ADC0809引脚图和接口电路图

合集下载

ADC0809介绍

ADC0809介绍

ADC0809介绍1.主要特性1)8路8位A/D转换器,即分辨率8位。

2)具有转换起停控制端。

3)转换时间为100μs4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。

2.内部结构ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近3.外部特性(引脚功能)ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。

下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。

START:A/D转换启动信号,输入,高电平有效。

EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

Vcc:电源,单一+5V。

GND:地。

ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。

直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。

当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

DAC0832的中文资料手册典型D/A转换DAC0832芯片8位并行、中速(建立时间1us)、电流型、低廉(10~20元)①引脚和逻辑结构②DAC0832与微机系统的连接③应用举例。

ADC0809重点总结资料

ADC0809重点总结资料

一、ADC0809引脚结构功能说明图:1~5、26~28,IN0~IN7:8路模拟量输入端。

14~15、8、17~21,D0~D7:8位数字量输出端。

23~25,ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路22,ALE:地址锁存允许信号,输入,高电平有效,对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。

6,START:A/D转换启动信号,输入高电平有效,START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。

本信号有时简写为ST.7,EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

9,OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量,用于控制三态输出锁存器向单片机输出转换得到的数据。

OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。

10,CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ,EOC=0,正在进行转换;EOC=1,转换结束。

使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。

12、16,REF(+)、REF(-):基准电压。

11,Vcc:电源,单一+5V。

13,GND:地。

二、ADC0809与51单片机的接口电路1、说明: D0~D7接51单片机的P2口(P2.0~P2.7)ADIN1和ADIN2为通道IN0和IN1的电压模拟量输入(0~5V)应用程序如下:#include"reg52.h"#define uchar unsigned charsbit ST=P1^0;sbit EOC=P1^1;sbit OE=P1^2;sbit CLK=P1^3;sbit ADDCS=P1^4;uchar AD_DATA[2];//保存IN0和IN1经AD 转换后的数据/*******延时函数*******/void delay(uchar i){uchar j;while(i--){for(j=125;j>0;j--);}}/******系统初始化*******/void init(){EA = 1; //开总中断TMOD = 0x02; //设定定时器T0工作方式 TH0=216; //利用T0中断产生CLK信号 TL0=216;TR0=1; //启动定时器T0ET0=1;ST=0;OE=0;}/******T0中断服务程序********/void t0(void) interrupt 1 using 0 {CLK=~CLK;}/******AD转换函数*******/void AD(){ST=0;ADDCS=0; //选择通道IN0delay(10);ST=1; //启动AD转换delay(10);ST=0;while(0==EOC);OE=1;AD_DATA[0]=P2;OE=0;ST=0;ADDCS=1; //选择通道IN1 delay(10);ST=1; //启动AD转换 delay(10);ST=0;while(0==EOC);OE=1;AD_DATA[1]=P2;OE=0; }/********主函数********/ void main(){init();while(1){AD();}}注:由于ADC0809内部不带时钟电路,因此用51单片机的定时器T0来产生时钟信号。

AD0809的工作原理

AD0809的工作原理

AD0809的工作原理1。

AD0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成.多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据.(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入.通道选择表如下表所示。

C B A 选择的通道000IN0数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线.CLK为时钟输入信号线.因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

ADC0809与单片机的接口电路

ADC0809与单片机的接口电路

ADC0809是一种CMOS单片型逐次比较式8路模拟输入、8位数字量输出的A/D转换器。

在多点巡回检测和过程控制、运动控制中应用十分广泛。

1.主要特性如下:1)8路8位A/D转换器,即分辨率8位。

2)具有转换起停控制端。

3)转换时间为100μs4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。

2.外部特性(引脚功能)ADC0809芯片有28条引脚,采用双列直插式封装。

下面说明各引脚功能IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。

ALE:地址锁存允许信号,输入,高电平有效。

START:A/D转换启动信号,输入,高电平有效。

EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

VCC:电源,单一+5V。

GND:地。

ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。

直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。

当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

单片机与ADC0809的接口电路图。

模数转换ADC0809

模数转换ADC0809

A/D转换模块本次课题选择ADC0809作为模数转换芯片。

ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D 转换器,可以和单片机直接接口。

ADC0809的内部逻辑结构由图4-4可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

图4-4 ADC0809内部结构ADC0809引脚结构ADC0809各脚功能如下:D7-D0:8位数字量输出引脚。

IN0-IN7:8位模拟量输入引脚。

VCC:+5V工作电压。

GND:地。

REF(+):参考电压正端。

REF(-):参考电压负端。

START:A/D转换启动信号输入端。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

ALE:地址锁存允许信号输入端,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进入转换器进行转换。

EOC:转换结束信号输出引脚。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE:输出允许控制端,用以打开三态数据输出锁存器。

