(word完整版)2017年高考文科数学真题全国卷1

合集下载

2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

C. A≤1000 和 n n 1
D. A≤1000 和 n n 2
11. △ ABC 的 内 角 A , B , C 的 对 边 分 别 为 a , b , c . 已 知
sin B sin A(sin C cos C) 0 , a 2 , c 2 ,则 C ( )
C. (1 i)2
D. i(1 i)
4.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和
白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部
分的概率是( )
A.
1 4
B.
π 8
C.
1 2
D.
π 4
5.已知 F 是双曲线 C :x2 y 2 1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 3
A.
A
I
B


x|x

3 2
B. A I B

C.
AU
B


x|x


3
2
D. A U B R
2.为评估一种农作物的种植效果,选了 n 块地作试验田.这 n 块地的亩产量(单位: kg )
分别为 x1 , x2 ,……, xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程
π
π
π
π
A.
B.
C.
D.
12
6
4
3
12. 设 A , B 是 椭 圆 C : x2 y2 1 长 轴 的 两 个 端 点 , 若 C 上 存 在 点 M 满 足 3m
AMB 120 ,则 m 的取值范围是( A. (0,1]U [9, )

2017高考新课标全国1卷文科数学试题及答案

2017高考新课标全国1卷文科数学试题及答案

2017高考新课标全国1卷文科数学试题及答案2017高考新课标全国1卷文科数学试题及答案绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ?B .A I B =?C .A U B 3|2x x ?=D .A U B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是A.i(1+i)2B.i2(1-i) C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知F 是双曲线C :x 2-23y=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .326.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤??则z =x +y 的最大值为A .0B .1C .2D .3 8..函数sin21cos x y x=-的部分图像大致为9.已知函数()ln ln(2)=+-,则f x x xA.()f x在(0,2)单调递增B.()f x在(0,2)单调递减C.y=()f x的图像关于直线x=1对称D.y=()f x的图像关于点(1,0)对称10.如图是为了求出满足321000n n->的最小偶数n,学|科网那么在和两个空白框中,可以分别填入A.A>1000和n=n+1 B.A>1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017高考新课标全国1卷文科数学试题及答案

2017高考新课标全国1卷文科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.38..函数sin21cosxyx=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年高考真题答案及解析:文科数学(全国Ⅰ卷)

2017年高考真题答案及解析:文科数学(全国Ⅰ卷)

2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则( )。

A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A 【难度】简单2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )。

A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【难度】简单3.下列各式的运算结果为纯虚数的是( )。

A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C 【难度】一般4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是( )。

A .14B .π8C .12D .π 4【答案】B 【难度】一般5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为( )。

2017年全国高考文科数学试题及答案-全国卷1

2017年全国高考文科数学试题及答案-全国卷1

2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4 5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 8..函数sin21cos x y x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年高考真题-文科数学-(全国I卷)

2017年高考真题-文科数学-(全国I卷)

文科数学 2017年高三2017年全国乙卷文科数学文科数学考试时间:____分钟题型单选题填空题简答题总分得分单选题(本大题共12小题,每小题____分,共____分.)1.已知集合A=,B=,则( )A。

A B=B. A BC. A BD。

A B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A。

x1,x2,…,x n的平均数B. x1,x2,…,x n的标准差C. x1,x2,…,x n的最大值D。

x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是()A. i(1+i)2B。

i2(1−i)C。

(1+i)2D。

i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A。

B。

C。

D.5.已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A。

B.C.D.6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A。

B。

C.D.7.设x,y满足约束条件则z=x+y的最大值为()A. 0B. 1C。

2D. 38.函数的部分图像大致为( )A。

B.C.D。

9.已知函数,则( ) A。

在(0,2)单调递增B。

在(0,2)单调递减C. y=的图像关于直线x=1对称D。

y=的图像关于点(1,0)对称10.下面程序框图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入( )A。

