如图)一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是︒60,那么以这个顶点为端点的晶体的对角线的长为 。
高考数学必修二第一单元单元测试卷:空间几何体的直观图(有答案)
高考数学必修二第一单元单元测试卷:空间几何体的直观图一、选择题.1. 如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等2. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是()A.①②B.①C.③④D.①②③④3. 如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是()A. B.C. D.4. 下列直观图是将正方体模型放置在你的水平视线的左下角而绘制的是()A. B.C. D.5. 某几何体的三视图如图所示,则该几何体的直观图是()A. B.C. D.6. 如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的长为()A.2√2B.√2C.16√2D.17. 把△ABC按斜二测画法得到△A′B′C′(如图所示),其中B′O′=C′O′=1,A′O′=√3,2那么△ABC是一个()A.等边三角形B.直角三角形C.等腰三角形D.三边互不相等的三角形二、填空题.关于斜二测画法,下列说法不正确的是________.①原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变;;②原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的12③画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45∘;④在画直观图时,由于选轴的不同,所得的直观图可能不同.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面大小一样,已知长方体的长、宽、高分别为20m,5m,10m,四棱锥的高为8m,若按1:500的比例画出它的直观图,那么直观图中长方体的长、宽、高和棱锥的高应分别为________.如图,正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长为________.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积为________.三、解答题.如图为一几何体的平面展开图,按图中虚线将它折叠起来,画它的直观图.参考答案与试题解析高考数学必修二第一单元单元测试卷:空间几何体的直观图一、选择题.1.【答案】A【考点】空间几何体的直观图空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:两条平行且相等的线段在直观图中保持平行且相等.故选A.2.【答案】A【考点】斜二测画法画直观图【解析】由斜二测画法规则直接判断即可.①正确;因为平行性不变,故②正确;正方形的直观图是平行四边形,③错误;因为平行于y′轴的线段长减半,平行于x′轴的线段长不变,故④错误.【解答】解:由斜二测画法规则知,①正确;平行性不变,②正确;正方形的直观图是平行四边形,③错误;因为平行于y′轴的线段长减半,平行于x′轴的线段长不变,所以菱形的直视图不再是菱形,故④错误.故选A.3.【答案】A【考点】斜二测画法画直观图【解析】此题暂无解析【解答】解:由斜二测画法可知,与y′轴平行的线段在原图中为在直观图中的2倍.故可判断A正确.故选A.4.【答案】A空间几何体的直观图【解析】此题暂无解析【解答】解:由题意知应看到正方体的上面、前面和右面,由几何体直观图的画法及直观图中虚线的使用,可知选A.故选A.5.【答案】B【考点】简单空间图形的三视图【解析】此题暂无解析【解答】解:A选项中几何体的正视图与所给三视图不符,排除A;C选项中俯视图与所给三视图不符,排除C;D选项中几何体的侧视图与所给三视图不符,排除D;经验证,B选项中几何体的正视图、侧视图、俯视图与题中所给三视图均符合.故选B.6.【答案】A【考点】斜二测画法【解析】此题暂无解析【解答】解:因为A′B′ // y轴,所以在△ABO的中,AB⊥OB.又△ABO的面积为16,AB⋅OB=16.所以12所以AB=8,所以A′B′=4.如图,作A′C′⊥O′B′于点C′,所以B′C′=A′C′,所以A′C′的长为4sin45∘=2√2.故选A.7.A【考点】斜二测画法画直观图【解析】此题暂无解析【解答】解:根据斜二测画法的原则,=√3,AO⊥BC,得BC=B′C′=2,OA=2A′O′=2×√32∴ AB=AC=BC=2,∴ △ABC是等边三角形.故选A.二、填空题.【答案】③【考点】斜二测画法【解析】此题暂无解析【解答】解:画与直角坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′也可以是135∘.故答案为:③.【答案】4cm,0.5cm,2cm,1.6cm【考点】空间几何体的直观图棱锥的结构特征【解析】此题暂无解析【解答】解:由比例可知长方体的长、宽、高和锥高,应分别为4cm,1cm,2cm和1.6cm,再结合直观图,图形的尺寸应为4cm,0.5cm ,2cm,1.6cm.故答案为:4cm,0.5cm,2cm,1.6cm.【答案】8cm【考点】平面图形的直观图【解析】此题暂无解析【解答】解:还原直观图为原图形,如图所示.因为O′A′=1,所以O′B′=√2,还原回原图形后,OA=O′A′=1,OB=2O′B′=2√2,根据勾股定理,OC=3,所以原图形的周长为8cm.故答案为:8cm.【答案】16或64【考点】平面图形的直观图【解析】此题暂无解析【解答】解:在直观图中,边长为4的边若与x′轴平行,则原图中正方形的边长为4,此时面积为16;若与y′轴平行,则正方形的边长为8,此时面积为64.故答案为:16或64.三、解答题.【答案】解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.【考点】空间几何体的直观图由三视图求体积【解析】此题暂无解析【解答】解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.。
第7章 空间图形的初步认识数学九年级下册-单元测试卷-青岛版(含答案)
第7章空间图形的初步认识数学九年级下册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥2、如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友3、下列图中不是正方体展开图的是()A. B. C. D.4、如图,若要把一个正方体纸盒沿棱剪开,平铺在桌面上,则至少需要剪开的棱的条数是( ).A.5条B.6条C.7条D.8条5、如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )A.9-3B.9C.9-D.9-6、右图可以折叠成的几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥7、将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.48、若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是()A.6B.3πC.6πD.12π9、如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A、B、C表示的数依次是()A.﹣5,﹣π,B.