四年级数学《整数和整除》知识点
小学数学整除知识点总结
小学数学整除知识点总结整除是小学数学中非常重要的一个概念,它是学习数学的基础,对于理解数学概念和解决数学问题都有很大的帮助。
在小学阶段,学生需要掌握整除的概念和相关知识,以便能够进行数学运算和解决实际问题。
1. 整除的概念整除是指一个数能够被另一个数整除,即这个数能够被另一个数整除而没有余数。
例如,6能够被3整除,因为6÷3=2,没有余数。
而8不能被3整除,因为8÷3=2余2。
因此,能够整除的数叫做倍数,被整除的数叫做约数。
2. 整数的奇偶性在整除的概念中,奇数和偶数是一个重要的概念。
奇数是指除以2有余数的整数,而偶数是指能够被2整除的整数。
奇数的特点是个位数字为1、3、5、7、9,而偶数的特点是个位数字为0、2、4、6、8。
例如,3是奇数,因为3÷2=1余1;而4是偶数,因为4÷2=2没有余数。
3. 分解质因数分解质因数是指将一个数分解为几个质数的乘积。
质数是指只能被1和自身整除的数,如2、3、5、7、11等。
分解质因数的方法是先找到能够整除这个数的最小质数,然后继续分解,直到无法分解为止。
例如,24=2×2×2×3。
4. 最大公约数最大公约数是指两个或多个数最大的共同约数。
求最大公约数的方法有两种,一种是列出这些数的所有约数,然后找出其中的最大数;另一种是利用质因数分解的方法求最大公约数。
例如,求12和18的最大公约数,可以先分解质因数,得到12=2×2×3,18=2×3×3,然后找出它们的公共质因数,即3,所以最大公约数是3。
5. 最小公倍数最小公倍数是指两个或多个数最小的公倍数。
和最大公约数类似,求最小公倍数的方法也有两种,一种是列出这些数的所有倍数,然后找出其中的最小数;另一种是利用质因数分解的方法求最小公倍数。
例如,求12和18的最小公倍数,可以先分解质因数,得到12=2×2×3,18=2×3×3,然后找出它们的公共质因数和非公共质因数,即2、3和2,所以最小公倍数是2×2×3×3=36。
新编小学四年级整数和整除知识点
新编小学四年级整数和整除知识点小学是我们整个学业生涯的基础,因此小朋友们一定要培养良好的学习适应,查字典数学网为同学们专门提供了小学四年级整数和整除知识点,期望对大伙儿的学习有所关心!1 、整数的意义:自然数和0差不多上整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿差不多上计数单位。
每相邻两个计数单位之间的进率差不多上10。
如此的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
假如数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,因此35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,那个数就能被3整除,例如:1 2、108、204都能被3整除。
一个数各位数上的和能被9整除,那个数就能被9整除。
能被3整除的数不一定能被9整除,然而能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,那个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
整数与整除
【知识点1】1、整数和整除的意义整除:整数a除以整数b,如果除得的商是整数而余数为零,就说a能被b整除;或者说b能整除a。
注意整除的条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。
2、自然数和整数零和正整数统称为自然数.正整数.零和负整数统称为整数.3.除尽没有余数4.整除与除尽相同点:都没有余数;除尽中包含整除不同点:整除中,被除数、除数和商都是整数,余数为0;除尽中,被除数、除数和商不一定是整数,余数为0.【典型例题1】试证明“三个连续的正整数之和能被3整除”。
【基本习题限时训练1】1、下列算式中表示整除的算式是()(A)9÷18=0.5 (B)6÷2=3 (C)15÷4=3……3 (D)0.9÷0.3=32、下列各组数中,均为自然数的是()(A)1.1,1.2,1.3 (B)-1,-2,-3 (C)23,34,45(D)2,4,63、下列说法正确的是……………………………………………()(A)最小的整数是0 (B)最小的正整数是1(C)没有最大的负整数(D)最小的自然数是14、判断:(1)零是整数,但不是自然数;(2)-1是最大的负整数;(3)3248÷=,则4能被32整除;(4)整数中没有最大的数,也没有最小的数。
5、13、24、57、88四个数中能被2整除的数有哪几个?6、正整数36能被正整数a整除,写出所有符合条件的正整数a。
【拓展题1】1、三个连续自然数的和是306,求这三个自然数。
2、试证明:能被3整除的三位数各数位上数的和能被3整除。
一、填空题1.统称为自然数。
2.统称为整数。
