1函数的定义及表示 - 中等 - 讲义

合集下载

函数的概念及表示

函数的概念及表示

函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。

2020年上海新高一新教材数学讲义-专题14 函数(学生版)

2020年上海新高一新教材数学讲义-专题14 函数(学生版)

专题14 函数(函数的概念,函数的表示方法)知识梳理一、函数的概念1.函数定义:定义一:如果在某个变化过程中有两个变量x ,y ,对于x 在某个范围D 内的每一个确定的值按照某种对应法则f , 都有唯一的值与它对应,那么y 就是x 的函数,记作()y f x =,x 叫做自变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域. 定义二:非空数集A 到非空数集B 的一个对应关系f :A B →,使A 中每一个元素在B 中都有唯一确定的元素和它对应,那么对应关系f :A B →叫做A 到B 的函数,记作()y f x =,其中x A ∈,y B ∈,x 叫做自变量,x 的取值范围A 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合C 叫做函数的值域.(一般有C B ⊆)注意:1、函数定义中要求对定义域中的任何一个x ,在值域中有且只有一个y 值和它对应;但并不要求对于值域中的每一个y 也只能有一个x 和它相对应,即函数的对应法则可以是1对1,也可以多对1,但不可以1对多(即定义域中一个x 对应值域中一个以上的y ). 2、定义域与值域都必须是非空数集.3、定义域的表示方法有:集合表示法、区间表示法 2.函数的三要素: 定义域 、 值域 和 对应关系 .确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

3.相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。

如果函数y x =和1y x =+,其定义域与值域完全相同,但不是相等函数,看两个函数是否相等,关键是看定义域和对应关系) 4.函数的表示法:表示函数的常用方法有: 解析法 、 图象法 、 列表法 .函数解析式的求法主要包含: 配凑法 、 待定系数法 、 换元法 、 赋值法(方程组法) . 5.函数的定义域、值域:在函数()y f x x A =∈,,中,x 叫做自变量,x 的取值范围A 叫做函数的 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{()f x |x A ∈}叫做函数的 值域 .(1)函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);①限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;①实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。