CLK:时钟信号输入端(一般为500KHz)。

A、B、C:地址输入线。

图4-5 ADC0809引脚图ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

表4-1 ADC0809通道选择C B A 通道0 0 0 IN00 0 1 IN10 1 0 IN20 1 1 IN31 0 0 IN41 0 1 IN51 1 0 IN61 1 1 IN7ST为转换启动信号。

adc0809中文资料以及与51接口功能电路程序

adc0809中文资料以及与51接口功能电路程序

adc0809中文资料以及与51接口功能电路程序adc0809芯片管脚功能介绍如下图,两种形式的封装均有:ADC0809是CMOS单片型逐次逼近式A/D转换器,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近寄存器、三态输出锁存器等其它一些电路组成。

因此,ADC0809可处理8路模拟量输入,且有三态输出能力,既可与各种微处理器相连,也可单独工作。

输入输出与TTL兼容。

ADC0809A/D转换芯片引脚功能ADC0809芯片有28条引脚,采用双列直插式封装IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路.ALE:地址锁存允许信号,输入,高电平有效。

START:A/D转换启动信号,输入,高电平有效。

EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

Vcc:电源,单一+5V。

GND:地。

ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

注意:ADC0809应用说明(3)送要转换的哪一通道的地址到A,B,C端口上。

(4)在ST端给出一个至少有100ns宽的正脉冲信号。

(5)是否转换完毕,我们根据EOC信号来判断。

(6)当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。

下面介绍一个ADC0808和单片机接口的c51程序08与09最大的区别在于输出端与单片机的连接上,为了便于仿真,选择了0808.仿真图:注:clock的频率为500khz源代码:/*精度5v/256=0.0195=0.02*/#include <regx51.h>#include <intrins.h>#define adda P3_4#define addb P3_5#define addc P3_6#define uint unsigned int#define uchar unsigned char#define TIMER0_COUNT 0XF05F//4MS中断一次sbit ST = 0xb2; //sbit:绝对定址的位元(bit)变数sbit OE = 0xb0; //sbit前不可加staticsbit EOC = 0xb1;uchar code led_7seg[10] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x 7F,0x6F};uchar code position[3] = {0xfd,0xfb,0xf7};uchar dis_buff[3];uint ad_data;uint voltage;/*数码管显示函数*/void display(void){static char posit = 0;P2 = 0XFF; //全灭,避免重影/P0 = led_7seg[dis_buff[posit]];if (posit == 0){P0_7 = 1;}else{P0_7 = 0;}P2 = position[posit];if (++posit >= 3){posit = 0;}}/*timer0 4ms中断服务函数*/static void timer0_isr(void) interrupt TF0_VECTOR using 1 //4ms中断一次{TR0 = 0;TL0 = (TIMER0_COUNT & 0X00FF); //低八位的值赋给TL0TH0 = (TIMER0_COUNT >> 8); //高八位的值赋给TH0 TL0,TH0都只有八位TR0 = 1;display();}/*timer0 初始化函数*/static void timer0_initialize(void){EA = 0;TR0 = 0;TMOD &= 0XF0;TMOD |= 0X01;TL0 = (TIMER0_COUNT & 0X00FF);TH0 = (TIMER0_COUNT >> 8);PT0 = 1;ET0 = 1;TR0 = 1;EA = 1;}/*电压计算函数*/void data2voltage(){voltage = ad_data*2; //OutData*0.02*100;256 dis_buff[0] = voltage/100;dis_buff[1] = voltage%100/10;dis_buff[2] = voltage%10;}void main(void){ //0口作为模拟输入口adda = 0;addb = 0;addc = 0;timer0_initialize();while(1){OE = 0;ST = 0;ST = 1;_nop_();//保证足够的上升沿ST = 0;while(!EOC); //wait convOE = 1;ad_data = P1;OE = 0;data2voltage();}}仿真结果:。