3.用“能”或者“不能”填空,注意主动句与被动句的不同,并熟读语句。
(1)2 整除4 (2)2 整除5(3)5 被2整除(4)6 被2整4.把下列各数填在指定的圈内:2,125,-7,0.4,101,0,-1.6,-97,43,-1自然数 负整数 整数二、选择题 1. 6÷5=1.2,表示( )A.6能被5整除B.6能被5除尽C.6不能被5除尽D.5能整除62.和11相邻的整数是( )A.9、10B.10、12C.12、13D.都是3.下列四句话中,正确的是( )A.最小的整数是1B.整数一定比小数大C.4能被0.8整除D.负整数、0、正整数都是整数4.把下列各算式填入相应的方框里。
2019年201X年四年级数学整数及整除知识点-范文word版 (2页)
2019年201X年四年级数学整数及整除知识点-范文word版本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==201X年四年级数学整数及整除知识点在小学阶段掌握良好的学习方法对大家以后的学习大有帮助。
以下就是为大家分享的四年级数学整数及整除知识点,希望对大家有帮助。
1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
数的整除知识点总结
一. 数的分类第一种分法 : 树状图 韦恩图整数第二种分法 整数第三种分法: 正整数一些关于数的结论:是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3.正整数、负整数、整数的个数都是无限的二.整除1.整除定义概念:整数a 除以整数b,如果除得的商是整数而余数为零,我们就说a 能被b 整除;或者说b 能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b 相当于除数2.整除的条件:1.除数、被除数都是整数2.被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽如正方形是特殊的长方形一样,即a 能被b 整除,则a 一定能被b 除尽,反之则不一定即a 能被b 除尽,则a 不一定能被b 整除;如4÷2=2, 4既能被2除尽,也能被2整除;4÷5=, 4能被5除尽,却不能说4能被5整除三.因数与倍数1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数约数;注意点:1.因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数;如:6÷3=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数;2.因数与倍数是建立在整除的基础上的,所以如4÷=20,一般是不说4是的倍数,是4的因数;2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身;一个数的倍数中最小的倍数是这个数本身,没有最大的倍数;因数的个数是有限的,都能一一列举出来,倍数的个数是无限的;3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数;如16=1×16=2×8=4×4,那么16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏;4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5……即正整数得到的积就是这个数的倍数;若用n表示所有的正整数,则2的倍数可表示为2n, 5的倍数可表示为5n四.能被2、5、3整除的数的特点1.能被2整除的数即2的倍数个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除2.能被5整除的数即5的倍数个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除3.能被3整除的数即3的倍数各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除;五.奇数、偶数1.奇数与偶数的定义:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数;按照能否被2整除来划分奇数与偶数2.奇数个位数上的数的特点:1、3、5、7、9偶数个位数上的数的特点:0、2、4、6、83.在连续的正整数中除1外,与奇数相邻的两个数是偶数,与偶数相邻的两个数是奇数4.相邻的奇数或偶数数字相差2,奇数可用2n-1或2n+1表示,偶数可用2n表示;5.奇数与偶数加法和乘法的运算特点奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数利用此结论可检验一些运算是否正确,同时也要注意结论的逆向运用,如偶数奇数可拆成哪些奇数或偶数的和、积六.素数、合数1.