人教版八年级数学下册讲义(中等班)19.1 函数

人教版八年级数学下册讲义(中等班)19.1 函数

第十九章一次函数19.1 函数1.常量和变量在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为__________.(1)变量和常量是相对而言的,变化过程不同,它们可能发生改变,判断的前提条件是“在同一个变化过程中”,当变化过程改变时,同一个量的身份也可能随之改变,例如,在s=vt中,当s一定时,v,t为变量,s为常量;当t一定时,s,v为变量,而t为常量.(2)“常量”是已知数,是指在整个变化过程中保持不变的量,不能认为式中出现的字母就是变量,如在一个匀速运动中的速度v就是一个常量.(3)变量、常量与字母的指数没有关系,如S=πr2中,变量是“S”和“r”,常量是“π”.(4)判断一个量是不是变量,关键是看其数值是否发生变化.2.函数的定义一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有__________确定的值与其对应,那么我们就说x是自变量,y是x的函数.对函数定义的理解,主要抓住以下三点:(1)有两个变量.(2)函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系,一个变量的数值随着另一个变量数值的变化而变化.(3)函数的定义中包括了对应值的存在性和唯一性两重意思,即对自变量的每一个确定的值,函数有且只有一个值与之对应,对自变量x的不同取值,y的值可以相同.在某个变化过程中处于主导地位的变量即为自变量,随之变化且对应值有唯一确定性的另一个变量即为该自变量的函数.3.自变量取值范围的确定使函数有意义的自变量的取值的全体叫做__________的取值范围.当用函数关系式表示实际问题时,自变量的取值不但要使函数关系式有意义,而且还必须使实际问题有意义.4.函数解析式及函数值函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的__________.(1)函数解析式是等式.(2)函数解析式中指明了哪个是自变量,哪个是函数,通常等式右边的代数式中的变量是自变量,等式左边的变量表示函数.(3)用数学式子表示函数的方法叫做解析式法.函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b,即当x=a,y=b时,b 叫做自变量x的值为a时的函数值.5.函数的图象及其画法一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.K知识参考答案:1.常量2.唯一3.自变量4.解析式K—重点常量与变量的判断,函数自变量取值范围的确定,函数解析式及函数值的确定,函数的图象及其画法K—难点函数的定义的理解K—易错求自变量的取值范围时,考虑不周出错一、常量和变量常量和变量不是绝对的,必须根据具体的变化过程进行判断.【例1】在圆的面积公式S=πr2中,是常量的是A.S B.πC.r D.S和r 【答案】B【解析】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.二、函数的定义判断一个关系是不是函数关系的方法:第一要看是不是一个变化过程;第二要看在这个变化过程中是不是有两个变量;第三要看其中一个变量每取一个确定的值,另一个变量是否有唯一确定的值与它对应. 【例2】下列变量之间的关系中,具有函数关系的有①三角形的面积与底边;②多边形的内角和与边数;③圆的面积与半径;④y =21x -中的y 与x . A .1个B .2个C .3个D .4个【答案】C【解析】对于①,设三角形的面积为S ,底边为a ,高为h ,则有S =12ah ,由于h 为变量,故不满足函数关系; 对于②,设多边形的内角和为y ,边数为n (n ≥3且n 为整数则有y =(n -2)⨯180°,满足函数关系;对于③,设圆的面积为S ,半径为r ,则有S =πr 2,满足函数关系;对于④,21y x =-满足函数关系,故具有函数关系的有三个,故选C .三、自变量取值范围的确定函数关系式中有分式、二次根式、零指数幂等情况综合时,自变量的取值范围一定要满足每一种情况,不要出现遗漏.【例3】函数y =3x -+12x -中自变量x 的取值范围是 A .3x ≤B .3x <且2x ≠C .3x ≤且2x ≠D .2x ≠【答案】C【解析】由题意,得3020x x -≥⎧⎨-≠⎩,解得x ≤3且x ≠2,故选C .四、函数解析式及函数值(1)要正确理解函数与函数值:函数是一个关系式,是一种对应关系,是对变量而言的;函数值是对具体数值而言的.(2)一个函数的函数值一般是随着自变量的变化而变化的.(3)求函数值的方法:将自变量的取值代入函数解析式进行运算即可.【例4】在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4时,该物体所经过的路程为A.28米B.48米C.57米D.88米【答案】C【解析】把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选C.五、函数的图象(1)函数图象上的任意点(x,y)中的x,y满足函数解析式.(2)满足函数解析式的任意一对(x,y)的值,所对应的点一定在函数的图象上.(3)利用函数国象可以求方程的解、不等式的解集、方程组的解,还可以预测变量的变化趋势.【例5】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是A.B.C.D.【答案】D【解析】因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得s先缓慢减小,再不变,在加速减小.故选D.【例6】如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时【答案】C【解析】横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,A 对; 第12分的时候,对应的速度是0千米/时,B 对;从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×120=2千米,C 错; 从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D 对.综上可得:错误的是C .故选C .1.在三角形面积公式S =12ah ,a =2中,下列说法正确的是 A .S ,a 是变量,12,h 是常量 B .S ,h 是变量,12是常量 C .S ,h 是变量,12,a 是常量D .S ,h ,a 是变量,12是常量2.某市居民用电价格是0.58元/度,居民应付电费为y 元,用电量为x 度,其中 A .0.58,x 是常量,y 是变量 B .0.58是常量,x ,y 是变量 C .0.58,y 是常量,x 是变量D .x ,y 是常量,0.58是变量3.关于变量x ,y 有如下关系:①x -y =5;②y 2=2x ;③:y =|x |;④y =3x.其中y 是x 的函数的是 A .①②③B .①②③④C .①③D .①③④4.下列关系式:①x 2-3x =4;②S =3.5t ;③y =32x -;④y =5x -3;⑤C =2πR ;⑥S =v 0t +12at 2;⑦2y +y 2=0,其中不是函数关系的是 A .①⑦B .①②③④C .④⑥D .①②⑦5.函数2y x =+的自变量的取值范围是A .x ≥-2B .x <-2C .x >-2D .x ≤-26.一根弹簧长8 cm ,它所挂物体的质量不能超过5 kg ,并且所挂的物体每增加1 kg ,弹簧就伸长0.5 cm ,则挂上物体后弹簧的长度y (cm )与所挂物体的质量x (kg )(0≤x ≤5)之间的关系式为A.y=0.5(x+8)B.y=0.5x-8 C.y=0.5(x-8)D.y=0.5x+87.小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是A.B.C.D.8.如图是某市某一天的温度随时间变化的图象,下列说法错误的是A.15点时温度最高B.3点时温度最低C.最高温度与最低温度的差是12 °CD.21点时的温度是30 °C9.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数:日期/日 1 2 3 4 5 6 7 8电表读数/度21 24 28 33 39 42 46 49 表格中反映的变量是__________,自变量是__________,因变量是__________.10.函数y=23xx-+的自变量x的取值范围是__________.11.已知点M(3,5)在函数y=ax2-2x+2的图象上,则a等于__________.12.“十一”期间,小明和父母一起开车到距家200 km的景点旅游,出发前,汽车油箱内储油45 L,当行驶150 km时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280 km时,求剩余油量Q的值.13.在等腰△ABC中,底角x为(单位:度),顶角y(单位:度).(1)写出y与x的函数解析式;(2)求自变量x的取值范围.14.已知两个变量x,y之间的变化情况如图所示,根据图象回答下列问题:(1)写出y的变化范围;(2)求当x=0,-3时,y的对应值;(3)求当y=0,3时,对应的x的值;(4)当x为何值时,y的值最大?(5)当x在什么范围内时,y的值在不断增加?15.已知函数y=212xx-+,当x=a时的函数值为1,则a的值为A.3 B.-1 C.-3 D.116.如图①,在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△PDB=y,点P运动的路程为x,若y与x之间的函数图象如图②所示,则AC的长为A.14 B.7 C.4 D.217.长方形的周长为20,一边长为x,另一边长为y,写出y随x变化的函数表达式__________.18.如图1,在矩形ABCD中,动点P从点B出发,沿BC-CD-DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是__________.19.已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.20.(2018·湖南岳阳)函数y3x=-中自变量x的取值范围是A.x>3 B.x≠3C.x≥3D.x≥021.(2018·湖南永州)函数y13x=-中自变量x的取值范围是A.x≥3B.x<3 C.x≠3D.x=322.(2018·内蒙古赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.23.(2018·广东韶关)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A B C D→→→路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为A.B.C.D.24.(2018·宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满,容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是A.B.C.D.25.(2018·黑龙江齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是A.0点时气温达到最低B.最低气温是零下4 °CC.0点到14点之间气温持续上升D.最高气温是8 °C26.(2018·浙江丽水)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱27.(2018·辽宁辽阳)晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家,晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米,其中正确结论的个数是A.1个B.2个C.3个D.4个28.(2018·江苏镇江)甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午A.10:35 B.10:40 C.10:45 D.10:5029.(2018·四川攀枝花)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是A.B. C.D.30.(2018·湖北咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米,其中正确的结论有A.1个B.2个C.3个D.4个31.(2018·湖南长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是A.小明吃早餐用了25 min B.小明读报用了30 minC.食堂到图书馆的距离为0.8 km D.小明从图书馆回家的速度为0.8 km/min32.(2018·四川巴中)函数y=112xx-+-中自变量x的取值范围是__________.33.(2018·湖北恩施州)函数y=213xx+-的自变量x的取值范围是__________.34.(2018·山东枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.35.(2018·吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少米,小玲步行的速度为多少;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.36.(2018·黑龙江牡丹江)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为__________米/分,点M的坐标为__________;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.37.(2018·辽宁本溪)“五·一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求步行同学每分钟...走多少千米?(2)如图是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示骑车同学的函数图象是线段__________;②已知A点坐标(30,0),则B点的坐标为(__________).38.(2018·山东日照)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x (h )变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为__________km /h ;(2)当1.5≤x ≤2.5时,求出路程y (km )关于时间x (h )的函数解析式,并求乙地离小红家多少千米?39.(2018·黑龙江绥化)端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m 千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程(km)y 甲,(km)y 乙与时间(h)x 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:(1)图中E 点的坐标是__________,题中m __________km/h ,甲在途中休息__________h ; (2)求线段CD 的解析式,并写出自变量x 的取值范围; (3)两人第二次相遇后,又经过多长时间两人相距20 km ?1.【答案】C【解析】在三角形面积公式S=12ah,a=2中,S,h是变量,12,a是常量,故选C.2.【答案】B【解析】某市居民用电价格是0.58元/度,0.58是常量;居民应付电费为y元,用电量为x度,其中x,y是变量,故选B.3.【答案】D【解析】y是x函数的是①x-y=5;③y=|x|;④y=3x.当x=1时,在y2=2x中y=±2,则不是函数,故选D.4.【答案】A【解析】函数是指两个变量之间的关系,而①⑦只有一个变量,故①⑦不是函数;②③④⑤都有两个变量,并且给等号右边的变量一个确定的值,等号左边的变量都只有唯一的值与之对应,所以②③④⑤都是函数;⑥是以后将要学习的一个物理公式,对于一个确定的运动过程而言,v0和a都是不变的,只有S和t两个变量,并且满足一一对应,故⑥也是函数,故选A.5.【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x+2≥0,即x≥-2,故选A.6.【答案】D【解析】∵挂上1 kg的物体后,弹簧伸长0.5 cm,∴挂上质量为x kg的物体后,弹簧伸长0.5x cm,∴弹簧的长度y=0.5x+8,故选D.7.【答案】D【解析】小明同学出校门后发现道路拥堵使得车辆停滞不前,等了几分钟,他离南坪站的距离没有变化,然后她步行前往地铁站他离南坪站的距离y(km)随时间x(h)的增大而减小,最后她乘地铁直达南坪站他离南坪站的距离y(km)随时间x(h)的增大而减小,并且增加的速度更快了,符合以上的图象是D.故选D.8.【答案】C【解析】横轴表示时间,纵轴表示温度.A、温度最高应找到函数图象的最高点所对应的x值与y值:为15时,38 °C.故本选项正确;B、温度最低应找到函数图象的最低点所对应的x值与y值:为3时,22 °C,故本选项正确;C、这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16 °C,故本选项错误;D、从图象看出,这天21时的温度是30 °C,故本选项正确.故选C.9.【答案】日期和电表读数,日期,电表读数【解析】表格中反映的变量是:日期和电表读数,自变量为日期,因变量为电表读数.故答案为:日期和电表读数,日期,电表读数.10.【答案】x≥2【解析】根据题意可得:2030xx-≥⎧⎨+≠⎩,解得x≥2,故答案为:x≥2.11.【答案】1【解析】∵函数y=ax2-2x+2过M(3,5),∴5=9a-2×3+2,解得a=1,故答案为:1.12.【解析】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280 km时,剩余油量Q的值为17 L.13.【解析】(1)由题意得:x+x+y=180,∴y=180-2x.(2)由y>0得:x<90,又x>0,故0<x<90.14.【解析】(1)根据函数图象可得:y的变化范围为-2~4.(2)当x=0时,y=3;当x=-3时,y=1.(3)当y=0时,x1=-2.5,x2=-1.5,x3=3.5.当y=3时,x1=0,x2=2.(4)当x=1时,图象有最高点,此时y最大.(5)当x在-2~1时,函数图象上升,y的值在不断增加.15.【答案】A【解析】∵函数y=212xx-+中,当x=a时的函数值为1,∴2112aa-=+,∴2a−1=a+2,∴a=3,故选A.16.【答案】C【解析】如图所示,过点D作DE⊥BC于点E,则S△DPB=12BP·DE,即12y=DE·x,由题图②中的信息可知,当点P运动到点C时,y最大=7,此时x=BC=7,即12DE×7=7,解得DE=2,∵在△ABC中,∠ACB=90°,点D是AB边的中点,∴CD=DB,又∵DE⊥BC于点E,∴CE=BE,又∵点D是AB边的中点,∴DE是△ABC的中位线,∴AC=2DE=4,故选C.17.【答案】y=10-x(0<x<10)【解析】设长方形的另一条边长为y,则y=2022x-,即y=10-x,∵y>0,∴10-x>0,x<10,∵x>0,∴0<x<10.∴y关于x的函数解析式是y=10-x,x的取值范围是0<x<10.故答案为:y=10-x(0<x<10).18.【答案】10【解析】由题可知点P的运动过程分三种情况:P在BC上;P在CD上;P在AD上,该三种情况对应图象上的三段线段,由此可知P在第一段的运动路程为4,第二段的运动路程为9-4=5,即AD=BC=4,CD=AB=5,∴1=2ABCS BC AB⨯⨯△=1452⨯⨯=10,故答案为:10.19.【解析】(1)开会地点离学校有60千米.(2)答案不唯一,如:言老师上午6点钟从学校出发,开车走普通公路,出发1小时后,车坏了,半小时后修好了以原速度继续前进,8点钟准时赶到了会场,开会持续了3小时结束,会后改走高速公路,12点钟到学校.20.【答案】C【解析】由题意得:x-3≥0,解得x≥3,故选C.21.【答案】C【解析】根据题意得:x-3≠0,解得:x≠3,故选C.22.【答案】D【解析】乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短.故选D.23.【答案】B【解析】设菱形的高为h,有三种情况:①当P在AB边上时,如图1,y=12AP·h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=12AD·h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=12PD·h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.24.【答案】D【解析】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满,因为长方体是均匀的,所以初期的图象应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图象也是直线,但斜率小于初期,综上所述选D.25.【答案】D【解析】A.根据图象4时气温最低,故A错误;B.最低气温为零下3 °C,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确,故选D.26.【答案】D【解析】观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;观察函数图象,可知:当每月上网费用大于等于50元时,B方式可上网的时间比A方式多,结论B正确;设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得253055120k bk b+=⎧⎨+=⎩,解得345kb=⎧⎨=-⎩,∴y A=3x-45(x≥25),当x=35时,y A=3x-45=60>50,∴每月上网时间为35 h时,选择B方式最省钱,结论C正确;设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得50505565m nm n+=⎧⎨+=⎩,解得3100mn=⎧⎨=-⎩,∴y B=3x-100(x≥50),当x=70时,y B=3x-100=110<120,∴结论D错误.故选D.27.【答案】C【解析】①4000÷20=200米/分,∴两人同行过程中的速度为200米/分,①正确;②m=20-5=15,n=200×15=3000,②正确;③晓琳开始返回时,爸爸和晓琳各走5分钟,爸爸返回的速度为100,所以他们的距离为:300×5=1500(米),③不正确;④设爸爸返回的解析式为y2=kx+b,把(15,3000)(45,0)代入得153000 450k bk b+=⎧⎨+=⎩,解得1004500kb=-⎧⎨=⎩,∴y2=-100x+4500,∴当0≤x≤20时,y1=200x,y1-y2=900,∴200x-(-100x+4500)=900,∴x=18,当20≤x≤45时,y1=ax+b,将(20,4000)(45,0)代入得204000450a ba b+=⎧⎨+=⎩,∴1607200kb=-⎧⎨=⎩,y1=-160x+7200,y1-y2=900,(-160x+7200)-(-100x+4500)=900,x=30,∴④正确,故选C.28.【答案】B【解析】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40 km/h,因为匀速行驶了一半的路程后将速度提高了20 km/h,所以以后的速度为20+40=60 km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.29.【答案】C【解析】如图,过点C作CD⊥y轴于点D,∵∠BAC=90°,∴∠DAC+∠OAB=90°,∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB,又∵∠CDA=∠AOB=90°,∴△CDA∽△AOB,∴OB OA ABDA DC AC===tan30°,则313xy=-,故y=3x+1(x>0),则选项C符合题意.故选C.30.【答案】A【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16-4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故选A.31.【答案】B【解析】小明吃早餐用了(25-8)=17 min,A错误;小明读报用了(58-28)=30 min,B正确;食堂到图书馆的距离为(0.8-0.6)=0.2 km,C错误;小明从图书馆回家的速度为0.8÷10=0.08 km/min,D错误,故选B.32.【答案】x ≥1且x ≠2【解析】由题意得1020x x -≥⎧⎨-≠⎩,解得:x ≥1且x ≠2,故答案为:x ≥1且x ≠2. 33.【答案】x ≥-12且x ≠3 【解析】根据题意得2x +1≥0,x -3≠0,解得x ≥-12且x ≠3.故答案为:x ≥-12且x ≠3. 34.【答案】12【解析】根据题意观察图象可得BC =5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP =4,又勾股定理求得CP =3,因点P 从点C 运动到点A ,根据函数的对称性可得CP =AP =3,所以ABC ∆的面积是1(3+3)42⨯⨯=12,故答案为:12. 35.【解析】(1)结合题意和图象可知,线段CD 为小玲路程与时间函数图象,折线O -A -B 为为小东路程与时间图象,则家与图书馆之间路程为4000 m ,小玲步行速度为2000÷10=200 m /s . (2)∵小东从离家4000 m 处以300 m /min 的速度返回家,则x min 时,∴他离家的路程y =4000-300x ,自变量x 的范围为0≤x ≤403. (3)由图象可知,两人相遇是在小玲改变速度之前,∴4000-300x =200x ,解得x =8,∴两人相遇时间为第8分钟.36.【解析】(1)由题意得:甲的骑行速度为:10202114-=240(米/分), 240×(11-1)÷2=1200(米), 则点M 的坐标为(6,1200),故答案为:240,(6,1200).(2)设MN 的解析式为:y =kx +b (k ≠0),∵y =kx +b (k ≠0)的图象过点M (6,1200)、N (11,0),∴61200 110k bk b+=⎧⎨+=⎩,解得2402640kb=-⎧⎨=⎩,∴直线MN的解析式为:y=-240x+2640.即甲返回时距A地的路程y与时间x之间的函数关系式:y=-240x+2640.(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200-1020=180,分5种情况:①当0<x≤3时,1020-240x=180-60x,x=143>3,此种情况不符合题意;②当3<x<214-1时,即3<x<174,甲、乙都在A、C之间,∴1020-240x=60x-180,x=4,③当214<x≤6时,甲在B、C之间,乙在A、C之间,∴240x-1020=60x-180,x=143<214,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60-180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,。

