(完整版)抽屉原理的经典解题思路
抽屉原理精解
第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。
通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。
数学中的抽屉原理
数学中的抽屉原理先看简单的事实:把3本书放到两个抽屉里,只有两种情况:一个一本一个二本,或一个三本一个没有。
无论哪种情况,都至少有一个抽屉里有两本或两本以上的书。
更一般地说,只要被放置的书数比抽屉数目大,就一定会有两本或两本以上的书放进同一抽屉。
(一)抽屉原理的常见式【原理一】:如果把n个东西放进n(mn)只抽屉里,则至少有一只抽屉要放进两个或两个以上的东西。
【例1】求证:在任意选取的n+1个整数中,至少存在两个整数,它们的差能被n整除。
证明:对于n+1个整数,被除所得的余数为0,1,…,n-1共n类,按余数的不同分成的n类中,至少有两个在同一类里,即这两个数被n除时所得的余数相同,那么它们的差就一定能被n整除。
【例2】幼儿园有三种塑料玩具(白兔、熊猫、长颈鹿)各若干个,每个小朋友任意选择两件。
证明:不管怎样挑选,在七个小朋友中总有两个人选的玩具相同。
证明:从三种玩具中挑选两件,搭配方式共有下列六种:(兔、兔)、(兔、熊猫)、(兔、长颈鹿)、(熊猫、熊猫)、(熊猫、长颈鹿)、(长颈鹿、长颈鹿),每一种可以看作一个抽屉,七人的7种选法中,只有6种不同的搭配,由抽屉原理,七人中至少有两人挑选玩具时搭配方式相同。
【原理二】:如果把多于m×n件东西,任意放进n个抽屉,那么至少有一个抽屉里有不少于m+1件东西。
【例3】在口袋里有红色、蓝色和黄色的小球若干个,21个人轮流从袋中取球,每人每次取3个球。
求证:这21个人中至少有3个人取出的颜色相同。
证明:取出的三个球颜色是同一色的(即全红、全蓝或全黄)有三种不同的情况,是两色的(如两红一蓝等)有6种情况,是三色的(即红、蓝、黄三色小球各一个)只有一种情况,故共可分成10类。
由抽屉原理二知道,把21个人所取出的球按颜色可归为这10类中,则必有一类至少有(个)。
所以,21个人中至少有3人取出的球的颜色相同。
运用抽屉原理只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少。
抽屉原理(二)— 数论中的抽屉原理
数论中的抽屉原理(组合)一、数论中的抽屉原理& 最不利原则——“和差倍”1. 题型(1)两数之和或两数之差是m(2)两数之和或两数之差是m的倍数2. 解题思路题型(1)根据题意构造抽屉题型(2)根据余数的特征进行分组,构造抽屉二、注意事项1. 相邻两数必互质。
题型一:根据题意构造抽屉1.从2、4、6、…、30这15个偶数中,至少选出多少个数,才能保证其中一定有两个数之和是34 .2.从1 ~ 11这11个自然数中,至少选出多少个数,才能保证其中一定有两个数之和是12 .3.从1 ~ 99这99个自然数中,最多选出多少个数,使得其中每两个数之和都不等于100?4.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍。
5.从1 ~ 21这21个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?6.从1 ~ 99这99个自然数中,最多可以取出多少个数,使得其中每两个数之差都不等于5?7.如果在1,2,… …,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大是多少?8.从1 ~ 50这50个自然数中,至少选出多少个数,才能保证其中必有两个数互质?题型二:根据余数构造抽屉1.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除。
2.至少取几个数,才能保证一定有两个数的差是7的倍数?3. 1 ~ 17中,至少拿出多少个数才能保证:(1)里面一定有5的倍数?(2)一定有两个数的和是5的倍数?4. 1 ~ 35中,至少拿出多少个数才能保证一定有两个数的和是8的倍数?5.从1至17这17个自然数中取出若干个数,使其中任意两个数的和都不能被5整除.请问:最多能取出多少个数?6.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。
巩固练习1.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?2.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差是4的倍数?3.从1 ~ 25这25个自然数中,至少取出多少个数,才能保证其中必有两数的和是6的倍数?4.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问:最多能取出多少个数?5.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?。
奥数知识点解析之抽屉原理
奥数知识点解析之抽屉原理第一步:初步理解该知识点的定理及性质1、提出疑问:什么是抽屉原理?2、抽屉原理有哪些内容呢?【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。
【抽屉原理2】:将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
第二步:学习最具有代表性的题目【例1】证明:任取8个自然数,必有两个数的差是7的倍数。
【例2】对于任意的五个自然数,证明其中必有3个数的和能被3整除。
【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。
以上的题目我们都是运用抽屉原理一来解决的。
第三步:找出解决此类问题的关键【例3】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
【例4】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
【例5】从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。
{1,2,4,8,16}{3,6,12},{5,10,20}{7,14},{9,18}{11},{13},{15},{17},{19}。