素数与合数定义:一个正整数如果只有1和它本身两个因数,这样的数叫做素数质数,如果除了1和它本身以外还有别的因数,这样的数叫做合数;注意点:1.素数与合数的分类方法是根据它们因数的个数来分的,素数只有2个因数1和本身,合数至少有三个因数;任何一个数除1外都有1和它本身两个因数;2. 1既不是素数也不是合数;3.最小的素数是2,最小的合数是42.素数与奇数的联系和区别奇数不一定都是素数;√1既不是素数也不是合数,9、15等是奇数但是合数所有素数都是奇数; ×2是素数,但2是偶数3.合数与偶数的联系与区别合数不一定都是偶数;√9、15等都是合数,但它们是奇数偶数都是合数; ×2是偶数但2是素数注意:判断题对的要说明原因,错的要举出反例;七.素因数与分解素因数1.素因数与分解素因数的定义:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数;把一个合数用素因数相乘的形式表示出来,叫做分解素因数;注意:1.求一个数的素因数时,先把这个数分解素因数,有几个素因数就写几个;如24=2×2×2×3,则素因数是2、2、2、3,而不是2、32.因数与素因数的区别:因数可以是素数或合数,素因数一定是素数;一个数的素因数一定是这个数的因数,因数的个数一定比素因数的个数多;2.分解素因数的方法树枝分解法:过程中注意不要漏写乘号,分解要彻底,直到没有合数出现,也不能出现1.要分解的合数写在等号左边,把它的素因数用相乘的形式写在等号右边,再把这几个素因数按从小到大的顺序排列;短除法:1.先用一个能整除这个合数的素数去除通常从最小的开始,偶数肯定先用2除,奇数一般从3开始一个个带入验算2.得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止;3.然后把各个除数和最后的商按从小到大的顺序写成连乘的形式;3.由一个数分解素因数求这个数的因数12=2×2×3,素因数是2、2、3,除1外由单个的素因数组成因数有2、3,由两个素因数组成的因数有2×2=4,2×3=6,由三个素因数组成的因数有2×2×3=12,所以12的因数有1、2、3、4、6、12.4. 由一个数分解素因数求这个数因数的个数1所有素因数都相同时,因数的个数是它素因数的个数+1,如8=2×2×2,素因数是2、2、2,则8的因数的个数是它素因数的个数+1,即4个2素因数不完全相同时,因数的个数是每个素因数个数+1后相乘的积,如12=2×2×3,素因数2的个数是2,素因数3的个数是1,则12的因数的个数是2+1×1+1=6八.公因数与最大公因数1.公因数与最大公因数定义:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.2.互素定义:如果两个整数只有公因数1,那么称这两个数互素;如8和9注意:互素是两个数之间,素数是指一个数,互素的两个数的最大公因数就是1.两个互素的数未必都是素数; √8和9互素,但8和9都是合数两个不同的素数一定互素. √若缺少“不同的”,则错,因为3和3都是素数但不互素3. 求两个数最大公因数的方法:1 一般方法:写出两个数所有的因数,再找出它们共同的最大的因数2 分解素因数的方法:把这两个数分解素因数,再找出相同的素因数,把它们所有的公有的素因数相乘,所得的积就是它们的最大公因数;3 短除法:先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最大公因数就是左侧的除数的乘积. 类比用短除法分解素因数的方法4. 两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数;如果这两个数互素,那么它们的最大公因数就是1.九.公倍数和最小公倍数1.公倍数与最小公倍数定义:几个整数公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数.2.求两个数最小公倍数的方法:1一般方法:从小到大分别依次写出几个这两个数的倍数,再找出它们共同的最小的倍数2分解素因数的方法: 把这两个数分解素因数,再找出相同的素因数,再取各自剩余的素因数,将这些数连乘所得的积,就是这两个数的最小公倍数.3短除法: 先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最小公倍数就是左侧的除数与底部商的乘积.注意点:1.用短除法求两个数的最大公因数和最小公倍数时,过程都相同,只是最后写结论时注意需要乘哪些数.2.求两个数的最大公因数和最小公倍数,先判断这两个数是否存在因数倍数关系或互素关系,存在因数倍数关系时,最大公因数就是较小的那个数,最小公倍数就是较大的那个数;两数互素时,最大公因数就是1,最小公倍数就是它们的乘积.3.两个整数的公倍数一定能被这两个数整除.十.求三个整数的最大公因数和最小公倍数拓展1求三个整数的最大公因数:同样也是三种方法,只需找出三个数共同的因数,最大的因数就是最大公因数.注意与三个数的最小公倍数区分2求三个整数的最小公倍数:一般方法:写出三个数的倍数,再找出最小公倍数.分解素因数法:分别分解素因数,先找出三个数共同的素因数,再找出每两个数公有的素因数,再取各自剩余的素因数,把这些素因数连乘所得的积就是这三个数的最小公倍数.短除法:先用三个数公有的素因数去除直到三个数没有公有的素因数,再用其中两个数公有的素因数去除,直到除得的三个商两两互素为止即三对互素数。