函数的概念及其表示方法

函数的概念及其表示方法

教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。

函数的概念及其表示课件

函数的概念及其表示课件

复合函数及其运算
复合函数的概念
复合函数是由两个或多个基本函数通过嵌套方式组合而成的新函数。内部函数 的值作为外部函数的自变量,形成一个新的函数关系。
复合函数的运算
对复合函数进行运算时,需要遵循从内到外的顺序,先计算内部函数的值,再 将结果代入外部函数进行计算。
函数在实际问题中的应用举例
01
经济学领域应用
函数的性质
包括定义域、值域、单调性、奇偶性、周期 性等。这些性质帮助我们更深入地理解函数
的行为和特征。
02
函数的表示方法
表格法
定义
通过列表格的方式来表示函数关 系,列出输入值与对应输出值的
一种表示方法。
优点
表格法简单明了,能够直观地展示 函数输入输出之间的关系,方便查 找特定输入值对应的输出值。
函数关于y轴对称。
函数的奇偶性是函数的另一种重 要性质,它与函数的对称性有关 ,可以帮助我们更好地理解函数
的图像和性质。
04
函数的运算与应用
函数的加减乘除运算
函数加减运算
当两个函数的定义域相同时,可以进行加减运算,将对应自变量上的函数值相加 或相减得到新的函数。
函数乘除运算
函数乘除运算也是基于相同的定义域进行的,将对应自变量上的函数值相乘或相 除得到新的函数。需要注意的是,函数除法运算中,除数函数不能为0。
在生物学研究中,函数可以描述生物种群数量随时间的变化关系,通过 函数的建模和分析,可以揭示生态系统中种群的动态平衡规律,为生态 保护提供科学依据。
Tห้องสมุดไป่ตู้ANK YOU
感谢观看
图象法
定义
通过画图的方式来表示函数关系,将函数的输入值作为自 变量,输出值作为因变量,在坐标系中描点并连成曲线表 示函数关系的方法。

中职函数知识点总结讲解

中职函数知识点总结讲解

中职函数知识点总结讲解一、函数的概念函数是数学中一个非常重要的概念,它是一种特殊的关系,它把一个数域的元素(称为自变量)映射到另一个数域的元素(称为因变量)。

通俗地讲,函数就是一种对应关系,每个自变量都对应一个唯一的因变量。

在数学上,函数通常用f(x)来表示,其中f表示函数的名称,x表示自变量。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