AD0809的工作原理

AD0809的工作原理

AD0809的工作原理1. AD0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

C B A 选择的通道000IN0数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

AD0809的工作原理

AD0809的工作原理

AD0809的工作原理1. AD0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

C B A 选择的通道000IN0数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

AD0809的工作原理

AD0809的工作原理

AD0809的工作原理1. AD0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

C B A 选择的通道000IN0数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

ADC0809引脚图和接口电路图

ADC0809引脚图和接口电路图

ADC0809引脚图与接口电路 2008-06-28 19:04ADC0809引脚图与接口电路作者:佚名 来源:本站原创 点击数: 859 更新时间:2007年07月29日A/D 转换器芯片ADC0809简介 8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道抵制锁存用译码电路,其转换时间为100μs 左右。

图9.8 《ADC0809引脚图》1. ADC0809的内部结构ADC0809的内部逻辑结构图如图9-7所示。

图9.7 《ADC0809内部逻辑结构》图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。

地址锁存与译码电路完成对A、B、C 3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,表9-1为通道选择表。

表9-1 通道选择表2.信号引脚ADC0809芯片为28引脚为双列直插式封装,其引脚排列见图9.8。

对ADC0809主要信号引脚的功能说明如下:IN7~IN——模拟量输入通道ALE——地址锁存允许信号。

对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。

START——转换启动信号。

START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。

本信号有时简写为ST.A、B、C——地址线。

通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDC。

其地址状态与通道对应关系见表9-1。

CLK——时钟信号。

ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。

通常使用频率为500KHz的时钟信号EOC——转换结束信号。

EOC=0,正在进行转换;EOC=1,转换结束。

使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。

D 7~D——数据输出线。

AD0809的工作原理

AD0809的工作原理

AD0809得工作原理1、AD0809得芯片说明:ADC0809就是带有8位A/D转换器、8路多路开关以及微处理机兼容得控制逻辑得CMOS组件。

它就是逐次逼近式A/D转换器,可以与单片机直接接口。

(1)ADC0809得内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器与一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完得数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完得数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围就是0-5V,若信号太小,必须进行放大;输入得模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入与控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线得地址信号进行锁存,经译码后被选中得通道得模拟量进转换器进行转换。

A,B与C为地址输入线,用于选通IN0-IN7上得一路模拟量输入。

通道选择表如下表所示。

C BA选择得通道000IN0 001IN1010IN2 011IN3 100IN4数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到得数据。

OE=1,输出转换得到得数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809得内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

ADC0809详细资料

ADC0809详细资料

ADC0809中文资料1.主要特性 1)8路8位A/D转换器,即分辨率8位。

2)具有转换起停控制端。

3)转换时间为100μs 4)单个+5V电源供电 5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度 7)低功耗,约15mW。

2.内部结构 ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近图13.22 ADC0809内部结构框图寄存器、三态输出锁存器等其它一些电路组成。

因此,ADC0809可处理8路模拟量输入,且有三态输出能力,既可与各种微处理器相连,也可单独工作。

输入输出与TTL兼容。

图13.23 ADC0809引脚图 3.外部特性(引脚功能) ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。

下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。

如表13.2所示。

表13.2 ADDA、ADDB、ADDC真值表 ALE:地址锁存允许信号,输入,高电平有效。

START: A/D转换启动信号,输入,高电平有效。

EOC: A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

Vcc:电源,单一+5V。

GND:地。

ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

ad0809说明

ad0809说明

1. 0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D 转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2. ADC0809应用说明(1). ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

ADC0809引脚图与程序c语言

ADC0809引脚图与程序c语言
A、B、C——地址线。 通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDC。其地址状态与通道对应关系见表9-1。
CLK——时钟信号。ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。通常使用频率为500KHz的时钟信号
EOC——转换结束信号。EOC=0,正在进行转换;EOC=1,转换结束。使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。
出口参数:
****************************************************************************************/
void timer0(void)interrupt 1
{
count++;
if(count==0x0A)
{
count=0x00;
D7~D0——数据输出线。为三态缓冲输出形式,可以和单片机的数据线直接相连。D0为最低位,D7为最高
OE——输出允许信号。用于控制三态输出锁存器向单片机输出转换得到的数据。OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。
Vcc—— +5V电源。
Vref——参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。其典型值为+5V(Vref(+)=+5V, Vref(-)=-5V).
图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。地址锁存与译码电路完成对A、B、C 3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,表9-1为通道选择表。

