湖南省长郡中学2021届高三月考试卷(二)数学
湖南长郡中学2021届高三第二次月考英语试卷含答案
长郡中学2021届高三月考试卷(二)英语得分: ___________本试题卷共10页。
时量120分钟。
满分150分。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例: How much is the shirt?A. £ 19.15.B. £ 9.18.C. £ 9.15.答案是C.1. What does the man want the woman to do with the clothes?A. Dry them.B. Fold them.C. Wash them.2. How was the weather recently?A. Rainy.B. Snowy.C. Sunny.3. What does the man write about first?A. An earthquake.B. A fire.C. His boss.4. Who thought Sara should go overseas to study?A. Her friends.B. Her parents.C. Her teacher.5. What is the probable relationship between the speakers?A. Neighbors.B. Roommates.C. Husband and wife.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2022-2023学年湖南省长沙市长郡中学高三上学期月考(二)化学试卷
长郡中学2023届高三月考试卷(二)化学得分:___________本试题卷分选择题和非选择题两部分,共8页.时量75分钟,满分100分. 可能用到的相对原子质量:H ~1 C ~12 O ~16 S ~32 Ag ~108 La ~139 一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.北京冬奥会成功举办、神舟十三号顺利往返、“天宫课堂”精彩呈现均展示了我罔科技发展的巨大成就.下列相关叙述正确的是( ) A .冬奥会“飞扬”火炬所用的燃料2H 为氧化性气体B .体育馆建筑膜材料——乙烯与四氟乙烯的加聚产物属于有机高分子材料C .飞船返回舱表层材料中的玻璃纤维属于天然有机高分子D .乙酸纳过饱和溶液析出品体并放热的过程仅涉及化学变化 2.下列化合物的性质与用途具有对应关系的是( ) A .2SO 具有还原性,可用于葡萄酒的抗氧化剂 B .23Al O 熔点很高,可用于冶炼金属铝 C .3NH 具有还原性,可用作制冷剂D .2MnO 具有氧化性,可用于加快22H O 分解3.化学实验操作是进行科学实验的基础.下列操作能达到实验目的的是( )A .除去2SO 中的少量HClB .蒸发结晶制胆矶C .熔融纯碱D .制备2Cl 4.固氮是将游离态的氮转变为氮的化合物,一种新型人工固氮的原理如图所示.下列叙述正确的是( )A .转化过程中所涉及的元素均呈现了两种价态B .反应①②③均为氧化还原反应C .假设每一步均完全转化,每生成32molNH ,同时生成21.5molOD .参与反应的物质均只含离子键5.如图是某学校实验室从化学试剂商店买回的硫酸试剂标签上的部分内容.下列说法正确的是( )9.2mol /LB .标准状况下,1.5molZn 与足量的该硫酸反应产生33.6L 氢气C .配制100mL4.6mol /L 的稀硫酸需取该硫酸25.0mLD .等质量的水与该硫酸混合后所得溶液中溶质的物质的量浓度大于9.2mol /L6.碳跟浓硫酸共热产生气体X ,铜跟浓硝酸反应产生气体Y ,将与Y 同时通入装有稀2BaCl 溶液的洗瓶中(如图装置).下列有关说法正确的是( )A .洗气瓶中产生的沉淀可能含碳酸钡B .在Z 导管口处可收集到无色气体NOC .在Z 导管出来的气体中可能不含2COD .洗气瓶中产生的沉淀只有硫酸钡 7.汉黄芩素是传统中草药黄芩的有效成分之一,对肿瘤细胞的杀伤有独特作用.下列有关汉黄芩素的叙述错误的是( )A .汉黄芩素的分子式为16125C H OB .分子内共面的原子最多有30个C .该物质遇3FeCl 溶液显色D .1mol 该物质最多与28molH 反应 8.下列各组物质相互混合反应后,最终有白色沉淀生成的是( )①2NaAlO 溶液与3AlCl 溶液混合 ②过量NaOH 溶液和明矾溶液混合 ③23Na CO 溶液滴入2NaAlO 溶液中 ④2NaAlO 溶液与3NaHCO 溶液混合 ⑤向饱和23Na CO 溶液中通入足量2COA .①③④⑤B .②③④C .①③⑤D .①④⑤9.如图,在一个容积固定的恒温容器中,有两个可左右滑动的密封隔板,在A 、B 、C 内分别充入等质量的X 、2H 、Y 三种气体,当隔板静止时,A 中气体密度比C 中气体密度大.下列说法不正确的是( )A .压强:()2p(X)p H p(Y)==B .气体的体积:V(X)V(Y)<C .摩尔质量:M(X)M(Y)<D .物质的量:n(X)n(Y)<l0.已知还原性:23SO I -->.