如果一个函数的定义域和值域都是实数集,那么这个函数就是实函数;如果定义域和值域都是复数集,那么这个函数就是复函数。

二、函数的性质1. 定义域和值域:函数的定义域和值域是函数的基本性质,它们决定了函数的取值范围和取值规律。

在函数的图像中,定义域决定了函数的横坐标范围,值域决定了函数的纵坐标范围。

2. 单调性:函数的单调性是指函数在定义域上的增减规律。

一个函数如果在定义域上严格递增或严格递减,那么它就是单调函数;如果在定义域上既递增又递减,那么它就是不单调函数。

3. 奇偶性:函数的奇偶性是指函数的对称性。

一个函数如果满足f(-x)=f(x),那么它就是偶函数;如果满足f(-x)=-f(x),那么它就是奇函数。

4. 周期性:函数的周期性是指函数在一定区间内具有重复性。

一个函数如果满足f(x)=f(x+T),其中T为正实数,那么它就是周期函数,T称为函数的周期。

5. 最值和极值:函数的最值是指函数在定义域上的最大值和最小值,极值是指函数在某个局部范围内的最大值和最小值。

函数的最值和极值通常通过导数和二阶导数求解。

三、基本初等函数1. 线性函数:线性函数是最简单的函数之一,它的图像是一个直线。

线性函数的一般形式为f(x)=kx+b,其中k和b是常数,k称为斜率,b称为截距。

2. 二次函数:二次函数是一个关于x的二次多项式,它的图像是一个抛物线。

二次函数的一般形式为f(x)=ax²+bx+c,其中a、b、c是常数,a≠0。

3. 指数函数:指数函数是以一个固定的正数为底的函数,它的自变量是指数。

函数的定义与表示方法

函数的定义与表示方法

函数的定义和表示方法1 函数的定义(1)由函数的定义知,由于函数的值域被函数的定义域和对应法则完全确定,这样确定一个函数就只需两个要素:定义域和对应法则。

因此,定义域和对应法则是“y是x的函数”的两个基本条件,缺一不可。

只有当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数,这就是说:a 定义域不同,两个函数不同;b 对应法则不同,两个函数也不同(2)由函数的定义知,我们要检验两个变量之间是否具有函数关系,只要检验:A 定义域和对应法则是否给出B 根据给出的对应法则,自变量x在其定义域中的每个值,是否都能确定唯一的函数y2 映射与函数函数是一种特殊的映射,它是数集到数集的映射。

A 映射中的两个集合A,B可以是数集、点集或由图形组成的集合等等,总之只要是非空集合即可B 映射是有方向的,A到B的映射与B到A的映射不是同一个映射C 映射要求对于集合A中的每一个元素,在集合B中都有它的象并且象是唯一确定的,这种集合A中元素的任意性和集合B中元素的唯一性是映射的重要性质,缺一不可。

D 映射允许集合A中不同的元素在集合B中有相同的象,即映射可以是“多对一”或“一对一”,但不能一对多E 当A、B都是非空数集时,A到B的映射就构成了A到B的一个函数,因此函数是一类特殊的映射3 函数的表示方法函数的表示方法通常有三种,他们是列表法、图像法和解析法4 分段函数A 分段函数的定义域是各段定义域的并集,其值域是各段值域的并集B 分段函数求值要先找准自变量所在区间及所对应的解析式,然后求值C 在研究分段函数图像时,要特别注意定义域的制约作用D 分段函数时一个函数,并非几个函数。

典型例题一利用映射与函数的定义域解题例1 关于函数有下列四种说法:(1)自变量x在其定义域内的每一个值,都有唯一确定的函数值f(x);(2)定义域不同,尽管两个函数的值域与解析式都相同,但两函数仍不是同一函数(3)若函数的定义域只有一个元素,则函数的值域也只有一个元素;(4)定义域和值域相同的两个函数一定是同一函数。

函数概念与知识点总结

函数概念与知识点总结

函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。

在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。

函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。

函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。

1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。

单值性表示对于每个输入参数,函数有且只有一个输出结果。

有限性表示函数的定义域和值域都是有限的。

定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。

1.3 函数的分类函数可以根据其形式、性质和用途进行分类。

常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。

函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。

二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。

若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。

2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。

若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。

2.3 函数的最值函数的最值指在定义域内的最大值和最小值。

函数的最值可以通过求导数或利用一阶导数的性质进行判断。

2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。

通过绘制函数的图像,可以直观地理解函数的性质和变化规律。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。

三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。

初中数学知识归纳函数的定义和性质

初中数学知识归纳函数的定义和性质

初中数学知识归纳函数的定义和性质初中数学知识归纳:函数的定义和性质函数是数学中非常重要的概念之一,它在数学的各个分支以及实际生活中都有着广泛的应用。

本文将对函数的定义和性质进行归纳和总结。

一、函数的定义函数可以理解为一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。

具体而言,设有两个集合A和B,如果对于集合A中的每一个元素a,都存在集合B中的唯一元素b与之对应,那么就可以说存在一个函数f,记作f:A→B,其中a是自变量,b是函数的值或因变量。

函数的定义包含以下要点:1. 自变量和因变量的集合:函数的定义必须明确给出自变量和因变量所属的集合,即A和B。

2. 对应关系的唯一性:函数要求对于集合A中的每一个元素a,都有唯一的元素b与之对应。

3. 函数的表示方式:常用的表示函数的方式有算式表示、表格表示、图像表示等。

二、函数的性质函数具有一些重要的性质,下面将逐一介绍。

1. 定义域和值域:函数的定义域是指自变量的取值范围,记作D(f)。

而函数的值域是指因变量的取值范围,记作R(f)。

函数的定义域和值域是与具体函数有关的属性,不同函数的定义域和值域可以不同。

2. 一一对应:如果一个函数中的每一个自变量对应到一个唯一的因变量,而且每一个因变量都有对应的自变量,那么该函数被称为一一对应函数。

一一对应的函数具有双射关系,也就是说不存在自变量相同而因变量不同的情况。

3. 奇偶性:函数的奇偶性是指函数关于y轴、原点或者其他特定点对称的特性。

如果对于函数中的任意x值,都有f(-x) = f(x),那么该函数是偶函数;如果对于函数中的任意x值,都有f(-x) = -f(x),那么该函数是奇函数;如果函数既不满足偶函数的条件,也不满足奇函数的条件,那么该函数即为既非偶函数也非奇函数。

4. 单调性:函数的单调性是指函数在给定定义域上的增减性质。

设有函数f(x),若对于定义域上的任意x1和x2,当x1<x2时,有f(x1)<f(x2),那么该函数是严格增函数;若对于定义域上的任意x1和x2,当x1<x2时,有f(x1)≤f(x2),那么该函数是增函数;若对于定义域上的任意x1和x2,当x1<x2时,有f(x1)>f(x2),那么该函数是严格减函数;若对于定义域上的任意x1和x2,当x1<x2时,有f(x1)≥f(x2),那么该函数是减函数。