【精品文档】小学四年级整数和整除知识点-实用word文档 (2页)
【精品文档】小学四年级整数和整除知识点-实用word文档本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==小学四年级整数和整除知识点如何让小学生学会用数学的思维方式去观察和分析生活,如何帮助他们更好地学好数学这门学科呢?数学网小学频道精心准备了小学四年级整数和整除知识点,希望对大家有所帮助!四年级知识点:如下1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
整除重点知识点总结
整除重点知识点总结一、整除的概念1. 整除的定义:如果一个整数a除另一个整数b(且b≠0)的商仍为整数,那么我们说a 能被b整除,记作b|a。
即$a\%b=0$2. 被除数、除数、商、余数:(1)被除数:被除数是指被除数的整数(2)除数:除数是指除数的整数(3)商:商是指商的整数(4)余数:当被除数能被除数整除时,商为整数,余数为零当被除数不能被除数整除时,商不为整数,余数不为零二、整除的性质1. 0的整除性:0是任何整数的倍数。
2. 正整数的整除性:(1)整数c能被整数a、b整数:若c既能被a整数,又能被b整数,则c能被a,b的最小交集整数整除。
(2)整除的传递性:若a能被b整数,b能被c整数,则a能被c整数。
3. 负整数的整除性:(1)整数c能被整数a整数:若c能被a整数,c能被-a、-b整数。
(2)整除的传递性:若a能被b整数,b能被c整数,则a能被c整数。
三、整除的判断方法1. 用倍数表示:若整数a能被整数b整数,则整数a是整数b的倍数(倍数是指数字b 的n倍,n是整数)。
2. 用因数表示:若整数a能被整数b整数,则整数a是整数b的因数(因数是指a能被整数b整数)。
3. 用除法表示:若整数a能被整数b整数,则整数a÷整数b=商。
若商是整数,则整数a 能被整数b整数。
四、整除的应用1. 整数的奇偶性判断:一个数能够被2整数,称为偶数;一个数不能被2整数,称为奇数。
2. 整数的哪些整除:(1)整数判断:整数5能被整数2整数,因为5÷2=2余1;整数3不能被整数2整数,因为3÷2=1余1。
(2)一元一次方程:整数代表数的值,整除代表数的比值。
五、整除的解题方法1. 整除的运算规则:整除的加减乘除法规则。
2. 整数的乘法和除法:整数的乘法、整数的除法。
3. 整数的乘法和除法法则:整数的乘法、整数的除法法则。
4. 整数的乘法和除法法则:整数的乘法、整数的除法法则。
解整分是整数中的一个重要知识点,通过综合上述知识点的学习,我们可以更好地应用整除知识解决实际问题,提高数学解题的能力。
小学四年级整数和整除知识点-文档资料
小学四年级整数和整除知识点如何让小学生学会用数学的思维方式去观察和分析生活,如何帮助他们更好地学好数学这门学科呢?查字典数学网小学频道精心准备了小学四年级整数和整除知识点,希望对大家有所帮助!四年级知识点:如下1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
数的整除知识点总结
数的整除知识点总结一、整除的概念。
1. 定义。
- 在整数除法中,如果商是整数而没有余数,我们就说被除数能被除数整除,或者说除数能整除被除数。
例如,15÷3 = 5,我们就说15能被3整除,或者说3能整除15。
2. 整除的表示方法。
- 若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作ba。
二、数的整除特征。
1. 能被2整除的数的特征。
- 个位数字是0、2、4、6、8的整数能被2整除。
例如12、34、560等都能被2整除。
2. 能被3整除的数的特征。
- 一个数各位数字之和能被3整除,这个数就能被3整除。
例如123,各位数字之和为1 + 2+3 = 6,6能被3整除,所以123能被3整除。
3. 能被5整除的数的特征。
- 个位数字是0或5的整数能被5整除。
如10、15、205等都能被5整除。
4. 能被9整除的数的特征。
- 一个数各位数字之和能被9整除,这个数就能被9整除。
例如279,各位数字之和为2+7 + 9=18,18能被9整除,所以279能被9整除。
5. 能被11整除的数的特征。
- 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么原来这个数就一定能被11整除。
例如132,奇位数字之和为1+2 = 3,偶位数字是3,它们的差为0,0是11的倍数,所以132能被11整除。