某溶液中可能含有222434Na NH Fe K I SO SO ++++---、、、、、、,且所有离子物质的量浓度相等.向该无色溶液中滴加少量溴水,溶液仍呈无色.下列关于该溶液的判断正确的是( )A .肯定不含24SO -B .肯定不含I -C .可能含有23SO -D .肯定含有Na +二、选择题(本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有一个或两个选项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)11.下列操作不能达到实验目的的是( )12.下列离子方程式正确的是( )A .少量2Cl 通入23Na SO 溶液中:222324Cl SO H O2Cl SO 2H ---+++++B .2H S 气体通入2FeCl 溶液中:22H S Fe FeS 2H +++↓+C .()32Ba HCO 溶液与足量NaOH 溶液反应:223323Ba 2HCO 2OH BaCO 2H O CO +--++↓++ D .44NH HSO 溶液与足量NaOH 溶液混合:432NH OH NH H O +-+⋅13.以废锌电池预处理物(主要成分为ZnO ,另含少量2332Fe O CuO SiO MnO 、、等)为原料可生产草酸锌晶体()24ZnC O ,生产工艺如下图所示.下列关于草酸锌晶体生产工艺,说法正确的是( )A .“滤渣A ”主要成分为23H SiOB .“除锰”的离子方程式:22222Mn H O H OMnO(OH)2H ++++↓+C .“除锰”后的溶液中主要存在的阳离子有222Fe Cu Zn +++、、D .“除铁”过程中,可以用3ZnCO 代替ZnO14.中学化学常见物质之间,在一定条件下可以发生如图所示的转化关系(部分反应中的2H O 没有标明),其中A 、B 、C 中均含有同一种元素.下列说法错误的是( )A .若①②③反应都是氧化还原反应,则A 不可能是氧气B .若A 是气体,D 是常见金属,则反应①②③都是化合反应C .若B 具有两性,A 、B 、C 、D 都是化合物,则C 溶液可能呈酸性,也可能呈碱性 D .若①②③反应都是氧化还原反应,则A 、B 、C 中含有的同一种元素一定呈现三种不同化合价三、非选择题(本题共4道大题,共54分.)15.(12分)用如图方法回收废旧CPU 中的单质Au (金)、Ag 和Cu .已知:①浓硝酸不能单独将Au 溶解;②44HAuCl H AuCl +-+. (1)4HAuCl 中Au 元素的化合价为_______________.(2)浓、稀硝酸均可作酸溶试剂.溶解等量的Cu 消耗3HNO 的物质的量不同,写出消耗3HNO 物质的量多的反应的化学方程式:_________________________________.(3)3HNO NaCl -与王水[()(V :V 1:3)]=浓硝酸浓盐酸溶金原理相同,会生成一种无色气体,遇到空气变为红棕色.①写出3HNO NaCl -溶金反应的离子方程式:_______________. ②关于溶金的下列说法正确的是__________(填标号). A .用到了3HNO 的氧化性B .用浓盐酸与3NaNO 也可使Au 溶解C .王水中浓盐酸的主要作用是增强溶液的酸性(4)若用足量Zn 粉将溶液中的41.5molHAuCl 完全还原,则参加反应的Zn 的物质的量是_______mol .(5)用适当浓度的盐酸、NaCl 溶液、氨水与铁粉,可按照如图方法从酸溶后的溶液中回收Cu 和Ag (图中标注的试剂和物质均不同).试剂1是________,试剂2是_________.16.(12分)某化工厂产生的废渣中含有4PbSO 和Ag ,为了回收这两种物质,某同学设计了如下流程:已知:“浸出"”过程发生可逆反应:()32332AgCl 2SO Ag SO Cl --++.回答下列问题:(1)“氧化”阶段需在80℃条件下进行,最适合的加热方式为____________. 将废渣“氧化”的化学方程式为_______________________.(2)其他条件不变,在敞口容器中进行“浸出”时,浸出时间过长会使银的浸出率(浸出液中银的质量占起始废渣中银的质量的百分比)降低,可能原因是____________________(用离子方程式表示).(3)研究发现:浸出液中含银化合物总浓度、含硫化合物总浓度与浸出液pH 的关系如下图所示:①pH 10=时,含银化合物总浓度随含硫化合物总浓度的变化趋势是_____________________.②pH 5=时含银化合物总浓度随含硫化合物总浓度的变化与pH 10=时不同,原因是____________________.(4)“还原”过程中还原剂与氧化剂物质的量之比为____________.(5)工业上,粗银电解精炼时,电流为5~10A ,若用8A 的电流电解60min 后,得到21.6gAg ,则该电解池的电解效率为______________.(保留小数点后一位.通过一定电荷量时阴极上实际沉积的金属质量与理论上应沉积的金属质量之比叫电解效率.法拉第常数为196500C mol -⋅)17.