函数的概念ppt课件

函数的概念ppt课件

函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。

函数的概念及其表示讲义- 高考一轮复习

函数的概念及其表示讲义- 高考一轮复习

§2.1 函数的概念及其表示课标要求 1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A ,B 是________________,如果对于集合A 中的________一个数x ,按照某种确定的对应关系f ,在集合B 中都有__________的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .2.函数的三要素(1)函数的三要素:__________、____________、____________.(2)如果两个函数的______________相同,并且____________完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数.3.函数的表示法表示函数的常用方法有____________、图象法和____________.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空实数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.课前预习1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( )(2)任何一个函数都可以用图象法表示.( )(3)直线y =a 与函数y =f (x )的图象可以有多个交点.( )(4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( )高三数学062.(多选)下列图象中,是函数图象的是( )3.(多选)下列选项中,表示的不是同一个函数的是( )A .y =x +33-x 与y =x +33-xB .y =x 2与y =(x -1)2C .y =x 2与y =xD .y =1与y =x 04.已知函数f (x -1)=x 2+4x -5,则f (x )的解析式是________________________. 典例精讲题型一 函数的概念例1 (1)(多选)下列说法中正确的有( )A .f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一个函数 B .函数f (x )=x +1-1x的定义域是[-1,0)∪(0,+∞) C .f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一个函数D .若f (x )=|x -1|-x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0(2)已知函数f (x )的定义域为[-2,3],则函数f (2x -1)的定义域为____________________.变式训练1 (1)下列各组函数表示同一个函数的是( )A .f (x )=x 2,g (x )=(x )2B .f (x )=1x -1,g (x )=1x -1C .f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,g (t )=|t | D .f (x )=x +1,g (x )=x 2-1x -1 (2)已知函数f (x )的定义域为[2,8],则函数h (x )=f (2x )+9-x 2的定义域为( )A .[4,16]B .(-∞,1]∪[3,+∞)C .[1,3]D .[3,4]题型二 函数的解析式例2 (1)已知f (x+1)=x ,求f (x )的解析式;(2)已知f ⎝⎛⎭⎫x 2+1x 2=x 4+1x 4,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式;(4)若对任意实数x ,均有f (x )-2f (-x )=9x +2,求f (x )的解析式.变式训练2 (1)若f ⎝⎛⎭⎫1x =x 1-x ,则f (x )=________________________.(2)已知f (f (x ))=4x +9,且f (x )为一次函数,则f (x )=_____________________.题型三 分段函数例3 (1)(多选)已知函数f (x )=⎩⎪⎨⎪⎧x 2,-2≤x <1,-x +2,x ≥1,则下列关于函数f (x )的结论正确的是( ) A .f (x )的定义域为R B .f (x )的值域为(-∞,4]C .若f (x )=2,则x 的值是-2D .f (x )<1的解集为(-1,1)(2)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-3x +2,x <-1,2x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是_____________________________________.变式训练3 (1)已知定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(2-x ),x ≤0,f (x -3),x >0, 则f (2 023)等于( )A .0B .1C .2D .3(2) ※.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 课堂小结课后反思函数的概念及其表示限时训练1.函数f (x )=lg(x -2)+1x -3的定义域是( ) A.(2,+∞) B.(2,3) C.(3,+∞) D.(2,3)∪(3,+∞)2.(多选)下列各图中,能表示函数y =f (x )的图象的是( )3.已知函数f (x +2)=x 2-3x +4,则f (1)=( )A.4B.6C.7D.84.(多选)下列函数中,与函数y =x +2是同一个函数的是( )A.y =(x +2)2B.y =3x 3+2C.y =x 2x+2 D.y =t +2 5.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,x +1x,x >0,若f (f (a ))=2,则a 等于( ) A.0或1 B.-1或1 C.0或-2 D.-2或-16.已知函数f (x )对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________.7.(1)已知f (x +1)=2x 2-x +3,求f (x ).(2)已知f (f (x ))=4x +9,且f (x )为一次函数,求f (x ).(3)已知函数f (x )满足2f (x )+f ⎝⎛⎭⎫1x =x ,求f (x ).8. ※已知函数f (x )=lg 1-x 1+x,则函数g (x )=f (x -1)+2x -1的定义域是( ) A.{x |x >2,或x <0} B.⎩⎨⎧⎭⎬⎫x |12≤x <2 C.{x |x >2} D.⎩⎨⎧⎭⎬⎫x |x ≥12 9. ※已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 10. ※用max{a ,b }表示a ,b 两个数中的最大值,设函数f (x )=max ⎩⎨⎧⎭⎬⎫|x |,1x (x >0),若f (x )≥m -1恒成立,则m 的最大值是________。

函数的概念与性质课件

函数的概念与性质课件

函数的概念与性质课件一、函数的基本概念函数是数学中的重要概念,广泛应用于各个领域。

简而言之,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

换句话说,函数可以看作是一种规则,它将输入映射为输出。

二、函数的表示方法1. 函数的符号表示:一般使用小写字母来表示函数,如f(x),其中f表示函数,x表示自变量。

2. 函数的图像表示:我们可以通过绘制函数的图像来表示函数。

横轴代表自变量,纵轴代表函数值。

函数图像可以直观地展示函数的性质和特点。

三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指函数的所有可能输出值的集合。

在函数的定义中,要确保对于定义域中的每个自变量值,都能得到一个唯一的函数值。

2. 单调性:函数的单调性描述了函数在定义域内的变化趋势。

若对于任意的x1和x2(x1 < x2),都有f(x1) ≤ f(x2),则函数为递增函数;若对于任意的x1和x2(x1 < x2),都有f(x1) ≥ f(x2),则函数为递减函数。