【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。
第四步:重点解决该类型的拓展难题我们先来做一个简单的铺垫题:【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。
【例6】请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。
【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。
什么是抽屉原理?(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
奥数-18抽屉原理+答案
请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。
抽屉原理例题解析
抽屉原理1:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果概念解析1、把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.2、如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个〔也就是至多有1个〕,那么所有抽屉里的苹果数的和就比总数少了.3、我们从街上随便找来13人,就可以断定他们中至少有两个人属相〔指鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。
等十二种生肖〕一样.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数〔13〕比属相数〔12〕多,因此至少有两个人属相一样〔在这里,把13人看成13个“苹果〞,把12种属相看成12个“抽屉〞〕。
应用抽屉原理要注意识别“抽屉〞和“苹果〞,苹果的数目一定要大于抽屉的个数。
例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例2 一副扑克牌〔去掉两王牌〕,每人随意摸两牌,至少有多少人才能保证他们当中一定有两人所摸两牌的花况是一样的?解析〔扑克牌中有方块、梅花、黑桃、红桃4种花色,2牌的花色可以有:2方块,2梅花,2红桃,2黑桃,1方块1梅花,1方块1黑桃,1方块1红桃,1梅花1黑桃,1梅花1红桃,1黑桃1红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。
〕例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
抽屉原理
抽屉原理一、抽屉原理的定义(1)举例桌上有10个苹果,要把这10个苹果放到9个抽展里,无论怎样放,有的抽屉可以放1个,有的可以放2个,有的可以放5个,但最终我们会发规至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
二、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论至少有“商”个苹果在同一个抽屉里(ニ)、利用最值原理解题(最不利原则:一切最不利情况+1=成功)将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法。
类型:“必有2个”原理;必有m+1个”原理要点:最不利原则;保证与至少精讲例题一:某校六年级有367名学生,请问有没有2名学生的生日是在同一天?为什么?【思路导航】把一年的天数看成是抽屉,把学生数看成是元素即至少有2名学生的生日是在同一天。
把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,至少在一个抽屉里有2名学生,因此肯定有2名学生的生日是在同一天。
试一试:1.某校有370名1992年出生的学生,其中至少有2名学生的生日是在同一天,为什么?2.某校有30名学生是2月份出生的。
能否至少有2名学生的生日是在同一天?3.15个小朋友中,至少有几个小朋友在同一个月出生?精讲例题二:某班学生去买语文书、数学书、英语书。
买书的情况是:有买一本的、两本的,也有买三本的,问至少要去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)试一试:1.某班学生去买数学书、语文书、美术书、自然书。
买书的情况是:有买一本的,有买两本的,有买三本、四本的。
问至少去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)2学校图书室有历史、文艺、科普三种图书。
行测辅导:抽屉原理解题技巧
一.第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
二.第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m-1)个物体。
例1:400人中至少有2个人的生日相同.例2:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.例3: 从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例4:从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例5:从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
三.抽屉原理与整除问题整除问题:把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。
(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。
四.经典练习:1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色不相同,则最少要取出多少个球?解析:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于7,故至少取出8个小球才能符合要求。
抽屉原理全部题型及解析
抽屉原理全部题型及解析抽屉原理是一个重要的数学原理,也称为鸽巢原理。