﹣π,5,C.﹣5,,πD.5,π,﹣10、图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A. B. C. D.11、如图是一个正方体纸盒的展开图,按虚线折成正方体后,相对面上的两个数互为相反数,则c a+b=()A.-8B.9C.-3D.212、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“齐”相对的面上的汉字是()A.心B.力C.抗D.疫13、下列图形是正方体表面展开图的是( )A. B. C. D.14、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.3B.6C.7D.815、小红同学在一个正方体盒子的每个面都写上一个字,分别是“我”、“喜”、“欢”、“数”、“学”、“课”,其平面展开图如图所示,那么在该正方体盒子中,和“我”相对的面上的字是()A.喜B.课C.数D.学二、填空题(共10题,共计30分)16、圆锥有________个面,有________个顶点,它的侧面展开图是________.17、如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.18、圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为________.19、圆柱的侧面展开图是________形.20、如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?________ ________________ ________21、图(1)是一个小正方形体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是________22、立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是________.23、如图是一个正方形的表面展开图,已知正方体的每个面都有一个实数,且相对面上的两个数互为倒数,则xyz的平方根是________.24、一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是________25、如图,是一个长、宽、高分别为、、()长方体纸盒,将此长方体纸盒沿不同的棱剪开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是________.(用含、、的代数式表示)三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、在图①、②中分别添加一个或两个小正方形,使该图形经过折叠后能围成一个以这些小正方形为面的立方体.28、如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.29、如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A,B,C分别表示的数.30、若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、C5、A6、A7、B8、C9、A10、C11、A12、D13、C14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
人教版数学高一第一章空间几何体单元测试精选(含答案)3
【答案】 2 1 3 4 2
评卷人 得分
三、解答题
试卷第 8页,总 11页
40.一张长为10cm ,宽为 5cm 的矩形纸,以它为侧面卷成一个圆柱,求该圆柱的体积.
125
【答案】
cm3 或 125
cm3 .
π
2π
41.如图所示,在四边形 ABCD 中, A0, 0 , B 1,0 , C 2,1 , D 0,3 ,将四边
A.等边三角形
B.直角三角形
C.三边中只有两边相等的等腰三角形
D.三边互不相等的三角形
【答案】A
8.如图所示,观察四个几何体,其中判断正确的是( ).
A.(1)是棱台 C.(3)是棱锥 【答案】C
B.(2)是圆台 D.(4)不是棱柱
试卷第 2页,总 11页
9.一个球的内接正方体的表面积为 54,则球的表面积为( )
1
PB1= A1B1,则多面体 P-BCC1B1 的体积为( )
4
A.
8 3
C.4
【答案】B
16
B.
3
D.5
评卷人 得分
二、填空题
27.圆台的上底面半径为 2,下底面半径为 3,截得此圆台的圆锥的高为 6,则此圆台
的体积为____________.
【答案】 38 π 3
28.已知在三棱锥 P ABC 中,侧面与底面所成的二面角相等,则点 P 在平面 ABC 内的射影一定是 ABC 的__________心.
所示),则其侧视图的面积是 ( )
A.4 3cm2
B.2 3 cm2
C.8 cm2
D.4 cm2
【答案】A 21.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为( )
人教版高中数学必修第二册第三单元《立体几何初步》测试(含答案解析)
一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角PAB C 的平面角为45°. 其中正确命题的个数有( ) A .2个 B .3个 C .4个 D .5个4.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //ABB .MN 与BC 所成的角为45° C .OC ⊥平面VACD .平面VAC ⊥平面VBC5.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 6.已知某正三棱锥侧棱与底面所成角的余弦值为219,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( )A .49B .19C .925D .1257.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.α,β是两个平面,m ,n 是两条直线,有下列四个命题;①如果m n ⊥,m α⊥,//n β,那么αβ⊥.②如果m α⊥,//n α,那么m n ⊥.③如果//αβ,m α⊂,那么//m β.④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题的个数为( )A .1B .2C .3D .411.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .1212.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2AB CB ==,求三棱柱111ABC A B C -的体积S . 16.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值.20.如图,在空间几何体A -BCDE 中,底面BCDE 是梯形,且CD //BE ,CD =2BE =4,∠CDE =60°,△ADE 是边长为2的等边三角形.(1)若F 为AC 的中点,求证:BF //平面ADE ;(2)若AC =4,求证:平面ADE ⊥平面BCDE .21.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 22.