3. 奇偶性:若对于任意的x,有f(-x) = -f(x),则函数为奇函数;若对于任意的x,有f(-x) = f(x),则函数为偶函数。

4. 周期性:若存在常数T>0,对于任意的x,有f(x+T) = f(x),则函数为周期函数。

5. 极值点:函数在定义域内某一点上的函数值是最大值或最小值,称为该点上的极值点。

极值点分为最大值点和最小值点,也可以分别称为极大值点和极小值点。

6. 零点:函数在定义域内满足f(x) = 0的点,称为函数的零点或根。

四、函数的应用函数作为数学的基础概念,在各个领域都有着广泛的应用。

1. 自然科学中,函数用于描述物理量之间的关系,如速度和时间的关系、温度和时间的关系等。

2. 经济学中,函数用于描述供需关系、价格变化等经济现象。

3. 金融学中,函数用于描述收益与风险之间的关系,如投资组合的效用函数。

北师大版初二上-一次函数讲义全精选全文

北师大版初二上-一次函数讲义全精选全文

可编辑修改精选全文完整版第四章:一次函数◆4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数.其中x是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区自变量与另一个变量的对应关系若y是x的函数,当x取不同的值时,y的值不一定不同.如:y=x2中,当x=2,或x=-2时,y的值都是4.[例1-1] 下列关于变量x,y的关系式:①x-3y=1;②y=|x|;③2x-y2=9.其中y是x 的函数的是< >.A.①②③ B.①② C.②③ D.①②[例1-2] 已知y=2x2+4,<1>求x取错误!和-错误!时的函数值;<2>求y取10时x的值..谈重点函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式.谈重点函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y=x+1是表示y是x的函数.若写成x=y-1就表示x是y的函数.也就是说:求y与x的函数关系式,必须是用只含变量x的代数式表示y,即得到的等式<解析式>左边只含一个变量y,右边是含x的代数式.[例2]已知等腰三角形的周长为36,腰长为x,底边上的高为6,若把面积y看做腰长x的函数,试写出它们的函数关系式.3.自变量的取值范围<1>使函数有意义的自变量的全体取值叫做自变量的取值范围.<2>自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.[例3]若等腰三角形的周长为50 cm,底边长为x cm,一腰长为y cm,y与x的函数关系式为y=错误!<50-x>,则变量x的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.<1>列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.<2>图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.<3>解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.[例4] 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是< >.5.怎样判定函数关系<1>从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x 和y ,对于x 每一个确定的值,y 都有且只有一个值与之对应,当x 取不同的值时,y 的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.<2>从表格中判定函数根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.<3>从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.[例5-1] 下列表格中能反映y 是x 的函数的是< >.A x -1 1 2 3 -1 y 0 2 4 8 10B x 0 1 2 3 0 y -2 2 3 4 6C x 2 2 2 2 2 y -1 0 1 1 3D x -1 1 2 3 4 y 0 2 4 8 10[例5-2] y x 6.如何判断同一函数学习了函数的概念,判断两个函数是否表示同一函数要看它们是不是满足以下三个条件:<1>自变量的取值范围完全相同.<2>函数值的取值范围完全相同.<3>变形后,两个函数的解析式是一致的,即自变量和函数的对应关系完全相同.如果两个函数满足以上三个条件,那么它们是同一函数.解答这类问题的关键是正确理解上述的三个条件.☆函数的自变量取值范围和解析式为函数的两个基本条件,判断两个函数是否相等的关键是看自变量取值范围和解析式.自变量取值范围和函数值分别相同的函数不一定是相等函数.[例6-1] 下列函数中,与y =x 表示同一个函数的是< >.A .y =错误!B .y =|x |C .y =<错误!>2D .y =错误![例6-2]下列各组函数中,哪些是同一函数:①y x =与1y x =+;②1,y x x =-为实数,与1,y x x =-为自然数;③24y x =-与22y x x =-+④11y x =+与11u x =+; ⑤2y x x =2y x =; ⑥2||y x =与2,02,0x x y x x ≥⎧=⎨-<⎩; 7.函数图象的实际应用函数的图象是由点组成的,每个点都具有实际意义,利用函数的图象可以反映实际问题中的关系,同样通过观察函数的图象也可以得到关于实际问题的相关信息.可以说,函数的图象是我们解决实际问题的有效手段和重要的工具.解决函数图象选择问题的关键是在阅读反映实际问题的文字语言的同时,对图象进行观察、分析,获取有效的解题信息.解答这类问题主要是利用数形结合的思想分析问题、解决问题.[例7]父亲节,学校"文苑"专栏登出了某同学回忆父亲的小诗:"同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还."如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致吻合的图象是< >.………………………………………………………………………………◆4.2一次函数与正比例函数1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x的一次函数<x是自变量>.谈重点一次函数的条件函数是一次函数必须符合下列两个条件:<1>关于两个变量x,y的次数是1;<2>必须是关于两个变量的整式.[例1]下列函数中,是一次函数的是< >.A.y=7x2B.y=x-9 C.y=错误! D.y=错误!2.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx<k为常数,且k≠0>时,我们称y是x的正比例函数.辨误区一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.[例2]下列函数中,是正比例函数的是< >.A.y=-2x B.y=-2x+1 C.y=-2x2D.y=-错误!辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx +b<k≠0>的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx<k≠0>的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.[例3] 甲、乙两地相距30 km,某人从甲地以每小时4 km的速度走了t h到达丙地,并继续向乙地走.<1>试分别确定甲、丙两地距离s1<km>及丙、乙两地距离s2<km>与时间t<h>之间的函数关系式.<2>它们是什么函数.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x 的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.__①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.[例4-1]在下列函数中,x是自变量,哪些是一次函数?哪些是正比例函数?<1>y=3x;<2>y=错误!;<3>y=-3x+1;<4>y=x2.[例4-2] 已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.[例5] 一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L,行驶了1 h后发现已耗油1.5 L.<1>求油箱中的剩余油量Q<L>与行驶的时间t<h>之间的函数关系式,并求出自变量t的取值范围;<2>如果摩托车以60 km/h的速度匀速行驶,当油箱中的剩余油量为3 L时,老王行驶了多少千米?………………………………………………………………………………◆4.3一次函数的图象1.函数的图象对于一个函数,我们把它的自变量x与对应的变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系<1>函数图象上的任意点P<x,y>必满足该函数关系式.<2>满足函数关系式的任意一对x,y的值,所对应的点一定在该函数的图象上.<3>判定点P<x,y>是否在函数图象上的方法是:将点P<x,y>的坐标代入函数表达式,如果满足函数表达式,这个点就在函数的图象上;如果不满足函数的表达式,这个点就不在函数的图象上.[例1] 判断下列各点是否在函数y=2x-1的图象上.A<2,3>, B<-2,-3>.2.函数图象的画法画函数图象的一般步骤:<1>列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.<2>描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一般把关键的点准确地描出,点取得越多,图象越准确.<3>连线:按照自变量从小到大的顺序,把所描的点用平滑的曲线连接起来.释疑点平滑曲线的特点所谓的"平滑曲线",现阶段可理解为符合图象的发展趋势、让人感觉过渡自然、比较"平""滑"的线,实际上有时是直线.[例2] 作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表:x …-2-101…y …31-1-3…描点:以表中各组对应值作为点的坐标,在坐标系中描出相应的点.连线:把这些点连起来.注:一次函数y=-2x-1的图象是直线,连线时,两端要露头.3.一次函数的图象和性质<1>一次函数的图象和性质①一次函数的图象:一次函数y=kx+b<k≠0>的图象是一条直线.由于两点确定一条直线,因此画一次函数的图象,只要描出图象上的两个点错误!,过这两点作一条直线就行了.我们常常把这条直线叫做"直线y=kx+b".②一次函数中常量k,b<k≠0>:直线y=kx+b<k≠0>与y轴的交点是<0,b>,当b>0时,直线与y轴的正半轴相交;当b<0时,直线与y轴的负半轴相交;当b=0时,直线经过原点,此时一次函数即为正比例函数.一次函数y=kx+b中的k,决定了直线的倾斜程度,k的绝对值越大,则直线越接近y轴,反之,越靠近x轴.③一次函数y=kx+b<k≠0>的性质:当k>0时,直线y=kx+b从左向右上升,函数y的值随自变量x的增大而增大;当k<0时,直线y=kx+b从左向右下降,函数y的值随自变量x的增大而减小.<2>正比例函数的图象和性质①正比例函数的图象:一般地,正比例函数y=kx<k是常数,k≠0>的图象是一条经过原点的直线,我们称它为直线y=kx.在画正比例函数y=kx的图象时,一般是经过点<0,0>和<1,k>作一条直线.②正比例函数y=kx的性质:当k>0时,直线y=kx经过第一、三象限,从左往右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左往右下降,即y随x 的增大而减小.[例3-1]作出一次函数y=-3x+3的图象.[例3-2]若一次函数y=<2m-6>x+5中,y随x增大而减小,则m的取值范围是________.[例3-3]下图表示一次函数y=kx+b与正比例函数y=kx<k,b是常数,且k≠0>图象的是< >.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b<k≠0>,我们知道一次函数图象经过哪些象限是由k,b的符号决定的.一般分为四种情况:<1>k>0,b>0时,图象过第一、二、三象限;<2>k>0,b<0时,图象过第一、三、四象限;<3>k<0,b>0时,图象过第一、二、四象限;<4>k<0,b<0时,图象过第二、三、四象限.析规律 k,b的符号与直线的关系根据一次函数y=kx+b中k,b的符号可以确定图象所经过的象限;根据函数图象所经过的象限,可以确定k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所经过象限的几个类型,并能灵活应用.[例4-1] 一次函数y=kx+b的图象经过第二、三、四象限,则正比例函数y=kbx图象经过哪个象限?[例4-2]如图是一次函数y=kx+b的图象的大致位置,试分别确定k,b的正负号,并判断一次函数y=<-k-1>x-b的图象所经过的象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x轴交于点错误!,与y轴交于点<0,b>.考查直线与两坐标轴的交点的问题常见的有三类:<1>判定直线所过的象限,一般给出函数关系式,判定直线经过哪几个象限或确定不经过哪个象限.<2>求直线的解析式,一般先设出函数关系式为y=kx+b<k≠0>,把已知的两点的坐标分别代入,求出k,b的值即可.<3>求两交点与坐标轴围成的三角形的面积,由于这个三角形是直角三角形,利用面积公式即可.[例5] 如图,已知直线y=kx-3经过点M<-2,1>,求此直线与x轴,y轴的交点坐标,并求出与坐标轴所围的三角形的面积.6.关于一次函数的最值问题对于一般的一次函数,由于自变量的取值范围可以是全体实数,因此不存在最大、最小值<简称"最值">,但在实际问题中,因题目中的自变量受到实际问题的限制,所以就有可能出现最大值或最小值.求解这类问题,先分析问题中两个变量之间的关系是否适合一次函数模型,再在自变量允许的取值范围内建立一次函数模型.运用一次函数解决实际问题的关键是根据一次函数的性质来解答.除正确确定函数表达式外,利用自变量取值范围去分析最值是解题的关键."在生活中学数学,到生活中用数学",是新课标所倡导的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同学们利用所学知识求解实际问题的能力.[例6] 某报刊销售亭从报社订购晚报的价格是0.7元,销售价是每份1元,卖不掉的报纸可以以每份0.2元的价格退回报社,若每月按30天计算,有20天每天可卖出100份报纸,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,报亭每天从报社订购多少份报纸,才能使每月所获得的利润最大?………………………………………………………………………………◆4.4一次函数的应用1.确定一次函数表达式<1>借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx<k≠0>;若不过原点,则为一次函数,可设其关系式为y=kx+b<k≠0>;然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.<2>确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx<k≠0>中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式.②一次函数y=kx+b<k≠0>有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值.[例1]如图,直线AB对应的函数表达式是< >.A.y=-错误!x+3 B.y=错误!x+3 C.y=-错误!x+3 D.y=错误!x+3点技巧用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b<k≠0>的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法<1>定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.<2>用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程<组>,得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.[例2-1] 一次函数图象如图所示,求其解析式.[例2-2] 在直角坐标系中,一次函数y=kx+b的图象经过三点A<2,0>,B<0,2>,C<m,3>,求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.一次函数的实际应用<1>通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.释疑点函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.<2>一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.谈重点函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b<k≠0>的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.[例3-1]甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y<m>与挖掘时间x<h>之间的关系如图所示,请根据图象所提供的信息解答下列问题:<1>乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了__________ m.<2>请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.<3>当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?[例3-2] 某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象<两条射线>如图,观察图象回答下列问题:<1>每月行驶的路程在什么范围内时,租国有出租车公司的车合算?<2>每月行驶的路程等于多少时,租两家车的费用相同?<3>如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y=kx+b<k≠0>中的函数值为0时,可得0=kx+b即kx+b=0,这在形式上变成了求关于x的一元一次方程,也就是说,当一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的解;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的横坐标,即为方程kx+b=0的解.由此可见,方程与函数是密不可分的.[例4] 某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y<L>与行驶时间t<h>的关系如下表,与行驶路程x<km>的关系如下图.请你根据这些信息求A行驶时间t<h>012 3油箱余油量y<L>1008468525一次函数y=kx+b<k≠0>的图象可以看做由直线y=kx平移|b|个单位长度而得到<当b >0时,向上平移;当b<0时,向下平移>.实际上就是指一次函数y=kx+b的图象沿y轴平移时,在b的位置上按照"上加下减"的规律进行.如:一次函数l1:y=错误!x+2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向上平移2个单位长度得到的;一次函数l2:y=错误!x-2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向下平移2个单位长度得到的.思考:函数图像左右移动解析式如何变化呢?[例5] 如图所示,将直线OA向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.析规律平移中的函数解析式解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k的值不变,改变的是b的值.6.函数、方程和不等式的完美结合从"数"的角度看,由于任何一元一次方程都可以转化为ax+b=0<a,b为常数,且a≠0>的形式,所以解一元一次方程可以看做:当一次函数y=ax+b的值为0时,求相应的自变量的值;反之,求自变量x为何值时,一次函数y=ax+b的值为0,只要求出方程ax+b=0的解即可.由于任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大<小>于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大<小>于0时,只要求出不等式ax+b>0或ax+b<0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.。