adc0809引脚图及功能详解,adc0809与51单片机连接电路分析

adc0809引脚图及功能详解,adc0809与51单片机连接电路分析

adc0809引脚图及功能详解,adc0809与51单片机连接电路分析adc0809是采样频率为8位的、以逐次逼近原理进行模数转换的器件。

其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。

1.主要特性1)8路8位A/D转换器,即分辨率8位。

2)具有转换起停控制端。

3)转换时间为100s4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。

2.内部结构adc0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近组成。

adc0809的内部逻辑结构图如图9-7所示。

图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。

地址锁存与译码电路完成对A、B、C 3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,表9-1为通道选择表。

adc0809引脚图及功能3.外部特性(引脚功能)adc0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。

下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。

START:A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

ADC0809中文资料

ADC0809中文资料
ADC0809 中文资料
1.主要特性 1)8 路 8 位 A/D 转换器,即分辨率 8 位。 2)具有转换起停控制端。 3)转换时间为 100μ s 4)单个+5V 电源供电 5)模拟输入电压范围 0~+5V,不需零点和满刻度校准。 6)工作温度范围为-40~+85 摄氏度 7)低功耗,约 15mW。 2.内部结构 ADC0809 是 CMOS 单片型逐次逼近式 A/D 转换器,内部结构如图 13.22 所示,它由 8 路模拟开关、地址锁存与译码器、比较器、8 位开关树型 D/A 转换器、逐次逼近 3.外部特性(引脚功能) ADC0809 芯片有 28 条引脚,采用双列直插式封装,如图 13.23 所示。下面说明各引脚 功能。 IN0~IN7:8 路模拟量输入端。 2-1~2-8:8 位数字量输出端。 ADDA、ADDB、ADDC:3 位地址输入线,用于选通 8 路模拟输入中的一路 ALE:地址锁存允许信号,输入,高电平有效。 START: A/D 转换启动信号,输入,高电平有效。 EOC: A/D 转换结束信号,输出,当 A/D 转换结束时,此端输出一个高电平(转换期 间一直为低电平)。 OE:数据输出允许信号,输入,高电平有效。当 A/D 转换结束时,此端输入一个高电
平,才能打开输出三态门,输出数字量。 CLK:时钟脉冲输入端。要求时钟频率不高于 640KHZ。 REF(+)、REF(-):基准电压。 Vcc:电源,单一+5V。 GND:地。 ADC0809 的工作过程是:首先输入 3 位地址,并使 ALE=1,将地址存入地址锁存器中。 此地址经译码选通 8 路模拟输入之一到比较器。START 上升沿将逐次逼近寄存器复位。下降 沿启动 A/D 转换,之后 EOC 输出信号变低,指示转换正在进行。直到 A/D 转换完成,EOC 变为高电平,指示 A/D 转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当 OE 输入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。