三、整除的性质。
1. 传递性。
- 如果ab且bc,那么ac。
例如,如果3能整除6,6能整除18,那么3能整除18。
2. 可加性。
- 如果ab且ac,那么a(b + c)。
例如,5能整除10,5能整除15,那么5能整除10 + 15=25。
3. 可减性。
- 如果ab且ac,那么a(b - c)。
例如,7能整除21,7能整除14,那么7能整除21-14 = 7。
整数和整除意义
01整数和整除意义、因数和倍数【基本概念】1、整数分类正整数、零和负整数,统称为整数。
【注】“零”既不是正整数,也不是负整数2、整除、因数、倍数:在除法算式:cba=÷中,整数a除以整数b,如果除得的商正好是整数c而没有余数,我们就说a能被b整除,或者说b能整除a。
我们也可以说a是b 和c的倍数,b 和 c 是a的因数。
条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。
或者说:在乘法算式中:acb=⨯中,整数b乘以整数c,所得积是整数a,我们就说a能被b整除,或者说b能整除a。
我们也可以说a是b 和c的倍数,b 和 c 是a的因数。
3、区别除尽和整除:4、因数和倍数的性质:(1)任何一个整数都是它本身的倍数,也是它本身的因数。
(2)1是任何一个整数的因数,任何整数都是1的倍数。
(3)0是任何一个不等于0的整数的倍数。
0=÷m (m位整数) 中m可以是任何一个不位0的整数。
(4)0没有因数。
因为分解因数不考虑0,研究因数和倍数时,不考虑0。
【例题分析】1、从-1,2.01,32,81,0.01,0,-3.9,100,选出适当数填入相应的圈内。
自然数 整数 正整数2、写出下列各数的因数(1)12 (2)36 (3)18 (4)173、将下列各式的编号填入相应的横线上①49÷7 ②3.6÷9 ③6÷12 ④10÷0.1 ⑤8÷8 ⑥13÷2 ⑦54÷3 ⑧2.1÷2.1(1)被除数能被除数整除的(2)被除数能被除数整除的4、将下列各数按要求填入相应的横线上1,2,0,5,8,6,15,3,2.7,45,57(1)自然数(2)奇数(3)45的因数(4)能被3除尽的数5、如果两个整数a 、b (a>b )都能被c 整除,那么它们的和、差、积也能被c 整除吗?为什么?6、40、68 和 96 分别除以一个自然数 a ,所得的余数都是 5,则这个自然数 a 是多少?7、是一筐苹果,2个一拿还剩1个,3个一拿还剩2个,4个一拿还剩3个,5个一拿还剩4个,则这筐苹果最少应有( )A .31B .59C .61D .121【概念理解】 1、下列各数中,第一个数能整除第二个数的是( )A .4和9B .16和64C .1.6和3.2D .7.2和3.6 2、4.80.224÷=,所以说4.8能被0.2 ______.(填“整除”或“除尽”或“除不尽”)3、能整除6的数有____________.4、下列说法中正确的个数是()①一个正整数的倍数一定比这个数的任何因数都大;②一个正整数的倍数一定能被它的因数整除;③一个正整数的因数至少有两个.A.0个B.1个C.2个D.3个5、已知三个正整数a、b、c满足a=bc,则下列书法正确的有()个。
小学四年级整数和整除的重要知识点
小学四年级整数和整除的重要知识点(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writing method!小学四年级整数和整除的重要知识点小学数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,本店铺特此整理了小学四年级整数和整除的重要知识点以供大家参考。
整数整除的概念和性质
第一讲整数整除的概念和性质1.已知a,b是整数,求证:a+b,ab、a-b这三个数之中,至少有一个是3的倍数.解答:证明:对于a,b,若至少有1个数是3的倍数,则ab是3的倍数;若a,b都不是3的倍数①当a=3m+1,b=3n+1时,a-b=3(m-n),a-b是3的倍数;②当a=3m+1,b=3n+2时,a+b=3(m+n+1),a+b是3的倍数;③当a=3m+2,b=3n+2时,a-b=3(m-n),a-b是3的倍数;∴a+b,ab、a-b这三个数之中,至少有一个是3的倍数.2.已知7位数是72的倍数,求出所有的符合条件的7位数.解答:解:∵72|,∴8|,9|。