A〉1000和n=n+1B。

A>1000和n=n+2C. A≤1000和n=n+1D。

A≤1000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知,a=2,c=,则C=()A。

2017新课标全国卷1文科数学试题及答案

2017新课标全国卷1文科数学试题及答案

14.曲线 y x2 1 在点(1,2)处的切线方程为_________________________. x
15.已知 a (0,π ) ,tan α=2,则 cos ( π ) =__________。
2
4
16.已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,SC 是球 O 的直径。若平面 SCA⊥
生产的零件尺寸的均值与标准差.(精确到 0.01)
附 : 样 本 (xi , yi ) (i 1, 2,, n) 的 相 关 系 数 r
n
(xi x )( yi y)
i 1

n
n
(xi x )2
( yi y )2
i 1
i 1
0.008 0.09 .
20.(12 分)
5
x2
设 A,B 为曲线 C:y= 上两点,A 与 B 的横坐标之和为 4.
记 Sn 为等比数列 an 的前 n 项和,已知 S2=2,S3=-6.
(1)求an 的通项公式;
(2)求 Sn,并判断 Sn+1,Sn,Sn+2 是否成等差数列。 18.(12 分)
如图,在四棱锥 P-ABCD 中,AB//CD,且 BAP CDP 90
(1)证明:平面 PAB⊥平面 PAD;
C.x1,x2,…,xn 的最大值
D.x1,x2,…,xn 的中位数
3.下列各式的运算结果为纯虚数的是
A.i(1+i)2
B.i2(1-i)
C.(1+i)2
D.i(1+i)
4.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色
部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率

2017全国卷1、2、3文科数学试题及答案 A4横版

2017全国卷1、2、3文科数学试题及答案 A4横版

2017年普通高等学校招生全国统一考试(全国卷1)文科数学1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .AB =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为 A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年普通高等学校招生全国统一考试全国卷1文科数学试题解析

2017年普通高等学校招生全国统一考试全国卷1文科数学试题解析

2017年普通高等学校招生全国统一考试(新课标卷I )文科数学试题解析一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R解析:∵集合A={x |x <2},B={x |3﹣2x >0}={x |x <}, ∴A ∩B={x |x <},故A 正确,B 错误; A ∪B={x ||x <2},故C ,D 错误;故选:A .2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:在A 中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A 不可以用来评估这种农作物亩产量稳定程度;在B 中,标准差能反映一个数据集的离散程度,故B 可以用来评估这种农作物亩产量稳定程度;在C 中,最大值是一组数据最大的量,故C 不可以用来评估这种农作物亩产量稳定程度;在D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D 不可以用来评估这种农作物亩产量稳定程度.故选:B . 3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)解析:A .i (1+i )2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4解析:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.5.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.32解析:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选:D.6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是解析:对于选项B ,由于AB ∥MQ ,结合线面平行判定定理可知B 不满足题意; 对于选项C ,由于AB ∥MQ ,结合线面平行判定定理可知C 不满足题意; 对于选项D ,由于AB ∥NQ ,结合线面平行判定定理可知D 不满足题意; 所以选项A 满足题意,故选:A .7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 解析:x ,y 满足约束条件的可行域如图:,则z=x +y 经过可行域的A 时,目标函数取得最大值, 由解得A (3,0),所以z=x +y 的最大值为:3.故选:D .8..函数sin21cos xy x=-的部分图像大致为解析:函数y=,解析:可知函数是奇函数,排除选项B ,当x=时,f ()==,排除A ,x=π时,f (π)=0,排除D .故选:C .9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称解析:∵函数f (x )=lnx +ln (2﹣x ),∴f (2﹣x )=ln (2﹣x )+lnx , 即f (x )=f (2﹣x ),即y=f (x )的图象关于直线x=1对称,故选:C . 10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入 A .A >1000和n =n +1 B .A >1000和n =n +2 C .A ≤1000和n =n +1D .A ≤1000和n =n +2解析:因为要求A >1000时输出,且框图中在“否”时输出,所以“”内不能输入“A >1000”,又要求n 为偶数,且n 的初始值为0, 所以“”中n 依次加2可保证其为偶数,所以D 选项满足要求,故选:D .11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年全国1卷高考文科数学试题及答案-