初三数学函数的定义和表示方法

初三数学函数的定义和表示方法

初三数学函数的定义和表示方法函数是数学中一个非常重要的概念,它在初中数学中扮演着至关重要的角色。

本文将详细介绍函数的定义和表示方法,帮助初三学生更好地理解和掌握这一概念。

一、函数的定义函数是一种特殊关系,它将一个集合的元素映射到另一个集合的元素。

通俗地说,函数就是一种“对应关系”。

对于集合A和集合B,如果对于A中的每个元素a,存在唯一的一个元素b与之对应,那么我们就说这个对应关系是一个函数。

我们一般用f来表示函数,即f: A->B。

举个例子来说明函数的定义。

假设集合A表示学生的姓名集合,集合B表示学生的成绩集合。

如果我们规定某个学生的姓名和他的数学成绩之间存在这样的对应关系:姓名为小明的学生对应的数学成绩是90分。

那么我们就可以把这个对应关系看作一个函数,并用f来表示,即f: A->B。

二、函数的表示方法函数的表示方法有很多种,下面将介绍常见的几种方式。

1. 函数的文字表示函数的文字表示是最常见的表示方式。

我们可以用一个公式或者描述来表示函数的规律。

比如,函数f(x) = 2x表示,对于任意一个输入x,输出是它的两倍。

这就是一个简单的线性函数。

2. 函数的图像表示函数的图像表示是通过绘制函数的曲线来展示其规律。

我们可以在坐标系中画出函数的图像,将自变量x作为横坐标,因变量f(x)作为纵坐标。

通过观察图像,我们可以对函数的特点有更直观的认识。

3. 函数的表格表示函数的表格表示是将自变量和因变量的对应关系以表格的形式展示出来。

我们将自变量的取值和对应的函数值列成一张表格,可以更清晰地看到函数的规律。

这在实际问题中往往更易于计算和理解。

4. 函数的符号表示函数的符号表示是使用特定的数学符号来表示函数的规律。

比如,可以使用数列的递推公式来表示函数。

函数的符号表示更便于进行具体的运算和推导,常用于高中及以上的数学知识中。

三、函数的拓展应用函数作为数学的基础,不仅在初中数学中有广泛的应用,还在更高层次的数学中发挥着重要的作用。

讲义-第三章《函数》

讲义-第三章《函数》
4.已知给定的二次函数,会求函数的最小值,对称轴,顶点坐标,单调区间,会判断函数的奇偶性。
例:求函数y=3x2+2x+1的最小值及它图像的对称轴,并说明图像的单调区间。
(3)图像法:用图像来表示两个变量的函数关系。特点是直观表示变化趋势。
2.分段函数:在函数定义域内,对于自变量x的不同取值区间,有着不同的对应法则。
★3.3函数的单调性:
1.内涵:是指函数的增减性,反应在图像上就是看函数是增函数还是减函数。
2.增函数、减函数的等价说法:增函数就是在给定的区间上随着自变量x的增大(减小)而增大(减小),减函数是随着自变量x的增大(减小)而减小(增大)。
第三章函数
★3.1函数的概念(难点)
1.定义:有两个变量x和y,如果给定一个x值,就相应的确定了唯一的y值,那么我们就称y是x的函数。其中x表示自变量,y表示因变量。
2.函数的实质:是表示两个数集的元素之间按照某种对应法则确定的一种对应关系。
3.函数符号y=f(x)是一个抽象的数学符号,它是“y是x的函数”这句话的数学表示,并非表示f与x的乘积。在该符号中,f表示对应法则,等式y=f(x)表明,对于定义域中的任意x,在“对应法则f”的作用下,即可得到y。
★3.4函数的奇偶性
1.内涵:指函数的对称性。
2.奇偶性:奇函数:图像是以坐标原点为对称中心的中心对称图形(中心对称)
偶函数:图像是以y轴为对称轴的对称图形(轴对称)
3.判断函数的奇偶性的方法:
如满足f(-x)=-f(x)时,函数为奇函数;如满足f(-x)=f(x)时,函数为偶函数。
4.重点:(1)函数的奇偶性是函数在整个定义域上的一种性质;
3.根据函数的解析式判断一个函数在给定区间上是增函数还是减函数的一般步骤是:

1函数的定义及表示 - 中等 - 讲义

1函数的定义及表示 - 中等 - 讲义

函数的定义及表示知识讲解一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()y f x =,x A Î其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a =,所有函数值构成的集合{()}y y f x x A =?,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零;5)()=tan f x x 的定义域为{|}2x x k k Z ππ??,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()y f u =,()u g x =,(),x a b ∈,(),u m n ∈,那么[()]y f x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域. 注意:函数的定义域必须写成集合或区间的形式.二、映射定义:设A B ,是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x 在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射,这时称y 是x 在映射f 的作用下的象,记作()f x ,于是()y f x =x 称为y 的原象,映射f 也可记为::f A B ®()x f x ®其中A 叫做映射f 的定义域(函数定义域的推广).由所有象()f x 构成的集合叫做映射f 的值域.通常记作()f A .映射三要素:集合A B 、以及对应法则,三者缺一不可;:f A B ®,集合A 中每一个元素在集合B 中都有唯一的元素与之对应,从A 到B 的对应关系为一对一或多对一,绝对不可以一对多,但也许B 中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c =++(0)a ¹或2()[()]()F x a f x bf x c =++(0)a ¹类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y =,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c d ac =+±≠均为常数t=[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆经典例题一.选择题(共12小题)1.(2017秋•潮南区期末)下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.2.(2017秋•大观区校级期中)已知集合P={x|0≤x≤4},集合N={y|0≤y≤2},下列从P到N的各对应关系f不是函数的是()A.f:x→y=x B.f:x→y=xC.f:x→y=x D.f:x→y=3.(2017秋•定远县期中)下列各式中,表示y是x的函数的有()①y=x﹣(x﹣3);②y=+;<③y=为有理数.④y=为实数A.4个B.3个C.2个D.1个4.(2017秋•凉州区校级期末)下列四组函数中,表示同一函数的是()A.y=x与y=B.y=2lgx与y=lgx2C.与y=x D.y=x﹣1与y=5.(2017秋•鹰潭期末)下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=,例如1*2=1,6.(2018春•天心区校级期末)定义运算a*b,>则函数y=1*2x的值域为()A.(0,1)B.(﹣∞,1)C.[1,+∞)D.(0,1]7.(2018春•海州区校级期末)若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)8.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4 B.3lnx+4C.3lnx D.3e x9.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1C.﹣D.10.(2017秋•咸阳期末)已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x﹣1 D.f(x)=3x+411.(2017秋•尖山区校级期末)已知f(x﹣2)=x2﹣4x,那么f(x)=()A.x2﹣8x﹣4 B.x2﹣x﹣4C.x2+8x D.x2﹣412.(2017秋•潮南区期末)已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0C.﹣12<a<0 D.a≤二.填空题(共7小题)13.(2017春•陆川县校级期末)已知函数y=f(x2﹣1)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).则函数g(x)的定义域为.14.(2017•重庆模拟)设函数f(x)=,,>,若f(x)在区间[m,4]上的值域为[﹣1,2],则实数m的取值范围为.15.(2018•榆林三模)已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则的最小值为.16.(2017秋•南阳期中)函数f(x)=x﹣的值域是.17.(2017秋•天心区校级期末)已知函数f(x+1)=3x+2,则f(x)的解析式是.18.(2017秋•清河区校级期中)已知a、b为实数,集合M={,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=.19.(2018•开封一模),<,则f(f(2))的值为.三.解答题(共1小题)20.(2016春•江阴市期末)已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义及表示知识讲解一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()∈,(),x a bu m n∈,那么[()]y f u=,(),=,()u g xy f x称为复合函数,u称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是()y f xx称为y的原象,映射f也可记为::f A B()x f xf x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c dac =+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆经典例题一.选择题(共12小题)1.(2017秋•潮南区期末)下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .【解答】解:B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性, A ,C ,D 满足函数的定义, 故选:B .2.(2017秋•大观区校级期中)已知集合P={x |0≤x ≤4},集合N={y |0≤y ≤2},下列从P 到N 的各对应关系f 不是函数的是( ) A .f :x→y=12xB .f :x→y=13xC .f :x→y=23xD .f :x→y=√x【解答】解:f :x→y=12x ,是函数,f :x→y=13x ,是函数,f :x→y=23x ,不是函数,4→23×4=83∉N ;f :x→y=√x ,是函数, 故选:C .3.(2017秋•定远县期中)下列各式中,表示y 是x 的函数的有( ) ①y=x ﹣(x ﹣3); ②y=√x −2+√1−x ; ③y={x −1(x <0)x +1(x ≥0) ④y={0(x 为有理数)1(x 为实数)..A .4个B .3个C .2个D .1个【解答】解:根据函数的定义,当自变量x 在它的允许取值范围内任意取一个值,y 都有唯一确定的值与之对应,故①③表示y 是x 的函数;在②中由{x −2≥01−x ≥0知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x的函数;在④中若x=0,则对应的y 的值不唯一,可以等于0,也可以等于1,所以④不表示y 是x 的函数. 故选:C .4.(2017秋•凉州区校级期末)下列四组函数中,表示同一函数的是( )A .y=x 与y=√x 2B .y=2lgx 与y=lgx 2C .y =√x 33与y=xD .y=x ﹣1与y=x 2−1x+1【解答】解:要表示同一个函数,必须有相同的对应法则,相同的定义域和值域, 观察四个选项,得到A 答案中两个函数的对应法则不同,B 选项中两个函数的定义域不同,C 选项中两个函数相同,D 选项中两个函数的定义域不同, 故选:C .5.(2017秋•鹰潭期末)下列四组函数中,表示同一函数的是( ) A .f (x )=|x |,g (x )=√x 2B .f (x )=lg x 2,g (x )=2lg xC .f (x )=x 2−1x−1,g (x )=x +1D .f (x )=√x +1•√x −1,g (x )=√x 2−1【解答】解:对于A ,∵g (x )=√x 2=|x|,f (x )=|x |,∴两函数为同一函数; 对于B ,函数f (x )的定义域为{x |x ≠0},而函数g (x )的定义域为{x |x >0},两函数定义域不同,∴两函数为不同函数;对于C ,函数f (x )的定义域为{x |x ≠1},而函数g (x )的定义域为R ,两函数定义域不同,∴两函数为不同函数;对于D ,函数f (x )的定义域为{x |x >1},而函数g (x )的定义域为{x |x <﹣1或x >1},两函数定义域不同,∴两函数为不同函数. 故选:A .6.(2018春•天心区校级期末)定义运算a*b ,a ∗b ={a(a ≤b)b(a >b),例如1*2=1,则函数y=1*2x的值域为()A.(0,1)B.(﹣∞,1)C.[1,+∞)D.(0,1]【解答】解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x1,x≥0∴f(x)={2x,x<0由图知,函数y=1*2x的值域为:(0,1].故选:D.7.(2018春•海州区校级期末)若函数y=√ax2+2ax+3的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【解答】解:由题意:函数y=√ax2+2ax+3是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:{a>0f(−1)≤0⇒{a>0a−2a+3≤0解得:a≥3所以a的取值范围是[3,+∞).故选:B.8.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x【解答】解:设lnx=t则x=e t∴f(t)=3e t+4∴f(x)=3e x+4故选:A.9.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32【解答】解:∵f(x)满足关系式f(x)+2f(1x)=3x,∴{f(2)+2f(12)=6,①f(12)+2f(2)=32,②,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.10.(2017秋•咸阳期末)已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【解答】解:设t=x+1,∵函数f(x+1)=3x+2=3(x+1)﹣1∴函数f(t)=3t﹣1,即函数f(x)=3x﹣1故选:C.11.(2017秋•尖山区校级期末)已知f(x﹣2)=x2﹣4x,那么f(x)=()A.x2﹣8x﹣4B.x2﹣x﹣4C.x2+8x D.x2﹣4【解答】解:由于f(x﹣2)=x2﹣4x=(x2﹣4x+4)﹣4=(x﹣2)2﹣4,从而f(x)=x2﹣4.故选:D.12.(2017秋•潮南区期末)已知函数f(x)=√3x−13ax2+ax−3的定义域是R,则实数a的取值范围是()A.a>13B.﹣12<a≤0C .﹣12<a <0D .a ≤13【解答】解:由a=0或{a ≠0△=a 2−4a ×(−3)<0可得﹣12<a ≤0, 故选:B .二.填空题(共7小题)13.(2017春•陆川县校级期末)已知函数y=f (x 2﹣1)的定义域为(﹣2,2),函数g (x )=f (x ﹣1)+f (3﹣2x ).则函数g (x )的定义域为 [0,2) . 【解答】解:由函数y=f (x 2﹣1)的定义域为(﹣2,2), 得:﹣1≤x 2﹣1<3,故函数f (x )的定义域是[﹣1,3), 故﹣1≤x ﹣1<3,﹣1≤3﹣2x <3, 解得:0≤x <2,故函数g (x )的定义域是[0,2), 故答案为:[0,2).14.(2017•重庆模拟)设函数f (x )={log 2(−x2),x ≤−1−13x 2+43x +23,x >−1,若f (x )在区间[m ,4]上的值域为[﹣1,2],则实数m 的取值范围为 [﹣8,﹣1] . 【解答】解:函数f (x )的图象如图所示,结合图象易得 当m ∈[﹣8,﹣1]时, f (x )∈[﹣1,2].故答案为:[﹣8,﹣1].15.(2018•榆林三模)已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a+1c +c+1a的最小值为 4 . 【解答】解:由题意知,a ,>0,△=4﹣4ac=0,∴ac=1,c >0,则a+1c +c+1a =a c +1c +c a +1a =(a c +c a )+(1a +1c)≥2+2√1ac =2+2=4,当且仅当a=c=1时取等号.∴a+1c +c+1a的最小值为4.16.(2017秋•南阳期中)函数f (x )=x ﹣√1−x 的值域是 (﹣∞,1] .【解答】解:设√1−x =t ,则t ≥0,f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣12,开口向下,在区间[0,+∞)上单调减,∴f (t )max =f (0)=1,∴函数f (x )的值域为(﹣∞,1].故答案为:(﹣∞,1].17.(2017秋•天心区校级期末)已知函数f (x +1)=3x +2,则f (x )的解析式是 f (x )=3x ﹣1 .【解答】解:令x+1=t,则x=t﹣1,∴f(t)=3(t﹣1)+2=3t﹣1,∴f(x)=3x﹣1.故答案为f(x)=3x﹣1.18.(2017秋•清河区校级期中)已知a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=1.【解答】解:∵a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,∴1通过映射可得1∈N,解得a=1,b a →ba∈N,可得ba=0,解得b=0,∴a+b=1,故答案为1;19.(2018•开封一模)f(x)={2e x−1,x<2log3(x2−1),x≥2.则f(f(2))的值为2.【解答】解:由题意,自变量为2,故内层函数f(2)=log3(22﹣1)=1<2,故有f(1)=2×e1﹣1=2,即f(f(2))=f(1)=2×e1﹣1=2,故答案为2三.解答题(共1小题)20.(2016春•江阴市期末)已知函数f (x )满足f (x +1)=lg (2+x )﹣lg (﹣x ).(1)求函数f (x )的解析式及定义域;(2)解不等式f (x )<1.【解答】解:(1)由已知令t=x +1,则f (t )=lg (t +1)﹣lg (1﹣t ), 即f (x )=lg (x +1)﹣lg (1﹣x );由{x +1>01−x >0得到﹣1<x <1,所以函数定义域为(﹣1,1); (2)f (x )=lg (x +1)﹣lg (1﹣x )=lg 1+x 1−x <1,即{1+x 1−x <10−1<x <1,解得﹣1<x <911.。

相关文档
最新文档