由此得:1+2+8+7+x+y+6=24+x+y是9的倍数,而0<x≤9,0<y≤9,则x+y=3或12,又必是8的倍数,必是4的倍数,则y=1,3,5,7或9,当y=1时,x=2,8|216;当y=3时,x=0或9,8不能整除36(不符合题意),8|936(符合题意);当y=5时,x=7,8不能整除756(不符合题意);当y=7时,x=5,8|756;当y=9时,x=3,8不能整除396(不符合题意);综上可得:当y=1,x=2;y=3,x=9,;y=7,x=5时所得的7位数满足条件.∴符合条件的7位数为:1287216,1287936,1287576.3.(1)若a、b、c、d是互不相等的整数,且整数x满足等式(x-a)(x-b)(x-c)(x-d)-9=0,求证:4|(a+b+c+d).(2)已知两个三位数与的和+能被37整除,证明:六位数也能被37整除.解答:证明:(1)∵9=1×(-1)×3×(-3),∴可设x-a=1,x-b=-1,x-c=3,x-d=-3,∴a=x-1,b=x+1,c=x-3,d=x+3,∴a+b+c+d=4x,即4|(a+b+c+d);(2)∵= ×1000+ = ×999+(+)又∵和(+)能被37整除,∴×999+(+)能被37整除,即六位数能被37整除.4.某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除.解答:解:由已知,显然,号码为9999是幸运券,除这张外,如果某个号码n是幸运券,那么号m=9999-n也是幸运券,由于9是奇数,所以m≠n.由于m+n=9999相加时不出现进位,这就是说,除去号码9999这张幸运券外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的整倍数,而101|9999,故知所有幸运券号码之和也能被101整除.5.写出都是合数的13个连续自然数.解答:解:我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也是14的倍数,所以只要取a为2,3,…,14的倍数,则a+2,a+3,…,a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.6.已知定理“若大于3的三个质数a、b、c满足关系式2a+5b=c,则a+b+c 是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.解答:证明:∵a+b+c=a+b+2a+5b=3(a+2b),显然,3|a+b+c,若设a 、b 被3整除后的余数分别为a r 、b r ,则a r ≠0,b r ≠0.若a r ≠b r ,则a r =2,b r =1或a r =1,b r =2,则2a+5b=2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2)=3(2p+5q+4),即2a+5b 为合数与已知c 为质数矛盾.∴只有a r =b r ,则a r =b r =1或a r =b r =2.于是a+2b 必是3的倍数,从而a+b+c 是9的倍数.又2a+5b=2×11十5×5=47时,a+b+c=11+5+47=63,2a+5b=2×13十5×7=61时,a+b+c=13+7+61=81,而(63,81)=9,故9为最大可能值.7.一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”.解答:解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:,不妨设其中的最大数为,则最小数为.由“新生数”的定义,得N=abc -cba =(100a+l0b+c )一(100c+l0b+d )=99(a-c ).由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这九个数中,只有954-459=495符合条件,故495是唯一的三位‘新生数”.8.从左向右将编号为1至2002号的2002个同学排成一行,从左向右从1到11报数,报到11的同学原地不动,其余同学出列;然后,留下的同学再从左向右从1到11报数,报到11的同学留下,其余同学出列;留下的同学再从左向左从1到11地报数,报到11的同学留下,其余同学出列.问最后留下的同学有多少?他们的编号是几号?解答:解:由题意,第一次报数后留下的同学,他们的编号必为11的倍数;第二次报数后留下的同学,他们的编号必为112=121的倍数;第三次报数后留下的同学,他们的编号必为113=1331的倍数.因此,最后留下的同学编号为1331的倍数,我们知道从1~2002中,1331的倍数只有一个,即1331号,所以,最后留下一位同学,其编号为1331.9.在一种游戏中,魔术师请一个人随意想一个三位数,把的和N告诉魔术师,于是魔术师就能说出这个人所想的数.现在设N=3194,请你做魔术师,求出数来.解答:解:将acb也加到和N上,这样a、b、c就在每一位上都恰好出现两次,所以有acb+N=222(a+b+c),从而3194+100≤222(a+b+c)≤3194+999,而a、b、c是整数.所以15≤a十b十c≤18①.因为222×15-3194=136,222×16-3194=358,222×17-3194=580,222×18-3194=802,其中只有3+5+8=16能满足①式,∴=385.10.在下边的加法算式中,每个口表示一个数字,任意两个数字都不同:试求A和B乘积的最大值.解答:解:先通过运算的进位,将能确定的口确定下来,再来分析求出A和B 乘积的最大值.