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ;(2)求三棱锥B CDM -的体积.25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,四棱锥P ABCD -中,底面ABCD 是菱形,,60,PA PD BAD E =∠=是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证://PA 平面BDQ ;(3)若2P BCDE Q ABCD V V --=,试求CP CQ的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 4.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ; 故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.5.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.6.C解析:C【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35rR=,最后求出球2O与球1O的表面积之比即可.【详解】如图,取ABC的外心O,连接PO,AO,则PO必过1O,2O,且PO⊥平面ABC,可知PAO∠为侧棱与底面所成的角,即219cos19PAO=∠.取AB的中点M,连接PM,MC.设圆1O,2O的半径分别为R,r,令2OA=,则19PA=,23AB=,3AM=,1OM=,所以214r OMPO PM==,即24PO r=,从而145PO r r R r R=++=+,所以1154R RPO r R==+,则35rR=,所以球2O与球1O的表面积之比为925.故选:C.【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题.7.D解析:D【分析】解:设G,H,I分别为CD、1CC、11C D边上的中点,证明平面1//A BGE平面1B HI,得到1//B F面1A BE,则F落在线段HI上,求出1122HI CD==【详解】解:设G,H,I分别为CD、1CC、11C D边上的中点,1//A B EG,则1A BEG四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 8.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.C解析:C【分析】对①,运用长方体模型,找出符合条件的直线和平面,即可判断;对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;对③,运用面面平行的性质定理,即可判断;对④,由平行的传递性及线面角的定义,即可判断④.【详解】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α,ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立;命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则//l n ,由m α⊥知m l ⊥,从而m n ⊥,结论正确;由平面与平面平行的定义知命题如果//αβ,m α⊂,那么//m β.③正确;由平行的传递性及线面角的定义知命题:如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等,④正确.故选:C .【点睛】本题考查命题的真假判断,考查空间线面、面面平行和垂直的位置关系,注意运用判定定理和性质定理,考查推理能力,属于中档题.11.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,CE ∴11222S AB CE ⨯⨯⨯=底面积==1CEA 中,CE 1EA 1AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.16.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则1111262213232C DBE E CBD V V h --==⨯⨯⨯⨯=⨯⨯⨯⨯, 解得:233h = 【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(2)217. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,AO ==1OB ==1AB ==,∵11AA B中,111A B AB ==,12AA =,∴11AA B S =∴11122323d ⨯⨯⨯=,解得7d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B所成角的正弦值为:11sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)证明见解析;(2. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =, E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =,223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(E D C P F ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1); 又33(1,2EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |555?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.(1)证明见解析;(2)证明见解析. 【分析】(1)取DA 的中点G ,连接FG ,GE ,推导出四边形BFGE 为平行四边形,从而BF //EG ,由此能证明BF //平面ADE.(2)取DE 的中点H ,连AH ,CH ,推导出AH ⊥DE ,AH ⊥HC ,从而AH ⊥平面BCDE ,由此能证明平面ADE ⊥BCDE . 【详解】(1)如图所示,取DA 的中点G ,连接FG ,GE.∵F 为AC 的中点, ∴GF //DC ,且GF =12DC .又DC //BE ,CD =2BE =4, ∴EB //GF ,且EB =GF ∴四边形BFGE 是平行四边形, ∴BF //EG .∵EG ⊂平面ADE ,BF ⊄平面ADE , ∴BF //平面ADE .(2)取DE 的中点H ,连接AH ,CH . ∵△ADE 是边长为2的等边三角形, ∴AH ⊥DE ,且AH 3.在△DHC 中,DH =1,DC =4,∠HDC =60°根据余弦定理可得HC 2=DH 2+DC 2-2DH ·DCcos 60°=12+42-2×1×4×12=13,即HC 13 在△AHC 中,AH 3HC 13AC =4. 所以AC 2=AH 2+HC 2,即AH ⊥HC .因为AH DE ⊥,AH HC ⊥,DE HC H ⋂=AH ∴⊥平面BCDE ∵AH ⊂平面ADE ,∴平面ADE ⊥平面BCDE . 【点睛】方法点睛:要证线面平行,一般需要证明(1)线线平行(2)面面平行两种方法,在平行的证明中,线线平行一般需要考虑中位线、平行四边形,平行线分线段成比例的逆定理.21.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,EB =2BM =,EM =AE =,由()2222(2)2QB AE AB BE QB +=+⇒=,2QF =∴sin QF QBF QB ∠==,即QB 与平面EBD .