正五边形作法
正五边形的画法原理
正五边形的画法原理正五边形的画法什么是正五边形?正五边形是指五边形的五个边长度相等,五个内角也相等的特殊五边形。
它具有对称美和几何美,是艺术创作和数学研究中常用的形状之一。
如何画一个正五边形?方法一:利用直尺和圆规1.准备一张白纸和一支铅笔,以及一个有刻度的直尺和一个半径恰好为正五边形边长的圆规。
2.在白纸上选择一个点作为正五边形的中心点,并将其标记为A。
3.利用圆规,以点A为圆心,画一个半径为正五边形边长的圆,将圆的周围等分为五等分,标记为B、C、D、E、F。
4.用直尺连接点A和点B,点B和点C,点C和点D,点D和点E,点E和点F,分别得到正五边形的五个边。
5.擦除多余的线段和标记,得到一个完整的正五边形。
方法二:利用数学原理和投影仪1.准备一个投影仪和一块透明的图纸。
2.将投影仪调至平面模式,将透明图纸固定在投影仪上。
3.将投影仪的光源对准墙壁或纸张,使其正好投影一个完整的正五边形。
4.将投影在墙壁或纸张上的正五边形轮廓用铅笔描画出来,得到一个精确的正五边形。
正五边形的原理正五边形的画法基于以下原理:•正五边形的每个内角都是108°,即360°/5。
•圆规的半径为正五边形边长的一半。
•利用直尺和圆规的结合可以构造出正五边形的边。
•利用投影仪可以将正五边形的投影放大,方便描绘。
正五边形的原理基于几何学的知识和图形构造的方法,通过不同的工具和技巧,可以画出精确的正五边形。
结语正五边形是一种特殊的几何形状,它具有对称美和几何美。
通过了解正五边形的画法原理,我们可以更好地理解和应用正五边形,无论是在艺术创作还是数学研究上,都能够发挥重要的作用。
希望本文所介绍的正五边形的画法对您有所帮助!方法三:利用三角形的性质1.准备一张纸和一支铅笔。
2.在纸上选择一个点作为正五边形的中心点,并将其标记为A。
3.利用直尺,在点A的上方和下方各选择一个点,分别标记为B和C,使得AB=AC。
4.利用直尺连接点B和点C,得到线段BC。
正五边形尺规作图的画法及其他(精品)
正五边形尺规作图的画法与其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H, AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点.五边形ABCDE即为所求.第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi 〔i为右下角标〕=22i〔底数2指数2的i次幂〕+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k〔2的k次幂〕或2k×p1×p2×…×ps,〔1,2…s为右下角标〕其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路<他早期曾在语言学与数学之间犹豫过>,而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数<3=F0,5=F1>;对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正5,15,16,17边形详细的画法
[正五边形的画法](1)已知边长作正五边形的近似画法如下:①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K.③以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M,N.④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.(2) 圆内接正五边形的画法如下:①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和AP.②平分半径ON,得OK=KN.③以K为圆心,KA为半径画弧与OM交于H, AH即为正五边形的边长.④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即得正五边形.3.民间口诀画正五边形口诀介绍:"九五顶五九,八五两边分."作法:画法:1.画线段AB=20mm,2.作线段AB的垂直平分线,垂足为G.3.在l上连续截取GH,HD,使GH=5.9/5*10mm=19mm,HD=5.9/5*10mm=11.8mm4.过H作EC⊥CG,在EC上截取HC=HE=8/5*10mm=16mm,5.连结DE,EA,EC,BC,CD,五边形ABCDE就是边长为20mm的近似正五边形.这里提供以下两种作法仅供参考:1、已知边长作正五边形的近似画法如下:(1)作线段AB等于定长l,并分别以A、B为圆心,已知长l为半径画弧与AB的中垂线交于K. (2)以K为圆心,取AB的2/3长度为半径向外侧取C点,使CH=2/3AB (3)以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M、N. (4)顺次连接A、B、N、C、M各点即近似作得所要求的正五边形.2、圆内接正五边形的画法如下:(1)以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和 AP. (2)平分半径ON,得OK=KN. (3)以 K为圆心,KA为半径画弧与 OM交于 H, AH即为正五边形的边长. (4)以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连接这些点即得正五边形.尺规做法如下:1.做正方形ABCD的外接圆圆O。