它的核心思想是:如果将 n+1 个物体放入 n 个抽屉中,那么至少有一个抽屉里会放入两个或两个以上的物体。
这个原理在解决一些计数问题、证明存在性等数学问题时经常使用。
下面将介绍一些常见的抽屉原理题型及解析。
题型一:生日问题假设一个教室里有 n 个学生,他们的生日都在同一年中,现在要证明至少有两个学生的生日在同一天。
解析:将一年分为 365 天,学生个数作为抽屉数 n,将每个学生的生日作为物体。
由于一年只有 365 天,而学生的个数是 n,根据抽屉原理,必然存在至少一个抽屉放入了两个或两个以上的学生的生日,即至少存在两个学生的生日在同一天。
题型二:配对问题假设有 n 对袜子,每对袜子颜色相同,但对于每一对袜子,左右脚袜子的顺序是随机的。
现在要证明至少存在一双袜子的左脚和右脚颜色相同。
解析:将 n 对袜子分为 n 个抽屉,将每双袜子的颜色作为物体。
由于每对袜子的颜色是相同的,而袜子的数量是 n 对,根据抽屉原理,必然存在至少一个抽屉放入了两个或两个以上的袜子,即至少存在一双袜子的左脚和右脚颜色相同。
题型三:数字问题任给一个长度为 n+1 的序列 a1, a2, ..., an+1,其中的元素取值范围为 1 到 n,证明至少存在一个数字在序列中出现至少两次。
解析:将长度为 n+1 的序列分为 n 个抽屉,将每个数字作为物体。
由于序列的长度是 n+1,而数字的取值范围是 1 到 n,根据抽屉原理,必然存在至少一个抽屉放入了两个或两个以上的数字,即至少存在一个数字在序列中出现至少两次。
题型四:整数问题将任意 101 个整数分成 10 个集合,证明至少存在一个集合中包含两个整数,它们的和可以被 10 整除。
解析:将 101 个整数分为 10 个抽屉,将每个整数作为物体。
由于整数的数量是 101 个,而抽屉的数量是 10 个,根据抽屉原理,必然存在至少一个抽屉放入了两个或两个以上的整数,即至少存在一个集合中包含两个整数,它们的和可以被 10 整除。
数量关系答题技巧:抽屉原理问题解题思路
数量关系答题技巧:抽屉原理问题解题思路数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。
今天中公教育为考生整理了数量关系答题技巧中的抽屉原理问题解题思路,希望对考生有所帮助!抽屉原理可以表述为:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。
这一现象就是我们所说的“抽屉原理”。
解答抽屉问题的关键是要注意区分哪些是“抽屉”,哪些是放在抽屉里的“东西”。
【例题1】口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同( )A.8B.9C.10D.11【中公教育解析】从最不利原则出发,三种球先各摸3个,再任意摸1个,共3×3+1=10个,即可保证至少有4个小球颜色相同。
故答案为C。
【例题2】口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少( )A.5B.8C.10D.12【中公教育解析】从最不利原则出发,先摸3个红球,4个黄球,4个蓝球,再任意摸1个,即可保证这n个小球至少有5个同色,所以n的最小值是3+4+4+1=12个。
故答案为D。
【例题3】从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同。
A.21B.22C.23D.24【中公教育解析】“一副完整的扑克牌”,也就是有大、小鬼各1张,其他4种花色的扑克各有13张。
根据题意,大、小鬼仅各1张,所以,同色的6张牌只能四种花色中的一种。
把四种花色看成是四只抽屉,如果在每只抽屉里放5张牌,就要取出4×5=20张牌,如果再多取1张牌,就能保证至少有一个抽屉里有6张牌,也就是至少有6张同色的牌。
因为还有大、小鬼各一张,所以取出的牌的张数必须再加上这2张,只有这样才能保证有6张同色的牌。
小学六年级奥数《抽屉原理》经典题解题技巧大全
小学六年级奥数《抽屉原理》经典题解题技巧大全抽屉原理问题例1:袋子里有红、黄、黑、白珠子各15粒,闭上眼睛要想摸出颜色相同的五粒珠子,至少要摸出______粒珠子,才能保证达到目的。
讲析:从最好的情况着手,则摸5粒刚好是同色的,但是不能保证做到。
要保证5粒同色,必然从最坏情况着手。
最坏情况是摸了16粒,这16粒珠子中没有一种是5粒同色,也就是说有4粒红色、4粒黄色、4粒黑色和4粒白色的。
现在再去摸一粒,这一粒只能是四色之一。
所以,至少要摸17粒。
例2:在一个3×9的方格里,将每一格随意涂上黑色或白色,试说明不管怎样涂,至少有两列的着色是完全相同的。
讲析:可用两种颜色涂每一列的三格,它共有8种情况,如图5.89所示。
那么,剩下的一列不管怎样涂色,一定是上面8种中的一种。
所以它至少有两列的着色是完全相同的。
例3:把1、2、3、……、10这十个自然数以任意顺序排成一圈,试说明一定有相邻三个数之和不小于17。
讲析:因为1+2+3+……+10=55。
这十个数不管怎样排列,按每相邻三个数相加,共分成了10组,每个数都加了3次。
10组之和是165,平均每组为16,还余5。
然后把5分成几个数再加到其中一组或几组中,则肯定有一组相邻三个数之和不小于17。
橱柜里有木筷子6根,竹筷子8根,从中最少摸出多少根筷子,才能保证有两双不同的筷子?答案与解析:“有两双不同的筷子”,实际上就是指木筷子、竹筷子各一双,即起码要有2+2=4(根)。
题目要求“保证有两双不同的筷子”,只摸出4根筷子是保证不了的。
从最坏的情况来考虑,一个人先摸出8根筷子,可能都是竹筷子,实际只满足了有一双筷子的要求,那么再摸两根,必然出现一双木筷子,合起来就是10根筷子。
这就是所说的“最不利情况”。
解:由于先摸出8根筷子,都是竹筷子,只满足两双不同筷子要求的一部分,是最坏的情况,在摸出2根,必有一双筷子出现。
8+2=10(根),所以,从中最少摸出10根筷子,才能保证有两双不同的筷子。
六年级奥数考点:抽屉原理问题
六年级奥数考点:抽屉原理问题考点:抽屉原理问题一、知识要点如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。
如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。