【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可. 22.(I)证明见解析;(II)3 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EF AP =,∵//FE AP =,∴四边形FAPE 是平行四边形, ∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥, 由AB AD ⊥,可得PC AD ⊥, 设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 , ∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE . (Ⅱ)解:取Q CD 为的中点,连结,PQ EQ , ∵CE DE =,∴.EQ CD ⊥ ∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, EP PQ EQ a PQ ==⊥,,.于是在Rt EPQ △中,cos 3PQ EQP EQ ∠==.∴二面角A CD E --. 【点睛】方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值). 23.(1)证明见解析;(2)14【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----=== ,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD ∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -, 与三棱锥D QBC -的体积相等,即11111232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=.【点睛】本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用 24.(1)证明见解析;(2)2. 【分析】(1)取PD 中点N ,证明BMNC 为平行四边形,得到//BM NC ,从而得到//BM 平面PCD .(2)对三棱锥B CDM -进行等体积转化,转化为求P BCD -的体积的一半.取AB 中点O ,连PO ,可证PO 为三棱锥P BCD -的高并求出其长度,求出BCD △的面积,得到三棱锥P BCD -的体积,即可求出三棱锥B CDM -的体积. 【详解】证明:(1)取PD 中点N ,连接MN ,NC , MN 为PAD △的中位线,//MN AD ∴,且12MN AD =, 又//BC AD ,且12BC AD =,//MN BC ∴,且MN BC =, 则BMNC 为平行四边形,//BM NC ∴,又NC ⊂平面PCD ,MB ⊂/平面PCD , //BM ∴平面PCD .(2)取AB 中点O ,连PO ,,PB PA PO AB =∴⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,PO ∴⊥平面ABCD . PO ∴为三棱锥P BCD -的高, PA PB =,4AB =,PB PA ⊥, PAB ∴为等腰直角三角形,2PO =, 90DAB ABC ,//AD BC ,1134622BCDSBC AB =⨯⨯=⨯⨯=, M 是PA 的中点,∴三棱锥B CDM -的体积为:11162223126P B CDM M BCD BCD BCDV V V SPO ---==⨯=⨯=⨯⨯=.【点睛】本题考查通过线线平行证明线面平行,通过面面垂直证明线面垂直,变换顶点和底面进行等体积转化,求三棱锥的体积,属于中档题. 25.(1)证明见解析;(22. 【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解. 【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B , ∴平面11BDD B ⊥平面1C OC .… (2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角 则在正方体1111ABCD A B C D -中121,C C OC == ∴在1Rt C OC ∆中,11tan 2C CC OC OC∠== 故二面角1C BD C --2 . 【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析;(3)8 3 .【分析】(1)由线面垂直判定定理,要证线面垂直,需证AD垂直平面PBE内两条相交直线,由,E是AD的中点,易得AD垂直于,再由底面是菱形,得三角形为正三角形,所以AD垂直于PA,(2)由线面平行判定定理,要证线面平行,需证PC平行于平面内一条直线,根据1h是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.【详解】(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE.(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA.因为PA 平面BDQ,OQ平面BDQ.所以PA//平面BDQ.(3)设四棱锥P-BCDE,Q-ABCD的高分别为2h,1h,所以V P-BCDE=13S BCDE2h,V Q-ABCD=13S ABCD1h.因为V P-BCDE=2V Q-ABCD,且底面积S BCDE=S ABCD.所以,因为,所以.。
人教A版(2019)必修二第八章立体几何初步单元测试卷(3)(提高版)解析版
人教A版(2019)必修二第八章立体几何初步单元测试卷(3)(提高版)1.下列几何体是旋转体的是A. 五棱柱B. 六棱锥C. 八棱台D. 球2.如图,在正三棱锥中,,,一只虫子从A点出发,绕三棱锥的三个侧面爬行一周后,又回到A点,则虫子爬行的最短距离是A. B. C. D.3.正方体的棱长为2,E是棱的中点,则平面截该正方体所得的截面面积为A. B. C. D. 54.如图所示,表示水平放置的的直观图,在轴上,与轴垂直,且,则的边OB上的高为A. 2B. 4C.D.5.《九章算术商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺.问积几何?答曰:四万六千五百尺.”所谓“堑堵”,就是两底面为直角三角形的直棱柱.如图所示的几何体是一个“堑堵”,,,M是的中点,过B,C,M的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为A. 40B. 50C. D.6.如图所示,三棱台的体积为V,其中,若截去三棱锥,则剩余部分的体积为A. B. C. D.7.公元前3世纪,古希腊欧几里得在几何原本里提出:“球的体积与它的直径的立方成正比”,此即,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式中的常数k称为“立圆率”或“玉积率”类似地,对于等边圆柱轴截面是正方形的圆柱、正方体也可利用公式求体积在等边圆柱中,D表示底面圆的直径;在正方体中,D 表示棱长假设运用此体积公式求得球直径为、等边圆柱底面圆的直径为、正方体棱长为的“玉积率”分别为、、,那么等于A. B. C. D.8.已知A,B是球O的球面上两点,,C为该球面上的动点,若三棱锥体积的最大值为36,则球O的表面积为A. B. C. D.9.等腰直角三角形直角边长为1 ,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为A. B. C. D.10.下列叙述中,正确的是A. 