设算式为显然,g=1,d=9,h=0.a+c+f=10+B,b+e=9+A,∴A≤6.∵2(A+B)+19=2+3+4+5+6+7+8=35,∴A+B=8.要想A ×B 最大,∵A ≤6,∴取A=5,B=3.此时b=6,e=8,a=2,c=4;f=7,故A ×B 最大值为15.11.任给一个自然数N ,把N 的各位数字按相反的顺序写出来,得到一个新的自然数N ′,试证明:|N-N ′|能被9整除.解答:解:令N=n a a a ⋅⋅⋅21,则N ′=11a a a n n ⋅⋅⋅-.所以,N 除以9所得的余数等于n a a a +⋅⋅⋅++21除以9所得的余数,而N ′除以9所得的余数等于11a a a n n ⋅⋅⋅++-除以9所得的的余数.显然,n a a a +⋅⋅⋅++21=11a a a n n ⋅⋅⋅++-.因此,N 与N ′除以9所得的余数相同,从而|N-N'|能被9整除.12.(1)证明:形如的六位数一定能被7,1l ,13整除.(2)若4b+2c+d=32,试问能否被8整除?请说明理由.解答:解:(1)=1001(100a+10b+c )=7×11×13(100a+10b+c ), ∴形如的六位数一定能被7,1l ,13整除. (2)=1000a+100b+10c+d=1000a+96b+8c+(4b+2c+d ) =1000a+96b+8c+32,以上各式均能被8整除,故若4b+2c+d=32,能被8整除.。
整除知识点总结
一、整除的定义首先,我们需要了解整除的基本定义。
如果整数 a 能被整数 b 整除,即 a ÷ b 的商是一个整数,我们就说 a 能整除 b,记作 b|a。
这个定义也可以表述为整除是指存在一个整数 c,使得 a=b*c。
例如,如果 6 能被 3 整除,我们就说 3|6;如果 8 不能被 3 整除,我们就说 3不整除 8。
二、整除的性质整除具有许多性质,下面我们来介绍几条重要的性质:1. 传递性:如果 a|b 且 b|c,则 a|c。
这个性质意味着如果一个数整除另外两个数,那么它也整除它们的和、差或积。
2. 整除的反对称性:如果 a|b 且 b|a,则 a=b 或 a=-b。
这个性质表明,如果一个数同时能整除另一个数,并且另一个数也能整除它,那么这两个数只能相等或互为相反数。
3. 整除的保序性:如果 a|b 且 c>0,则 a*c|b*c;如果 a|b 且 c<0,则 b*c|a*c。
这个性质说明,如果一个数能整除另一个数,那么它也能整除另一个数的倍数。
4. 整除与乘法的关系:如果 a|b 且 a|c,则 a|b±c 和 a|b*c。
这个性质说明,如果一个数能整除另外两个数,那么它也能整除这两个数的和、差和积。
以上性质是整除的一些基本性质,它们对于整除的应用有着重要的指导意义。
三、整除的规律在整除的运算中,有一些规律是很重要的,下面我们来介绍几条常见的整除规律:1. 末尾数字规律:如果一个整数能整除 2,则它的末尾数字一定是 0、2、4、6 或 8;如果一个整数能整除 5,则它的末尾数字一定是 0 或 5;如果一个整数能整除 10,则它的末尾数字一定是 0。
2. 末尾零规律:如果一个整数能整除 10,则它的末尾至少有一个零。
3. 奇偶规律:如果一个整数能整除 2,则它是偶数;如果一个整数能整除 3,则它的各位数字之和能整除 3,则该整数也能整除 3。
4. 整除定理:给定整数 a 和 b(b≠0),则 a 能整除 b 的充要条件是 a 的所有质因子都在 b 的质因子中存在,并且对应的指数小于等于 b 中对应的指数。
新编小学四年级整数和整除知识点
新编小学四年级整数和整除知识点小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,查字典数学网为同学们特别提供了小学四年级整数和整除知识点,希望对大家的学习有所帮助!1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
第一讲,整数和整除
第一讲整数和整除主课题:1.1整数和整除的意义&1.2因数和倍数&1.3能被2、3、5整除的数教学目标:1. 掌握自然数、整数、整除、因数、倍数等概念2. 掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3. 掌握求一个整数在一定范围内的倍数,掌握整数的最小的倍数4、掌握能被2、3、5整除的数的特征,掌握能同时被2、5整除的数的特征5、掌握偶数、奇数的特征,以及它们的运算性质教学重点:1、自然数、整数、整除、因数、倍数;整除、整除的条件2. 掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3. 掌握求一个整数在一定范围内的倍数,掌握整数的最小的倍数4、掌握奇数偶数的运算性质,会求能同时被2、3、5其中的两个或者三个数整除的数教学难点:1.掌握整数最小和最大的因数,整数最小的倍数2.奇数偶数运算性质的应用3.求能同时被2、3、5其中的两个或者三个数整除的数考点及考试要求:1.自然数、整数、正整数、负整数的分类2.给出算式判断是否为整除3.会在一定范围内求一个正整数的因数、倍数4.会运用奇数偶数的运算性质5.会求能被2、3、5整除的数以及能同时被其中的两个或者三个数整除的数★知识精要知识点1:整数的意义和分类自然数:零和正整数统称为自然数(n a tur a l num b er);整数:正整数、零、负整数,统称为整数(integer)。