这些简单内的例子就是数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k (k ≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m ×x ×k (x >k ≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a 、构造抽屉,指出元素。
b 、把元素放入(或取出)抽屉。
C 、说明理由,得出结论。
本周我们先来学习第(1)条原理及其应用。
课后作业1、(课后)一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。
原来厂房体的表面积是多少平方厘米?(48÷2+65÷5+96÷4)×2=122平方厘米2、(课后)有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?(32×0.04+22×0.11)÷42=0.05米=5厘米3、(课后)一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是2平方厘米。
在这个杯中放进棱长6厘米的正方形铁块后,水面没有淹没铁块,这时水面高多少厘米?杯中水的体积是:72×2.5=180立方厘米放入铁块后的底面积是72-62=36平方厘米;水面的高:180÷36=5厘米4、(课后)如果把长8厘米,宽7厘米,高3厘米的2件同样的长方体物品打包,形成一件大的包装物,有几种包装方法?怎样打包,物体的表面积最小?20.56÷(1+1+3.14)=4分米3.14×(42)2×4=50.24立方分米二、精讲精练【例题1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。
抽屉原理解题思路_说明文
抽屉原理解题思路
抽屉原理1:将多于n件物品任意放在n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假设n个抽屉中的物品都不到2件,那么每个抽屉中的物品只有一件或者没有。
这样抽屉中的物体总数就不会超过n件,这与多于n件物品有假设矛盾,说明抽屉原理1成立。
抽屉原理2:将多于m*n件物品任意放在n个抽屉中,那么至少有一个抽屉中的物品不少于m+1件。
假设n个抽屉中的物品都不到m+1件,即每个抽屉中的物品都不多于m件。
这样n个抽屉中可放物体的总数就不会超过m*n件,这与多于m*n件物品有假设矛盾,说明抽屉原理2成立。
运用抽屉原理的关件是选好"抽屉",而构造"抽屉"的方法多种多样,应因题而异。
小学数学典型应用题抽屉原理和浓度问题
小学数学典型应用题抽屉原理和浓度问题抽屉问题含义:在数学问题中有一类与“存在性”有关的问题,如367个人中至少有两个人是同一天过生日,这类问题在生活中非常常见,它所依据的理论,我们称之为“抽屉原理”。
抽屉原理又名狄利克雷原则,是符合某种条件的对象存在性问题有力工具。
数量关系:基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。
抽屉原则可以推广为:如果有m个抽屉,元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
解题思路和方法:目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。
例题1:不透明的箱子中有红、黄、蓝、绿四种颜色的球各20个,一次至少摸出多少个球才能保证摸出两个相同颜色的球?解:解决这个问题要考虑最不利的情况,因为有4种颜色,想要摸出两个相同颜色的球。
那么最不利的情况就是,每种颜色的各摸出一个,这时再摸一个球,一定与前几个球有颜色相同的。
因此至少要摸4+1=5(个)球。
例题2:袋子中有2个红球,3个黄球,4个蓝球,5个绿球,一次至少摸出多少个球就能保证摸到两种颜色的球?解:解决这个问题要考虑最不利情况,想要摸出两种颜色的球,最不利的情况应该是将一种颜色的球都拿出来时,不论接下来摸的球是什么颜色都与之前颜色不同。
因为4种球的个数各不相同,所以最不利的情况应该是先将个数最多的球都拿出来,接下来摸的球都一定与之前颜色不同。
因此至少摸出5+1=6(个)球。
例题3:一次数学竞赛共5道选择题,评分标准为:基础分5分,答对一题得3分,答错扣1分,不答不得分。
要保证至少有4人得分相同,最少需要多少人参加竞赛?解:1、本题考察的是抽屉原理的相关知识,解决本题的关键是要知道得分一共有多少种不同的情况,进而从最坏的情况开始考虑解决问题。
2、一共有5题,且有5分的基础分,那么每道题就有1分的基础分。
抽屉原理
抽屉原理1) 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
2)定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=,结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.【例 1】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【解析】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为,所以,至少有1+1=2(个)学生的生日是同一天.【巩固】试说明400人中至少有两个人的生日相同.【解析】将一年中的366天或天视为366个或个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有个或个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同.【例 2】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【解析】方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中男女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中男女,那么必有两个小朋友都是男孩的说法是正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩.【例 3】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【解析】假设共有个小朋友到公园游玩,我们把他们看作个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,个小朋友每人遇到的熟人数目共有以下种可能:0,1,2,……,.