若,,,,则B. 若,,则C. 若A,B,,A,B,,则,重合D. 若,,,,则11.下列叙述正确的是A. 已知a,b是空间中的两条直线,若,则直线a与b平行或异面B. 已知l是空间中的一条直线,是空间中的一个平面,若,则或l与只有一个公共点C. 已知,是空间两个不同的平面,若,则,必相交于一条直线D. 已知直线l与平面相交,且l垂直于平面内的无数条直线,则12.下列正确命题的是A. 若是两条异面直线,则直线一定异面.B. 已知m,n表示不同的直线,表示平面,若,,则C. 过已知平面外的一点,有且只有一个平面与已知平面平行.D. 过已知平面外的一条直线,必能作出与已知平面平行的平面.13.已知空间两个角和,若,,,则的大小是__________.14.在正方体中,M,N,Q分别是棱,,BC的中点,点P在上且,则下面说法正确的是__________.①平面APC;②平面APC;③A,P,M三点共线;④平面平面15.如图,E是棱长为1正方体的棱上的一点,且平面,则线段CE的长度为__________.16.已知平面,和直线m,给出条件:①;②;③;④;⑤当满足条件__________时,有;当满足条件__________时,有17.如图所示,在四面体中,截面PQMN是平行四边形.求证:截面若截面PQMN是正方形,求异面直线PM与BD所成的角.18.如图,已知分别是空间四边形ABCD的边的中点.求证:四点共面;若四边形EFGH是矩形,求证:19.如图,四边形BCDE是平行四边形,,,,,,求证:平面ABC;若三棱锥的体积为,求点A到平面BCDE的距离.20.如图,在底面是直角梯形的四棱锥中,,面ABCD,,求证:面面SBC;求SC与底面ABCD所成角的正切值.21.如图,在四棱锥中,,且证明:平面平面PAD;若,,且四棱锥的体积为,求该四棱锥的侧面积.22.如图,四棱锥的底面是正方形,平面ABCD,,点E是SD上的点,且求证:对任意的都有设二面角的大小为,直线BE与平面ABCD所成的角为,若,求的值答案和解析【答案】1. D2. A3. B4. D5. C6. C7. D8. C9. AB10. AD11. ABC12. AC13. 或14. ②③15.16. ③⑤②⑤17. 证明:截面PQMN是平行四边形,,平面BCD,平面BCD,平面又平面ABD,平面平面,截面PQMN,截面PQMN,截面解:由知,或其补角即为异面直线PM与BD所成的角,截面PQMN是正方形,,异面直线PM与BD所成的角是18. 证明:在中,分别是的中点,同理,则,故四点共面.由知,同理又四边形EFGH是矩形,故19. 解:证明:四边形BCDE是平行四边形,且,,又,,,又,,,,又,AC,平面ABC,平面ABC;,平面BCDE,平面BCDE,平面BCDE,,F到平面BCDE的距离相等.设点F到平面BCDE的距离为h,则三棱锥的体积:,解得点A到平面BCDE的距离也是20. 证明:因为面ABCD,面ABCD,又,,且SA,面SAB,面SAB,面SBC,面面解:已知面ABCD,连接AC,则就是SC与底面ABCD所成的角,在直角三角形SCA中,,,21. 证明:,即,,又,,,PA,平面PAD,平面PAD,平面PAB,平面平面解:设,取AD中点O,连结PO,由知平面PAD,又平面PAD,,,,,,,又AB,平面ABCD,,平面ABCD,四棱锥的体积为,由平面PAD,平面PAD,得,又,所以四边形ABCD为矩形,解得,,,,,由上述可知都是直角三角形,是等腰三角形该四棱锥的侧面积:22. 证明:连接BE、BD,由底面ABCD是正方形可得平面ABCD,平面ABCD,所以,又,平面SBD,平面SBD,平面而平面SBD,;解:由平面ABCD知,,平面ABCD,平面ABCD,又底面ABCD是正方形,,而,平面SAD,平面SAD,所以平面连接AE、CE,过点D在平面SAD内作于F,连接由于平面SAD,平面SAD,因此又,所以平面而平面CDF,所以故是二面角的平面角,即在中,,,,在中,,,,从而在中,因为,所以,由解得【解析】1. 【分析】本题考查了旋转体和多面体的定义与应用问题,属于基础题.根据旋转体、多面体的定义,判断即可.【解答】解:根据一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体叫做旋转体,判断球是旋转体;一个几何体围成它的各个面都是多边形,这个几何体是多面体,由此判断五棱柱、六棱柱、八棱台都是多面体.故选:2. 【分析】本题考查的知识点是多面体和旋转体表面上的最短距离问题,其中将三棱锥的侧面展开,将空间问题转化为平面上两点间距离问题,是解答本题的关键.将三棱锥的侧面展开,从A点虫子爬行绕三棱锥侧面一圈回到点A的距离中,虫子爬行的最短距离,可转化为求的长度,利用勾股定理即可得到答案.【解答】解:设过点A作截面AEF与PB、PC侧棱分别交于E、F两点,将三棱锥由PA展开,则,即为虫子爬行从点A沿侧面到棱PB上的点E处,再到棱PC上的点F处,然后回到点A的最短距离,,由勾股定理可得虫子爬行的最短距离故选:3. 【分析】本题考查简单多面体棱柱、棱锥、棱台及其结构特征,平面的基本性质及应用,属于基础题.由题意,根据正方体的结构特征和平面的基本性质可得截面是菱形,计算可得结论.【解答】解:如图所示,设F为的中点,连接,设G为的中点,连接,由且,得四边形ABGE是平行四边形,则且,又且,得且,则共面,故平面截该正方体所得的截面为又,,,,故截面的面积为故选:4. 【分析】本题主要考查斜二测画法的应用,属于中档题.设的边OB上的高为h,因为,列出关于h的方程,即可求解.【解答】解:设的边OB上的高为h,因为,所以又,所以故选:5. 【分析】本题考查棱台的表面积的求法,平面的概念与性质.利用平面的概念与性质找到所求三棱台,求出三棱台每个面的面积相加即可.【解答】解:记的中点为N,连接MN,则,所以过点B,C,M的平面为平面BNMC,三棱台为,所以其表面积故选6. 【分析】本题考查多面体体积的求法,考查空间想象能力与运算求解能力,是中档题.设三棱台的上底面面积为S,由已知可得下底面面积为4S,再设棱台的高为h,分别求出棱台体积与棱锥的体积,作差即可求得剩余部分的体积.【解答】解:设三棱台的上底面面积为S,,下底面面积为4S,再设棱台的高为h,则,,则剩余部分的体积为,由,得,即剩余部分的体积为故选:7. 【分析】本题考查了球、圆柱、正方体的体积计算公式、类比推理的能力,属于中档题.根据球、圆柱、正方体的体积计算公式、类比推理即可得出.【解答】解:;;;故故选8. 【分析】本题考查三棱锥的外接球的体积的最值问题,属于中档题.确定点C位于垂直于面AOB的直径端点时,三棱锥的体积最大是解题关键,再结合三棱锥的体积公式求出球的半径,则球的表面积可求.【解答】解:如图,设球的半径为R,,,,而面积为定值,当点C到平面AOB的距离最大时,最大,当C为与球的大圆面AOB垂直的直径的端点时,体积最大,最大值为,,球O的表面积为,故选9. 【分析】本题考查旋转体的表面积,属于基础题.如果是绕直角边旋转,形成圆锥,如果绕斜边旋转,形成的是上下两个圆锥,分两类即可得解.【解答】解:如果是绕直角边旋转,形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角形的斜边,所以所形成的几何体的表面积是如果绕斜边旋转,形成的是上下两个圆锥,圆锥的半径是直角三角形斜边的高,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以形成的几何体的表面积综上可知形成几何体的表面积是或故答案选10. 【分析】本题考查平面的基本性质,属于基础题.根据平面的基本性质,对各选项逐一分析,即可得到答案.【解答】解:若,,,,根据平面性质的公理,可知正确,故A正确;B.,,A,B两点不一定是两个平面的公共点,故B错误;C.