关于形状记忆合金在变体机翼方面的应用综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于形状记忆合金在变体机翼方面的应用综述

发表时间:2019-05-13T15:59:02.707Z 来源:《知识-力量》2019年8月26期作者:纪宇帆[导读] 形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况

(北京航空航天大学能源与动力工程学院,北京 100191)

摘要:形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况,并对目前存在的问题和未来发展的方向一一论述。在变体机翼方面,文章从中文文献和外文文献中分别选取了几篇有代表性的进行阐述,分析得到了国内外不同研究方向的侧重点以及未来的发展趋势。同时文章对形状记忆合金在航空航天领域的应用情况做了小结,提出了一些个人观点与评价,也指出了目前存在的问题与未来发展的方向。关键词:形状记忆合金;航空航天;国内外对比

引言

传统材料通常不能实时感知环境以及自身状态的变化,更不能做到自适应和自修复[1]。因此,在诸多工业领域,尤其是航空航天这样复杂多变的领域,需要越来越多智能材料才可以实现高精度控制。形状记忆合金就是其中一种常见的智能材料。它利用形状记忆效应可以实现不同于普通合金的优异性能,尤其是在高温环境下,抗疲劳性能和延展性能更加凸显。

1 问题提出

早在20世纪50-70年代,就有了变后掠翼技术。这使得飞机兼具低速、跨声速、超声速飞行性能,但也存在结构复杂、操纵困难等问题,变形形式也很单一[2]。随着科学技术的进步,智能变体机翼技术逐渐兴起。在美国的主导下,一系列智能变形技术验证试验得以展开:1979年,NASA与波音公司签订了任务自适应机翼技术合同;1985年,NASA与罗克韦尔公司合作开展主动柔性机翼计划;1996年,上述计划又扩展为主动气动弹性机翼计划。U.Icardi等人也提出了一种基于SMA的变弯度机翼方案[3]:依靠两个同轴的SMA驱动管,通过离合器与定位压电电机连接到翼肋的桁架上,内外管分别控制向上与向下的运动;工作时可以给其中一个加热,另一个隔离使其不参与工作,从而实现特定方向的变形[4]。总之,SMA在变体机翼上的应用很广泛,是值得深入研究的问题之一。

2 中文文献综述

就近几年的中文文献来说,有关SMA在变体机翼上的应用的文章有53篇,其中期刊论文16篇,博士论文5篇,其余为硕士论文。下面将选择一些进行深入分析。刘逸峰、徐志伟两人利用驱动器的两个驱动杆上下位移实现蒙皮的变形,通过控制流经SMA的电流大小和通电时间对驱动器进行测控,还进行了驱动器加载控制实验和机翼风洞吹风测试实验[5];雷鹏轩等人提出一种悬臂梁式柔性偏转结构,选择超临界翼型进行实验,并通过数学计算和折线图比较的办法给出了来流条件对SMA结构变形的影响[6];周本昊通过差动驱动方式设计驱动机构,对机翼的各个部位进行了应力分析,又设计了测控系统,利用离散化PID控制算法对被控量进行控制[7];刘俊兵等人根据实验分析出SMA卷簧的变形角与扭矩的关系,并对该驱动器承载能力进行了计算[8];董二宝将智能变形机翼结构按动力学特性分为非主动变形过程和主动变形过程,并据此求出了各参数的最优解,最后利用SMA的热-力耦合特性给出了仿真结果[9];聂瑞等人为了减小自适应机翼的波阻,对激波控制鼓包的特性进行了优化研究,在温度改变时,SMA能自动改变自身构型[10]。

3 外文文献综述

就近几年的外文文献来说,有关SMA在变体机翼上的应用的文章有81篇。不同作者对SMA的研究有不同的侧重点。Cees Bil等人主要研究的是三种不同的控制方法对机翼变形的影响,还在其中考虑了气动载荷下驱动器所需的功率与环境温度的影响[11];S.Barbarino等人将民用运输机机翼后缘处的翼型弯度通过无铰链的光滑变形襟翼控制,利用数值方法和实验研究对驱动性能进行了估计[12];J Colorado等人从仿生学的角度分析SMA在变体机翼中的驱动作用,并且利用SMA的传感功能实现了令人满意的跟踪误差,但在疲劳问题上还存在一定局限,SMA承受较大应力时寿命较短[13];Thomas Georges等人以设计具有柔性外拱的变形机翼为重点,通过应力应变关系计算SMA元件的横截面和长度,进而确定其他部件的尺寸,完成设计[14];Woo-Ram Kang等人为防止气动损失,利用SMA控制机翼形状,并用多种数值模拟软件将其与未变形机翼作比较,对尾翼偏转角与电流、压差之间的关系作了进一步分析[15];Salvatore Ameduri等人基于SMA技术对变形结构进行优化,由四个弹性元件构成可变形肋系统,利用有限元模型呈现其主要特征[16]。

结论

综合上述文献,可以看出SMA在变体机翼中应用广泛。不同学者从不同侧面研究SMA可以得到不同结果。国内研究更多是通过解析的办法分析驱动结构的可行性,计算和优化更准确,但有时会受到其他无法量化的因素影响,导致其结果偏离实际;国外研究则更加侧重数值模拟软件的应用,对驱动性能的分析综合考虑多种环境因素,在实验过程中也更加注重比较,并且对SMA的疲劳寿命有所估计。后续的SMA应用技术应该朝向更高的疲劳强度、更先进的数值模拟技术发展。与此同时,机翼的形状变化也应趋于平稳,以减少气流分离,使飞机拥有更好的气动性能。

未来形状记忆合金在航空航天领域将朝着更规范化、成熟化的方向前进:变体机翼的重量将进一步减轻,连接过渡将更加平缓,气流分离损失将进一步减少,机翼的颤振情况也将进一步改善;航空发动机中的结构将充分考虑其材料特性,不仅仅用于调节尾喷口、进气口,还可用于涡轮叶片,机匣等关键部件;卫星的发射也将更加可靠,连接分离装置运行也会更加平稳。参考文献

[1]杨正岩,张佳奇,高东岳,刘科海,武湛君.航空航天智能材料与智能结构研究进展[J].航空制造技术,2017(17):36-48.

[2]朱倩.基于SMA的变体机翼精确控制研究[D].南京航空航天大学,2010.

[3]Icardi,U.& Ferrero,L.(2010).SMA Actuated Mechanism for an Adaptive Wing. Journal of Aerospace Engineering - J AEROSP ENG. 24.

10.1061/(ASCE)AS.1943-5525.0000061.

[4]张明德.变厚度机翼结构设计及精确控制[D].南京航空航天大学,2018.

[5]刘逸峰,徐志伟.SMA驱动变厚度机翼结构设计及实验研究[J].江苏航空,2018(04):30-34.

相关文档
最新文档