2017年全国1卷高考文科数学试题及答案-

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘2效。

31A .B A B C .A B=2.x 1,x 2,…A .C .3A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,x y x y +≤⎧⎪-≥⎨则z =x +y 的最大值为A 8..9AC .10,那么在和A C .11.△,c ,则C A 12.设3m,则m 的取值范围是 A .(0,1][9,)+∞ B .[9,)+∞ C .(0,1][4,)+∞D .[4,)+∞二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________.14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 15.已知π(02a ∈,,tanα=2,则πcos ()4α-=__________。

16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。

2017年高考全国卷I-数学试题及答案(K12教育文档)

2017年高考全国卷I-数学试题及答案(K12教育文档)

2017年高考全国卷I-数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考全国卷I-数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考全国卷I-数学试题及答案(word版可编辑修改)的全部内容。

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分.考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =<B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R 。

2017年高考全国Ⅰ文科数学试题及答案(word解析版)

2017年高考全国Ⅰ文科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年全国Ⅰ,文1,5分】已知集合{}|2A x x =<,{}|320B x x =->,则集合A B 中的元素个数为( ) (A )3|2A B x x ⎧⎫=<⎨⎬⎩⎭ (B )A B =∅ (C )3|2A B x x ⎧⎫=<⎨⎬⎩⎭(D )A B R = 【答案】A【解析】32B x x ⎧⎫=<⎨⎬⎩⎭,所以32A B x x ⎧⎫=<⎨⎬⎩⎭ ,选A .(2)【2017年全国Ⅰ,文2,5分】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12n x x x ⋯,,,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) (A )12n x x x ⋯,,,的平均数 (B )12n x x x ⋯,,,的标准差 (C )12n x x x ⋯,,,的最大值 (D )12n x x x ⋯,,,的中位数 【答案】B【解析】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B . (3)【2017年全国Ⅰ,文3,5分】下列各式的运算结果为纯虚数的是( )(A )()2i 1i +(B )()2i 1i - (C )()21i + (D )()i 1i +【答案】C【解析】由于2(1i)2i +=为纯虚数,故选C . (4)【2017年全国Ⅰ,文4,5分】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )(A )14 (B )8π (C )12 (D )4π【答案】B【解析】由图可知黑色部分占整个圆的12,22112248ABCD S r P S r ππ===圆,故选B . (5)【2017年全国Ⅰ,文5,5分】已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是()1,3.则APF ∆的面积为( )(A )13(B )12 (C )23 (D )32【答案】D【解析】有题意可知()3,0F ,求得P 点的坐标为()3,8,131322S =⨯⨯=,故选D .(6)【2017年全国Ⅰ,文6,5分】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )(A ) (B ) (C ) (D ) 【答案】A 【解析】A 中,AB 与平面MNQ 相交,故选A .也可用排除法,对于B ,易知//AB MNQ 平面;对于C ,易知//AB MQ,则直线//AB MNQ 平面;对于D ,易知//AB NQ ,则直线//AB MNQ 平面,故排除B ,C ,D 。

2017年高考文科数学试题全国卷1及解析word完美版

2017年高考文科数学试题全国卷1及解析word完美版

2017年普通高等学校招生全国统一考试 1卷文科数学一、选择题:本大题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求 的。

1、已知集合 A={x|x<2}, B={x|3 T 2X >0},则()3 3A . A A B={x|x<^}B . A A B=QC .A U B={x|x<? D . A U B=R 2、为评估一种农作物的种植效果,选了n 块地作试验田。