整数知识点2:整除(1)整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a. (2)整除的条件(两个必须同时满足):①除数、被除数都是整数;②被除数除以除数,商是整数而且余数为零。
知识点3:除尽与整除的异同点相同点:除尽与整除,都没有余数,即余数都为0;除尽中包含整除不同点:整除中被除数、除数和商都为整数,余数为零;除尽中被除数、除数和商不一定为整数,余数为零。
知识点4:因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称为约数)。
【精品文档】小学四年级数学知识点整数和整除-推荐word版 (2页)
【精品文档】小学四年级数学知识点整数和整除-推荐word版本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==小学四年级数学知识点整数和整除以下是数学网小编精心为大家分享的小学四年级数学知识点整数和整除欢迎大家参考学习。
1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
2019小学四年级整数和整除的重要知识点精品教育.doc
小学四年级整数和整除的重要知识点小学数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,小编特此整理了小学四年级整数和整除的重要知识点以供大家参考。
1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
2021年四年级数学期末复习重点之整数与整除知识点总结
2021年四年级数学期末复习重点之整数与整除知识点总结小学数学是一门很有趣的课程,可以启迪孩子的心智,可以培养孩子的逻辑思维,小编今天为您带来了四年级数学期末复习重点,希望能对您的学习有帮助。
1 、整数的意义:自然数和0都是整数。
2 、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5 、数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学《整数和整除》知识点
四年级数学《整数和整除》知识点
1、整数的意义:
自然数和0都是整数。
2、自然数:
我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:
一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制
计数法。
4、数位:
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:
(1)整数a除以整数b(b0),除得的商是整数而没有余数,我
们就说a能被b整除,或者说b能整除a。
(2)如果数a能被数b(b0)整除,a就叫做b的倍数,b就叫做
a的约数(或a的因数)。
倍数和约数是相互依存的。
(3)因为35能被7整除,所以35是7的倍数,7是35的约数。
(4)一个数的约数的个数是有限的,其中最小的约数是1,最
大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的
约数是1,最大的约数是10。
(5)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的.倍数有:3、6、9、12其中最小的倍数是3,没有最大的倍数。
(6)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
(7)个位上是0或5的数,都能被5整除,例如:5、30、405
都能被5整除。
(8)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
(9)一个数各位数上的和能被9整除,这个数就能被9整除。
(10)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
(11)一个数的末两位数能被4(或25)整除,这个数就能被
4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
(12)一个数的末三位数能被8(或125)整除,这个数就能被
8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。