AD0809详解

AD0809详解

们重在实际制做,太罗嗦的内容我就不说了,只讲些跟制做有关的最精炼的知识。

ADC0809是可以将我们要测量的模拟电压信号量转换为数字量从而可以进行存储或显示的一种转换IC。

下面是它的管脚图和逻辑图:管脚功能说明:IN0-IN7:模拟量输入通道。

就是说它可以分时地分别对八个模拟量进行测量转换。

ADDA-C:地址线。

也就是通过这三根地址线的不同编码来选择对哪个模拟量进行测量转换。

ALE:地址锁存允许信号。

在低电平时向ADDA-C写地址,当ALE跳至高电平后ADDA-C上的数据被锁存START:启动转换信号。

当它为上升沿后,将内部寄存器清0。

当它为下降沿后,开始A/D转换。

D0-D7:数据输出口。

转换后的数字数据量就是从这输出给S52的。

OE:输出允许信号,是对D0-D7的输出控制端,OE=0,输出端呈高阻态,OE=1,输出转换得到的数据。

CLOCK:时种信号。

ADC0809内部没有时钟电路,需由外部提供时钟脉冲信号。

一般为500KHzEOC:转换结束状态信号。

EOC=0,正在进行转换。

EOC=1,转换结束,可以进行下一步输出操作REF(+)、REF(-):参考电压。

参考电压用来与输入的模拟量进行比较,作为测量的基准。

一般REF(=)=5v REF(-)=0V。

下面我先给出ADC0809的时序图再说说它的工作过程:它的工作过程是这样的,①在IN0-IN7上可分别接上要测量转换的8路模拟量信号。

有人问了,可不可以只接一路?我就只想测一个模拟信号。

当然可了②将ADDA-ADDC端给上代表选择测量通道的代码。

如000(B)则代表通道0;001(B)代表通道1;111则代表通道7。

③将ALE由低电平置为高电平,从而将ADDA-ADDC送进的通道代码锁存,经译码后被选中的通道的模拟量送给内部转换单元。

④给START一个正脉冲。

当上升沿时,所有内部寄存器清零。

下降沿时,开始进行A/D转换;在转换期间,START保持低电平。

单片机与ADC0809接口电路

单片机与ADC0809接口电路

单片机与ADC0809接口电路一、ADC0809主要信号引脚的功能说明1.IN7~IN0——模拟量输入通道2. ALE——地址锁存允许信号。

对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。

3. START——转换启动信号。

START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。

本信号有时简写为ST.4. A、B、C——地址线。

通道端口选择线,A为低地址,C为高地址5. CLK——时钟信号。

ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。

使用频率为10KHz~1280KHz的时钟信号6. EOC——转换结束信号。

EOC=0,正在进行转换;EOC=1,转换结束。

使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。

7. D7~D0——数据输出线。

为三态缓冲输出形式,可以和单片机的数据线直接相连。

D0为最低位,D7为最高8.OE——输出允许信号。

用于控制三态输出锁存器向单片机输出转换得到的数据。

OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。

9.Vcc—— +5V电源。

Vref——参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。

其典型值为+5V(Vref(+)=+5V, Vref(-)=0V).二、原理图三、电路连接说明及工作过程AT89c51单片机的P1口用作数据复用总线与ADC0809的数据输出端相连(原理图未画出)。

单片机的低3位(P0.0~P0.2)数据线(选通abc)用于选择8路模拟量输入。

ADC0809的时钟信号CLK由单片机的ALE信号提供,由于单片机内部晶振频率为11.0592MHz,即单片机的ALE输出为1/6f osc=1.8432MHz,经四分频器得到输入到0809CLKk端的信号频率为460.8KHz,满足工作要求。

转换的启动信号START和8路模拟输入开关的地址锁存允许信号ALE由单片机的写信号WR(P3.6)及地址译码输出信号逻辑提供。

AD0809的工作原理

AD0809的工作原理

AD0809的工作原理1. AD0809的芯片说明:ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1)ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据.(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

C B A 选择的通道000IN0数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/ D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据.OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线.因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

2.ADC0809应用说明(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ADC0809引脚图与接口电路 2008-06-28 19:04
ADC0809引脚图与接口电路
作者:佚名 来源:本站原创 点击数: 859 更新时间:2007年07
月29日
A/D 转换器芯片ADC0809
简介 8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道抵制锁存用译码电路,其转换时间为100μs 左右。

图9.8 《ADC0809引脚图》
1. ADC0809的内部结构
ADC0809的内部逻辑结构图如图9-7所示。

图9.7 《ADC0809内部逻辑结构》
图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。

地址锁存与译码电路完成对A、B、C 3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,表9-1为通道选择表。

表9-1 通道选择表
2.信号引脚
ADC0809芯片为28引脚为双列直插式封装,其引脚排列见图9.8。

对ADC0809主要信号引脚的功能说明如下:
IN
7~IN
——模拟量输入通道
ALE——地址锁存允许信号。

对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。

START——转换启动信号。

START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。

本信号有时简写为ST.
A、B、C——地址线。

通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDC。

其地址状态与通道对应关系见表9-1。

CLK——时钟信号。

ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。

通常使用频率为500KHz的时钟信号
EOC——转换结束信号。

EOC=0,正在进行转换;EOC=1,转换结束。

使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。

D 7~D
——数据输出线。

为三态缓冲输出形式,可以和单片机的数据线直接相连。

D 0为最低位,D
7
为最高
OE——输出允许信号。

用于控制三态输出锁存器向单片机输出转换得到的数据。

OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。

Vcc—— +5V电源。

Vref——参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基
准。

其典型值为+5V(Vref
(+)=+5V, Vref
(-)
=-5V).
9.2.2 MCS-51单片机与ADC0809的接口
ADC0809与MCS-51单片机的连接如图9.10所示。