这 n 块地的亩产量(单位:kg)分别为X 1, X 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 ()A . X 1 , X 2,…,x n 的平均数 C. X 1, x 2,…,x n 的最大值3、下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1 -i)B. X 1 , X 2,…,X n 的标准差 D . X 1 , X 2,…,X n 的中位数()C. (1+i)2 D . i(1+i)4、如下左1图,正方形 ABCD 内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正 方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是 ()正方体中,直接 AB 与平面MNQ 不平行的是()x+3y <37、设x , y 满足约束条件 x ->1 ,则z=x+y 的最大值为() y >0A . 0B . 1 C. 2 D . 39、 已知函数 f(x)=lnx+ln(2 -c),则() A . f(x)在(0,2)单调递增B . f(x)在(0,2)单调递减C. y=f(x)的图像关于直线 x=1对称D . y=f(x)的图像关于点(1,0)对称10、 如图是为了求出满足 3n -2n >1000的最小偶数n ,那么在,'“和两个空白框中,可以分别填入()D . PF 与x 轴垂直,点 A 的坐标是(1,3)。

(完整word版)2017年全国1卷高考文科数学试题及答案-(2),推荐文档

(完整word版)2017年全国1卷高考文科数学试题及答案-(2),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1 •答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题 卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如 需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3•考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

别为X 1, X 2,…,X n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是4.如图,正方形 ABCD 内的图形来自中国古代的太极图•正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称•在711.已知集合A= x|x2 , B= x|3 2x0,则A . A I B= x|x C . A U Bx|xB . A l B D . A U B= R2 •为评估一种农作物的种植效果,选了 n 块地作试验田•这n 块地的亩产量(单位:kg )分A . X 1, x 2,…,x n 的平均数 C . X 1, X 2,…,x n 的最大值 3•下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1-i)B . X 1, X 2,…,X n 的标准差 D . X 1 , X 2,…,x n 的中位数C . (1+i)2D . i(1+i)正方形内随机取一点,则此点取自黑色部分的概率是25.已知F 是双曲线C : x 2-y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐3标是(1,3).则A APF 的面积为C . 3A ,B 为正方体的两个顶点, M , N , Q 为所在棱的中点,x 3y 3,7•设x , y 满足约束条件x y 1,则z=x+y 的最大值为 y 0,A . 0B . 1C . 2D . 3sin2 x8 •函数y的部分图像大致为1 cosx9.已知函数 f (x) lnx ln(2 x),则A . f (x)在(0,2)单调递增B . f (x)在(0,2)单调递减C . y= f (x)的图像关于直线 x=1对称D . y= f (x)的图像关于点(1,0)对称10 .如图是为了求出满足 3n 2n 1000的最小偶数n ,那么在"-■和.—两个空白框中,可以分别填入B . A>1000 和 n=n+2 D . A w 100(和 n=n+2a 、b 、c 。

2017年高考全国一卷文科数学试题

2017年高考全国一卷文科数学试题

2017年全国一卷高考文科数学试题
1.已知集合A ={}|2x x <,B ={}|320x x ->,则
A.A B =3|2x x ⎧
⎫<⎨⎬⎩⎭
B.A B =∅C.A B 3|2x x ⎧
⎫=<⎨⎬⎩⎭D.A B=R
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A.x 1,x 2,…,x n 的平均数B.x 1,x 2,…,x n 的标准差
C.x 1,x 2,…,x n 的最大值D.x 1,x 2,…,x n 的中位数
3.下列各式的运算结果为纯虚数的是
A.i(1+i)2B.i 2(1−i)C.(1+i)2D.i(1+i)
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A.1
4B.π
8C.1
2D.π
4。

2017全国卷1文数试题

2017全国卷1文数试题

2017全国卷1文数试题(文章正文,字数根据需要增减)Note: The following content is a sample article based on the title "2017 National Paper 1 Text and Math Questions." The actual content may vary depending on the specific exam questions.作为一名高中生,无论是文科还是数学,备考中的每一道题目都是我们的挑战。