若A,B,,A,B,,当A,B,C在一条直线上时,则,不重合,故C错误;D.若,,,,则A,B两点是两个平面的公共点,根据平面性质的公理,得到,故D正确.故选11. 【分析】本题考查空间中直线与直线的位置关系、直线与平面的位置关系,属于中档题.根据空间直线与直线、直线与平面相关知识逐一判断即可.【解答】解:已知a,b是空间中的两条直线,若,则直线a与b平行或异面,正确;B.已知l是空间中的一条直线,是空间中的一个平面,若,则或l与只有一个公共点,正确;C.已知,是空间两个不同的平面,若,则,必相交于一条直线,正确;D.已知直线l与平面相交,且l垂直于平面内的两条相交直线,则,故D错误. 故选12. 【分析】本题考查直线与平面的位置关系以及异面直线的判定,需要熟练掌握线面平行的判定方法,属于中档题.根据异面直线的定义和性质以及线面平行的判断定理,对选项中的命题判断正误即可.【解答】解:若直线共面,则四点A,B,C,D共面,AB与CD共面,矛盾,故A正确;若,,则或,B错误;过已知平面外的一点,作相交的两条直线与已知平面平行,这两条相交直线确定一个平面,这个平面与已知平面平行,C正确;当直线与平面相交时,过该直线不能作平面与已知平面平行,故D错误,故选13. 【分析】本题考查等角定理,属于基础题.解题的关键利用空间两个角和,,,所以两个角和相等或互补,即可解答.【解答】解:因为空间两个角和,,,所以两个角和相等或互补,又因为,所以或故答案为或14. 【分析】本题考查线面平行和面面平行的判定,考查空间中共点、共线问题,属基础题. 根据空间中的公理和定理逐项分析即可.【解答】解:①,连接AM、CN,易得AM、CN交与点P,即面PAC,所以面APC是错误的;②平面APC延展,可知M、N在平面APC上,,所以面APC,是正确的;③由,以及由①可知A,P,M三点共线是正确的;④直线AP延长到M,则M在平面MNQ,又在平面APC,即面面APC,是错误的.故答案为②③.15. 【分析】本题主要考查了正方体的结构特征,直线与平面平行的性质定理,属于基础题. 由题意先分析出点E是中点,再利用勾股定理求解.【解答】解:连接,交于点O,连接OE,是正方体的棱上的一点,且是正方形,是中点,平面,平面,平面平面,,是正方体的棱的中点,故答案为16. 【分析】本题主要考查线面、面面平行与垂直的定义,考查了空间想象能力与逻辑推理能力,属于基础题.由两个平面平行,其中一个平面内的任意一条直线平行于另一个平面,即可得出结论;由两个平面平行,一条直线垂直于一个平面,则一定垂直于另一个平面.【解答】解:因为,,所以,故答案为③⑤;因为,,所以,故答案为②⑤.故答案为③⑤②⑤.17. 本题主要考查线面平行的判定及异面直线所成角的求法,属于基础题.欲证截面PQMN,只需证BD平行于平面PQMN内任一直线即可;由知,则或其补角即为异面直线PM与BD所成的角,即可根据已知条件求出度数.18. 本题考查通过平行关系证明四点共面,利用等角定理通过两条直线的平行线垂直,证得已知两条直线垂直,属于基础题.根据中位线定理证明,,得到,即可证明四点共面;根据矩形关系有,结合中位线关系,,即可证明.19. 本题主要考查了线面垂直的判定、线面平行的判定与性质,利用三棱锥的体积求点到平面的距离,属于基础题.根据已知条件计算有关线段长度,并利用勾股定理的逆定理证得,然后利用线面垂直的判定定理证明;利用线面平行的判定定理可证得平面BCDE,利用线面平行的性质得到A,F 到平面BCDE的距离相等;根据三棱锥的体积求得点F到平面CDE的距离,即点A到平面BCDE的距离.20. 本题考查直线与平面所成角的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.证明利用,即可证明面SAB,利用平面与平面垂直的判定定理证明面面连接AC,说明就是SC与底面ABCD所成的角,在直角三角形SCA中,求解即可.21. 本题考查面面垂直的证明,考查四棱锥的侧面积的求法.推导出,,从而,进而平面PAD,由此能证明平面平面设,取AD中点O,连结PO,由,,得底面ABCD,且,,由四棱锥的体积为,求出,由此能求出该四棱锥的侧面积.22. 本题考查空间几何体中线面垂直的判定与性质定理的应用,考查线面角、二面角的问题,属于拔高题.连接BE、由条件可证得平面SBD,即可得证结论;连接AE 、根据线面角、二面角的概念可得知,利用题设中数据分别求得和,即可求得结果.第21页,共21页。
2-1空间几何体的单元测试(水高)
《空间几何体》单元测试一.选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下面几何体的轴截面一定是圆面的是A.圆柱B.圆锥C.球D.圆台2.下列说法正确的是A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.D.棱台各侧棱的延长线交于一点.3.一个几何体的某一方向的视图是圆,则它不可能是A.球体B.圆锥C.长方体D.圆柱4.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形.正确的说法有A.3个B.2个C.1个D.0个5.下列四个命题中,正确的命题是A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.如果一个三角形的平行投影仍是三角形,那么它的中位线的平行投影一定是这个三角形的平行投影的对应的中位线6.下面的四个图中不能围成正方体的是A.B.C.D.7.长方体的三个面的面积分别是2,3,6,则长方体的体积是A.6 B.12 C.24 D.368.如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则这圆锥的侧面积与全面积的比是A.1:2 B.2:3 C.D.9.一个三角形用斜二测画法画出来是一个正三角形,边长为2,则原三角形的面积为A.B.C.D.10.若球的半径为1,则这个球的内接正方体的全面积为A.8 B.9 C.10 D.12二.填空题:本大题共7小题,每小题4分,共28分。
11.以等腰直角梯形的直角腰所在的直线为轴,其余三边旋转形成的面所围成的旋转体是_____.12.两个半径为1的铁球,熔化后铸成一个球,这个大球的半径为.13.矩形长6,宽4,以其为圆柱侧面卷成圆柱,则圆柱体积为________.14.圆台上,下底半径分别为r,R,侧面面积等于两底面积之和,圆台的母线长为________.15.平行于锥体底面的截面截得锥体的体积与原锥体的体积之比为8:27,则它们的侧面积之比为_______.二、填空题:11、12、13、14、15、三.解答题:本大题共5小题,共75分。
七年级数学上册《几何图形初步》单元测试卷(含答案解析)
七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。
高中数学必修二第一章《空间几何体》单元测试卷及答案