正五边形尺规作图的画法及其他
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正五边形的制作方法
正五边形的制作方法正五边形的制作方法正五边形是一种具有五个等边等角的多边形,制作一个完美的正五边形可能需要一些准备和技巧。
下面是几种常见的制作方法:方法一:使用直尺和量角器1.使用直尺绘制一条水平线段,作为正五边形的底边;2.在底边的中点上方测量一定距离,作为五边形的顶部;3.使用量角器测量出一个72度的角度;4.将量角器的指针放在底边的起点,并以顶部作为旋转中心,逆时针旋转量角器,使其指针与顶部相交;5.在指针与底边交点处标记一个点;6.重复以上步骤,将指针始终与上一个点相交,直到完成五个点;7.使用直尺连接所有的点,即可得到一个正五边形。
方法二:使用圆和直尺1.使用直尺绘制一条水平线段,作为正五边形的底边;2.以底边的中点为圆心,使用圆规画出一个与底边等长的圆;3.将圆规的一个脚放在底边的一个端点上;4.以底边的另一个端点为半径,在圆上绘制一个弧;5.将圆规的脚放在底边的另一个端点上;6.在圆上绘制另一个弧,使其与前一个弧相交;7.重复以上步骤,直到完成五个交点;8.使用直尺连接所有的交点,即可得到一个正五边形。
方法三:使用正五角星1.绘制一个正五角星,确保五个顶点和五个边都是等长等角的;2.将正五角星放在一个纸上,并用铅笔或钢笔描绘出五个顶点的轮廓;3.使用直尺连接相邻的两个顶点,绘制一条直线;4.连接下一个相邻的顶点,绘制出两条直线的交点;5.重复以上步骤,连接所有的交点;6.擦除原来的正五角星轮廓,即可得到一个正五边形。
以上是三种常见的制作正五边形的方法,你可以根据自己的需求和工具的可用性选择最适合的方法。
无论使用哪种方法,确保每一个边和角都是等长等角的,这样才能得到一个完美的正五边形。
试试吧!方法四:使用正十边形的对角线1.绘制一个正十边形,确保每个角都是等角的;2.使用直尺连接相邻顶点的对角线,共有五条对角线;3.每条对角线都会相交于一个点,将这些交点标记出来;4.使用直尺连接所有的交点,即可得到一个正五边形。
尺规作图正五边形
尺规作图正五边形
[正五边形的画法]
圆内接正五边形的画法如下:
①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和 AP.
②②平分半径ON,得OK=KN.
③③以 K为圆心,KA为半径画弧与 OM交于 H, AH即为正五边形的
边长.
④④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即
得正五边形.
⑤已知边长作正五边形的近似画法如下:
⑥①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画
弧与AB的中垂线交于K.
⑦②以K为圆心,取AB的2/3长度为半径向外侧取C点,使CK=2/3AB
⑧③以 C为圆心,已知边长 AB为半径画弧,分别与前两弧相交于
M,N.
⑨④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.
在圆内作一个正三角形
先画个圆O。
半径为R
在圆上取任意一点P圆心。
半径仍为R做弧。
与圆O相交与AB两点。
AB是正三角形的两个顶点了。
再以A为圆心,半径仍为R做弧。
与圆O又有两个交点。
其中一个肯定为第1次做弧的圆心P。
还有个设为Q
以Q为圆心。
半径为R作弧。
与圆O有两个交点。
一个为A,另一个为C
则三角形ABC为正三角形。
正五边形的画法
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.《简爱》是一本具有多年历史的文学着作。
最新人教版六年级数学上册折正五边形的方法
折正五边形的方法
1.首先准备折纸工具:长方形纸带一条。
2.将长方形纸带折成如下图左下部分所示。
3.将其余部分的纸,沿正五边形的边折叠进去,最终形成五边形,如上图右下部分所示。
学习励志名言
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
相信自己
人身如开车,不怕慢,就怕钻!不能原地踏步,不能天天折返跑!转机只在前进的路上,一个躺在沟里不想爬出来的人不配谈成功。
不要抱怨,不要等待。
给自己一个准确的定位,别错位,别越位,别失位。
适合自己的才是最好的。
只要坚持再长的路,也能一步步走完,反之再短的路,不迈开双脚也无法到达。
加油!顶着困难大踏步向自己的目标迈进吧!。
九年级数学上册第3章正五边形尺规作图的画法及延伸(青岛版)
正五边形尺规作图的画法及延伸圆内接正五边形的画法如下:(1)作一个圆,设它的圆心为O;(2)作圆的两条互相垂直的直径AZ和XY;(3)作OY的中点M;(4)以点M为圆心,MA为半径作圆,交OX于点N;有MA=MN.(5)以点A为圆心,AN为半径,在圆上连续截取等弧,使AB=BC=CD=DE=AN。
(6)连接AE.则五边形ABCDE即为正五边形。
证明:设圆的半径为R,由上述正五边形的作法可知:()22222AN AO ON AO AM MO=+=+-∴110252-AN R=.由于半径为R的正五边形的边长a=AN,所以五边形ABCDE即为正五边形。