电路连接主要涉及两个问题。

一是8路模拟信号通道的选择,二是A/D 转换完成后转换数据的传送。

1. 8路模拟通道选择
图9.10 ADC0809与MCS-51的连接
如图9.11所示模拟通道选择信号A、B、C分别接最低三位地址A
0、A
1
、A
2
即(P
0.0、P
0.1
、P
0.2
),而地址锁存允许信号ALE由P
2.0
控制,则8路模拟通道的
地址为0FEF8H~0FEFFH.此外,通道地址选择以作写选通信号,这一部分电路连接如图9.12所示。

图9.11 ADC0809的部分信号连接
图9.12 信号的时间配合
从图中可以看到,把ALE信号与START信号接在一起了,这样连接使得在信号的前沿写入(锁存)通道地址,紧接着在其后沿就启动转换。

图9.19是有关信号的时间配合示意图。

清零并将启动A/D转换只需要一条MOVX指令。

在此之前,要将P
2.0
最低三位与所选择的通道好像对应的口地址送入数据指针DPTR中。

例如要选择通道时,可采用如下两条指令,即可启动A/D转换:
IN
MOV DPTR , #FE00H ;送入0809的口地址
MOVX @DPTR , A ;启动A/D转换(IN

注意:此处的A与A/D转换无关,可为任意值。

2. 转换数据的传送
A/D转换后得到的数据应及时传送给单片机进行处理。

数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。

为此可采用下述三种方式。

(1)定时传送方式
对于一种A/D转换其来说,转换时间作为一项技术指标是已知的和固定的。

例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。

可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一
到,转换肯定已经完成了,接着就可进行数据传送。

(2)查询方式
A/D转换芯片由表明转换完成的状态信号,例如ADC0809的EOC端。

因此可以用查询方式,测试EOC的状态,即可却只转换是否完成,并接着进行数据传送。

(3)中断方式
把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。

不管使用上述那种方式,只要一旦确定转换完成,即可通过指令进行数据传送。

首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。

不管使用上述那种方式,只要一旦确认转换结束,便可通过指令进行数据传送。

所用的指令为MOVX 读指令,仍以图9-17所示为例,则有
MOV DPTR , #FE00H
MOVX A , @DPTR
该指令在送出有效口地址的同时,发出有效信号,使0809的输出允许信号OE有
效,从而打开三态门输出,是转换后的数据通过数据总线送入A累加器中。

这里需要说明的示,ADC0809的三个地址端A、B、C即可如前所述与地址
线相连,也可与数据线相连,例如与D
0~D
2
相连。

这是启动A/D转换的指令与上
述类似,只不过A的内容不能为任意数,而必须和所选输入通道号IN
0~IN
7
相一
致。

例如当A、B、C分别与D
0、D
1
、D
2
相连时,启动IN
7
的A/D转换指令如下:
MOV DPTR, #FE00H ;送入0809的口地址
MOV A ,#07H ;D2D1D0=111选择IN7通道
MOVX @DPTR, A ;启动A/D转换
9.2.3 A/D转换应用举例
设有一个8路模拟量输入的巡回监测系统,采样数据依次存放在外部RA M 0A0H~0A7H单元中,按图9.10所示的接口电路,ADC0809的8个通道地址为0 FEF8H~0FEFFH.其数据采样的初始化程序和中断服务程序(假定只采样一次)如下:
初始化程序:
MOV R
, #0A0H ;数据存储区首地址
MOV R
2
, #08H ;8路计数器
SETB IT
1
;边沿触发方式
SETB EA ;中断允许
SETB EX
1
;允许外部中断1中断
MOV DPTR, #0FEF8H ;D/A转换器地址
LOOP: MOVX @DPTR, A ;启动A/D转换
HERE: SJMP HERE ;等待中断
中断服务程序:
DJNZ R
2
, ADEND
MOVX A, @DPTR ;数据采样
MOVX @R
, A ;存数
INC DPTR ;指向下一模拟通道
INC R
0;指向数据存储器下一单元
MOVX @DPTR, A ADEND: RETI。

相关文档
最新文档