高中数学必修二第一章《空间几何体》单元测试卷及答案(2套)测试卷一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为( )A .圆台B .四棱锥C .四棱柱D .四棱台2.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为( )A .6B .32C .62D .123.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .3034B .6034C .3034135+D .1354.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A .3324R π B .338R π C .3525R π D .358R π 5.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A .1:3B .1:1C .2:1D .3:16.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )A .163π B .193π C .1912π D .43π7.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8πB .6πC .4πD .π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12 C .13D .169.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A .14斛B .22斛C .36斛D .66斛103cm 的内切球,则此棱柱的体积是( ) A .393B .354cmC .327cmD .318311.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B .59C .1027 D .1312.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3cm 3866πC .3cm 31372πD .3cm 32048π 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是__________________.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__________________.16.如图是一个组合几何体的三视图,则该几何体的体积是__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长为10cm.求圆锥的母线长.18.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?22.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选D.【解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴164122OAB S =⨯⨯=△.故选D .3.【答案】A【解析】由菱形的对角线长分别是9和15,得菱形的边长为22915334222⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则这个菱柱的侧面积为3434530342⨯⨯=.故选A . 4.【答案】A【解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为2R,高为32R ,所以圆锥的体积2313332224R R R ⎛⎫⨯π⨯⨯=π ⎪⎝⎭.故选A . 5.【答案】D【解析】()121::3:13V V Sh Sh ⎛⎫== ⎪⎝⎭.故选D .6.【答案】B【解析】设球半径是R ,依题意知,该三棱柱是一个底面边长为2,侧棱长为1的正三棱柱,记上,下底面的中心分别是O 1,O ,易知球心是线段O 1O 的中点,于是222123192312R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此所求球的表面积是2191944123R ππ=π⨯=, 故选B . 7.【答案】C【解析】设正方体的棱长为a ,则a 3=8,所以a =2,而此正方体内的球直径为2,所以S 表=4πr 2=4π.故选C . 8.【答案】C【解析】该几何体的直观图为如图所示的四棱锥P -ABCD ,且P A =AB =AD =1,P A ⊥AB ,P A ⊥AD ,四边形ABCD 为正方形,则2111133V =⨯⨯=,故选C .【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,∴163r =,所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为320 1.62229÷≈,故选B . 10.【答案】B【解析】由题意知棱柱的高为23cm ,底面正三角形的内切圆的半径为3cm , ∴底面正三角形的边长为6cm ,正三棱柱的底面面积为293cm ,∴此三棱柱的体积()3932354cm V =⨯=.故选B .11.【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为1220105427V V π==π.故选C . 12.【答案】A【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4, 球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为3345500cm 33π⨯π=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件. 四棱锥的三视图中含有三角形,满足条件. 三棱柱的三视图中含有三角形,满足条件. 四棱柱的三视图中都为四边形,不满足条件. 圆锥的三视图中含有三角形,满足条件. 圆柱的三视图中不含有三角形,不满足条件. 故答案为①②③⑤.14.【答案】6415.【答案】11【解析】设棱台的高为x ,则有2165016512x -⎛⎫= ⎪⎝⎭,解之,得x =11. 16.【答案】36+128π【解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为1346168361282V =⨯⨯⨯+π⨯=+π.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】403cm . 【解析】如图,设圆锥母线长为l ,则1014l l -=,所以cm 403l =.18.【答案】(1)正六棱锥;(2)见解析,232a ;(3)332a .【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边的距离,即3BC a =,AD 是正六棱锥的高,即3AD a =,所以该平面图形的面积为2133322a a a =.(3)设这个正六棱锥的底面积是S ,体积为V ,则223336S =,所以2313333322V a a a =⨯⨯=.19.【答案】不会,见解析.【解析】因为()33314144134cm 2323V R =⨯π=⨯⨯π⨯≈半球,()22311412201cm 33V r h =π=π⨯⨯≈圆锥,134<201,所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子. 20.【答案】74V π=. 【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为23741124V π⎛⎫=π⨯-π⨯= ⎪⎝⎭.21.【答案】282m .【解析】如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,)7m SO =,()11m 2OP BC ==,所以)22m SP =, 则△SAB 的面积是)2122222m 2⨯⨯=.所以四棱锥的侧面积是)242282m ⨯,即制造这个塔顶需要282m 铁板.22.【答案】(13;(2)33a .【解析】(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴2A B A C A D BC BD C D a ''''''======,∴三棱锥A ′-BC ′D 的表面积为213422232a a a ⨯=.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为2233a . (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V三棱锥A′-BC′D=V正方体-4V三棱锥A′-ABD=3 32114323a a a a-⨯⨯⨯=测试卷二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下图中的图形经过折叠不能围成棱柱的是()2.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.123.下列命题中,正确的命题是()A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.9 C.快D.乐5.如图,O A B'''△是水平放置的OAB△的直观图,则AOB△的面积是()。