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见个熟人,所以共有个“抽屉”.下面分两种情况来讨论:(1)如果在这个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上个熟人,这样熟人数目只有种可能:0,1,2,……,.这样,“苹果”数(个小朋友)超过“抽屉”数(种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.(2)如果在这个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有种可能:1,2,3,……,.这时,“苹果”数(个小朋友)仍然超过“抽屉”数(种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.总之,不管这个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等.【例题】在任意的四个自然数中,是否其中必有两个数,它们的差能被整除?【解析】因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同(需要对学生利用余数性质进行解释:为什么余数相同,则差就能被整除).这两个数的差必能被整除.【巩固】四个连续的自然数分别被除后,必有两个余数相同,请说明理由.【解析】想一想,不同的自然数被3除的余数有几类?在这道题中,把什么当作抽屉呢?把这四个连续的自然数分别除以3,其余数不外乎是0,1,2,把这3个不同的余数当作3个“抽屉”,把这个连续的自然数按照被除的余数,分别放入对应的个“抽屉”中,根据抽屉原理,至少有两个自然数在同一个抽屉里,也就是说,至少有两个自然数除以3的余数相同.【巩固】(第八届《小数报》数学竞赛决赛)将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定,请举出一个反例.【解析】(1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数.牛吃草问题解题思路和技巧一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变 2、草场原有草的量不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理的经典解题思路
抽屉原理在公务员考试中的数字运算部分时有出现。
抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
先来看抽屉原理的一般叙述:
抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。
抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。
也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。
其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。
掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。
一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。
接着制造抽屉。
这个是关键的一步,这一步就是如何设计抽屉。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
最后运用抽屉原理。
观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。
例1:证明任取6个自然数,必有两个数的差是5的倍数。
证明:考虑每个自然数被5除所得的余数。
即自然数可以作为物品,被5除所得余数可以作为抽屉。
显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。
所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。
运用抽屉原理,考虑“最坏”
的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。
例2:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?
解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。
第一步先确保取出的筷子中有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。
首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。
其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。
这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4+7=11根筷子,就能保证达到目的。
以上两个题目都考虑了“最坏”的情况,这是考虑涉及抽屉原理的最值问题的常用思路。
最后看一个有趣的数学问题,它体现了抽屉原理在证明存在性问题中的应用。
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。
”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。
如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。
考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。
根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。
如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。
不论哪种情形发生,都符合问题的结论。