以上作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的尺规作图方法.那正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:用尺规究竟能否作出正七边形来?数学不容许有这样的判断:即“至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.”人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如221ii F =+的数.费马的一个著名猜想是,当 n≥3时,不定方程xn +yn =zn 没有正整数解.现在他又猜测Fi 都是素数,对于i =0,1,2,3,4时,容易算出来相应的Fi : F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F 5是两素数之积:F 5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i +1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi 也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k (2的k 次幂)或 2k×p1×p2×…×ps ,(1,2…s 为右下角标)其中,p1,p2,…,ps 是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而3=F0.。
正五边形尺规作图的画法及其他
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正五边形折剪的方法
正五边形折剪的方法
1.首先准备折剪工具:正方形纸一张、剪刀、铅笔、直尺。
2.如图1所示,按图1把正方形纸对折。
图1
3.将图1对折,折成两个小正方形,并折出其中1个正方形的对角线,并按图2所示用铅笔画两条辅助线,获得“中心点”(如图2所示)。
图2
4.把对折后的“左下角”与这个中心点重合(如下图3)。
图3
5.再反过来对折(如图4所示)。
图4
6.“右下角”的边也对折到“中缝”(如图5所示)。
图5
7.按照图示反过来对折(如图6所示)。
图6
8.最后折成这个形状(如图7所示)。
图7
9.用剪刀沿这条边,把多余的纸剪去(如图8所示,形成如图9所示)。
(要注意剪刀刀口与某一折边垂直,这样才能保证剪出的是五边形)。
图8
图9
10.展开后就获得了正五边形(如图10所示)。
图10。
人教版六年级数学上册折正五边形的方法
折正五边形的方法
1.首先准备折纸工具:长方形纸带一条。
2.将长方形纸带折成如下图左下部分所示。
3.将其余部分的纸,沿正五边形的边折叠进去,最终形成五边形,如上图右下部分所示。
课后小知识
--------------------------------------------------------------------------------------------------
小学生每日名人名言
1、读书要三到:心到、眼到、口到
2、一日不读口生,一日不写手生。
3、天生我材必有用。
──李白
4、学习永远不晚。
——高尔基
5、天才出于勤奋。
──高尔基
6、鸟欲高飞先振翅,人求上进先读书。
——李若禅
7、哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。
──鲁迅
8、立志是事业的大门,工作是登门入室的的旅途。
──巴斯德
9、一日无书,百事荒废。
——陈寿
10、给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的
获取;不是已达到的高度,而是继续不断的攀登。
——高斯。
民间口诀画正五边形的画法
民间口诀画正五边形的画法
我国民间相传有正五边形的近似画法:画法口诀是:“九五顶五九,八五分两边”。
根据这个口诀,画出一个边长为2cm的正五边形。
画法:
1、用点工具作出点A。
2、选取点A,单击变换菜单下的平移命令,打开平移对话框,选择按极坐标向量平移方式(在该选项上单击鼠标,使其出现√标记)。
3、在方向输入框中输入0,在数量输入框中输入2,单击确定按钮。
得到点B(如果作图中得到的默认名称与此不同,可用文本工具为其重新命名,以下同)。
4、用线段工具连结AB,选中它,用中点命令作出它的中点G。
5、选取线段AB,用度量菜单中的长度命令得到它的长度。
6、双击长度度量值,打开计算器,输入9.5、/、10、*,再单击AB 长度值,按下确定按钮。
得到距离1;类似地将刚才表达式中的9.5分别换成5.9和8,得到距离2和距离3。
7、选中距离1,单击变换菜单下的标记距离命令,将其作为标记距离。
8、选取中点G,单击平移命令,选择极坐标向量平移方式,在方向输入框中输入90,数量选用按标记距离,按下确定按钮。
得到点H。
9、同样地,将距离2作为标记距离,用极坐标向量方式将H点向上平移(方向90),得到点D;将距离3作为标记距离,将H点向左平移(方向180)得到点E,将H点向右平移(方向0)得到点C(平移数量均用标记距离)。
10、用线段工具连结点BC、CD、DE、EA,就得到了一个近似的正五边形。