今天,我将为大家分享2017年全国卷1文科与数学试题,希望对大家备考有所帮助。

一、文科部分1. 阅读理解以2017年全国卷1文科试题中的一篇阅读理解题为例:(正文内容)这道题要求考生在阅读材料后回答相关问题。

考生在回答问题时,应注意细节,并灵活运用自己的语言表达能力。

2. 翻译题以2017年全国卷1文科试题中的一道翻译题为例:(正文内容)这道题是一道英文到中文的翻译题,要求考生准确地将英文材料翻译成中文。

考生需要注意语法和用词的准确性。

二、数学部分1. 解答题以2017年全国卷1数学试题中的一道解答题为例:(正文内容)这道题要求考生利用所学的数学知识解答问题。

考生需要清晰地理解题目,并运用所学知识进行推理和计算。

2. 计算题以2017年全国卷1数学试题中的一道计算题为例:(正文内容)这道题要求考生进行较为复杂的数学计算。

考生需要熟练掌握运算方法,并注意计算的准确性和步骤的清晰性。

结尾:通过分享2017年全国卷1文科与数学试题,希望对各位考生备考有所帮助。

备考过程中,要注意细节,灵活运用所学的知识和技巧,相信你们一定能在考试中取得好成绩。

祝愿大家都能取得理想的成绩!(文章字数:xxx)(根据需要可自行增减文章内容,以满足字数要求)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2017年普通高等学校招生全国统一考试
文科数学
本试卷共5页,满分150分。

考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的.
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ⎧
⎫<
⎨⎬⎩⎭ B .A I B =∅ C .A U B 3|2x x ⎧
⎫=<
⎨⎬⎩

D .A U B=R
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
3.下列各式的运算结果为纯虚数的是
A .i(1+i)2
B .i 2(1−i)
C .(1+i)2
D .i(1+i)
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A .
14
B .
π8
C .
12
D .π 4
5.已知F 是双曲线C :13
2
2
=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,学/网点A 的坐标是(1,
3),则△APF 的面积为 A .13
B .1 2
C .2 3
D .3 2
6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是
A
. B .
C .
D .
7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪
-≥⎨⎪≥⎩
则z =x +y 的最大值为
A .0
B .1
C .2
D .3
8.函数sin21cos x
y x
=
-的部分图像大致为
A .
B .
C .
D .
9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增
B .()f x 在(0,2)单调递减
C .y =()f x 的图像关于直线x =1对称
D .y =()f x 的图像关于点(1,0)对称
10.下面程序框图是为了求出满足321000n n ->的最小偶数n 分别填入
A .A >1000和n =n +1
B .A >1000和n =n +2
C .A ≤1000和n =n +1
D .A ≤1000和n =n +2
11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =
A .
π12
B .
π6
C .
π4
D .
π3
12.设A ,B 是椭圆C :22
13x y m
+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°
,则m 的取值范围是
A .(0,1][9,)+∞U
B .(0,3][9,)+∞U
C .(0,1][4,)+∞U
D .(0,3][4,)+∞U
二、填空题:本题共4小题,每小题5分,共20分.
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 14.曲线2
1
y x x
=+
在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan α=2,则π
cos ()4
α-=__________.
16.已知三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S−ABC 的体积为9,则球O 的表面积为________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生
都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)
记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6. (1)求{}n a 的通项公式;
(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.
18.(12分)
如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P−ABCD 的体积为8
3
,求该四棱锥的侧面积.
19.(12分)
为了监控某种零件的一条生产线的学科*程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,
0.212s ==≈,18.439≈,16
1
()(8.5)
2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()
n
i
i
x x y y r --=
∑0.09≈.
20.(12分)
设A ,B 为曲线C :y =2
4
x 上两点,A 与B 的横坐标之和为4.
(1)求直线AB 的斜率;
(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 21.(12分)
已知函数()f x =e x (e x −a )−a 2x . (1)讨论()f x 的单调性;
(2)若()0f x ≥,求a 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为3cos ,
sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为
4,
1,
x a t t y t =+⎧⎨
=-⎩(为参数). (1)若1-=a ,求C 与l 的交点坐标;
(2)若C 上的点到l a . 23.[选修4−5:不等式选讲](10分)
已知函数4)(2
++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥的解集;
(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.。

相关文档
最新文档