北师大版高中数学空间几何体的三视图、表面积与体积名师精编单元测试
(十)空间几何体的三视图、表面积与体积1. 如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A. 2B. 3C. 4D. 5【答案】C2. 如图,格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积是( )A. 36+6B. 36+3C. 54D. 27【答案】A【解析】由三视图知,该几何体的直观图如图所示,故表面积为S=2××(2+4)×3+2×3+4×3+3×2×=36+6.故答案为:A.3. 如图,格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )A. B. C. D.【答案】D【解析】由正视图与侧视图可知,该几何体可以为如图所示的正方体截去一部分后的四棱锥,如图所示,由图知该几何体的俯视图为,故选D.4. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A. 1B.C. D. 2【答案】C【解析】四棱锥的直观图如图所示:由三视图可知,平面,是四棱锥最长的棱,,故选C.考点:三视图.视频5. 如图,格纸上的小正方形的边长为1,粗实线画出的是一个几何体的三视图,则该几何体的体积是( )A. 4+6πB. 8+6πC. 4+12πD. 8+12π【答案】B【解析】该几何体为四棱锥与半个圆柱的上下组合体,其中半个圆柱的底面圆直径为4,母线长为3,四棱锥的底面是长为4,宽为3的矩形,高为2,所以组合体的体积为V=×π×22×3+×4×3×2=8+6π.故答案为:B.6. 某几何体的三视图如图所示,则该几何体的体积为( )A. 12B. 18C. 24D. 30【答案】C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.视频7. 已知A,B,C三点都在以O为球心的球面上,OA,OB,OC两两垂直,三棱锥OABC的体积为,则球O的表面积为( )A. B. 16πC. D. 32π【答案】B【解析】设球O的半径为R,以球心O为顶点的三棱锥三条侧棱两两垂直且都等于球的半径R,另外一个侧面是边长为R的等边三角形.因此根据三棱锥的体积公式得×R2·R=,∴R=2,∴球的表面积S=4π×22=16π.故答案为:B.8. 如图为某几何体的三视图,则该几何体的外接球的表面积为( )A. πB. 27πC. 27πD. π【答案】B【解析】由三视图可知,该几何体是由一个正方体切割成的一个四棱锥,则该几何体的外接球的半径为从而得其表面积为4π×=27π.故答案为:B.9. 某几何体的三视图如图所示,则该几何体的表面积为( )A. B.C. D.【答案】C【解析】由三视图可知该几何体是一个圆柱和半个圆锥的组合体,故其表面积为π+1+2π×2+π=+1.故答案为; C.10. 某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是( )A. 2πB. 4πC. 5πD. 20π【答案】C【解析】由三视图知,该几何体为三棱锥,且其中边长为1的侧棱与底面垂直,底面为底边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为,,1的长方体,所以该几何体的外接球O的半径R=,所以球O的表面积S=4πR2=5π.故答案为:C.点睛:这个题目考查的是三视图和球的问题相结合的题目,涉及到三视图的还原,外接球的体积或者表面积公式。
人教版七年级上第四章《几何图形初步》单元测试(含答案解析)
人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体单元测试卷答案 一、选择题 (每小题5分, 共30分)
1. D
2. B
3. C
4. B
5. C
6. C
、 填空题 (每小题5分, 共 20 分)
7. 球 8. R 9. . 2 10. 50cm 2
三、 解答题 (共3小题,共 50分)
11. 解:(1)设正四棱柱的底面边长为 a ,高为h , 由题意
2a 2 + h 2= 81 ① ............................................................................ 2 分 2a 2 + 4ah = 144 即 a 2 + 2ah = 72 ② ........................ 4 分 ①X 8 —②X 9 得 7a 2— 18ah + 8h 2= 0 即(7a — 4h ) ( a -2h )= 0, ......... 6 分 因此7a — 4h = 0或a = 2h ,由此可见由①②构成方程组有两组满足条件的解,故 满足这些条件的正四棱柱有 2个. .................................. 8分
(2)由(1)得,正四棱柱的底面边长
a 和高h 满足7a = 4h 或a = 2h , 当7a = 4h 时,代入①可求得 a = 4,
h=7;此时正四棱柱的体积为
V=a 2h=42X 7=112(cm 3).
当a = 2h 时,同理可得
r 30 360
… 八 当x = cm 时,S 取到最大值 cm 2. ............................................... 16分 7 7
2 3 1
13.解:(1)依题意,可得—r - 108 ① ................................ 3分
3 6 且-r 3
r 2h 108 ② ................... 6分 3 3 r 27 ,.•• r 3 (cm);代入②可求得 h 10 (cm).…9分
(2)若将试管垂直放置,并注水至水面离管口 4cm 处,此时水的体积为
2 3 2 2 2
12分
a = 6, h=3;此时正四棱柱的体积为 V=a 2h=62X 3=108(cm 3). 12.解:如图SAB 是圆锥的轴截面,其中 SO = 12, OB = 5. 设圆
锥内接圆柱底面半径为 0Q = 乂,由厶SO 1CSOB ,
SO 1 _ SO O 1C OB ,SO 1 = SO OB
OO 1 = SO — SO 1= 12—玛, 5 则圆柱的表面积
19分 S = S 侧+ 2S 底=2 n
x + 2 n x 2 = 2 n 7 2 12x — X 5 由①得 16分
V r3r2(h 4) r2[ r (h 4)] ...............................
3 3
2 2 3
3 [ 3 (10 4)] 72 (cm ) ....... ........................... 15分18分。