(15分)碳酸镧()()23r 3La CO M 458=为白色粉末,难溶于水,分解温度900℃,可用于治疗高磷酸盐血症.在溶液中制备时,生成不溶于水的水合碳酸镧()2323La CO xH O ⋅,如果溶液碱性太强,易生成受热分解的碱式碳酸镧3La(OH)CO .回答下列问题: (一)利用3LaCl 溶液制备水合碳酸澜(1)仪器B 的名称为________________.(2)装置接口的连接顺序为f →______________________.(3)Z 中应先通入___________________(填化学式),后通入过量的另一种气体,该气体需要过量的原因是______________________________.(4)该反应中生成副产物氯化铵,请写出Z 中生成水合碳酸镧的化学方程式:______________________.(二)()2323La CO xH O ⋅中x 值的测定将石英玻璃A 管称重,记为1m g ,将样品装入石英玻璃管中,再次将装置A 称重,记为2m g ,将装有试剂的装置C 称重,记为3m g .按图示连接好装置进行实验.(已知酒精喷灯温度可达1000℃)实验步骤如下:①打开12K K 、和3K ,缓缓通入2N ;②数分钟后关闭13K ,K ,打开4K ,点燃酒精喷灯,加热A 中样品;③一段时间后,熄灭酒精喷灯,打开1K ,通入2N 数分钟后关闭1K 和2K ,冷却到室温,称量A .重复上述操作步骤,直至A 恒重,记为4m g (此时装置A 中固体为23La O ).称重装置C ,记为5m g .(5)实验中第二次通入2N 的目的为____________________________.(6)根据实验记录,当5341m m 44m m 326-=-___________,说明制得的样品中不含3La(OH)CO . (7)水合碳酸镧的化学式中x =(用含124m m m 、、的代数式表示,可不化简).18.(15分)化合物H 是合成雌酮激素的中间体,科学家们采用如下合成路线:已知:回答下列问题:(1)B 的结构简式为_______________.(2)B C →,C D →的反应类型分别是______________,_____________. (3)F 中官能团的名称为___________________.(4)D 通过聚合反应可形成一种高分子,该反应的化学方程式为___________________. (5)E 的同分异构体中符合下列条件的有______________种(不考虑立体异构). ①能发生银镜反应②苯环上有三个取代基且其中两个为酚羟基 ③分子中含有甲基其中核磁共振氢谱有5组峰,且峰面积之比为6:2:2:1:1的有机物的结构简式为______________.(6)写出以苯和为原料制备化合物的合成路线(参照以上合成路线,其他试剂任选).长郡中学2023届高三月考试卷(二)化学参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)6.D 【解析】碳浓浓硫酸共热产生的气体X 为2和2,铜浓浓硝酸反应产生的气体Y 是2NO .2CO 与2BaCl 溶液不反应,无3BaCO 沉淀生成,A 项错误.2NO 溶于水生成的3HNO 将2SO 氧化为24H SO ,反应生成4BaSO 沉淀和NO 气体,NO 在常温下与2O 反应生成红棕色2NO ,故B 项和C 项均错误,D 项正确.9.C 【解析】当隔板静止时,代表隔板两侧气体的压强相等,容器恒温,所以处于同温同压的环境,A 项正确.同温同压下,气体的密度比等于其摩尔质量比;A 中气体密度比C中气体密度大,所以气体的摩尔质量:X 大于Y ;通入的三种气体的质量相等,所以物质的量:X Y <;同温同压下,气体的体积:X Y <,所以B 项和D 项正确,C 项错误. 10.A 【解析】由无色溶液可知一定不含2Fe +;向该无色溶液中滴加少量涣水,溶液仍呈无色,可知一定含还原性离子23SO -;由于所有离子物质的量浓度相等,结合电荷守恒可知一定无24SO -.若含I -,则阳离子为4Na NH K +++、、;若不含I -,则阳离子为4Na NH K +++、、中的两种,故选A .二、选择题(本题共4,J 、题,每小题4分,共16分.在每小题给出的四个选项中,有一个或两个选项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)12.C 【解析】A 项,正确的离子方程式为22322433SO Cl H O2Cl SO 2HSO ----++++;B 项,2H S 气体与2FeCl 溶液不反应;D 项,正确的离子方程式为4322NH H 2OH NH H O H O ++-++⋅+.14.AD 【解析】B 项,A 为2Cl ,D 为Fe ,符合题意,正确;C 项,B 为3Al(OH),C 可以是3AlCl 或2NaAlO ,正确;D 项,由B 项分析可知①②③反应都是氧化还原反应,A 、B 、C 中含有的同一种元素不一定主现三种不同化合价,错误. 三、非选择题(本题共4道大题,共54分.) 15.(12分) (1)3+(2分) (2)()33222Cu 4HNO Cu NO (2NO 2H )O ++↑+浓(3)①342Au NO 4Cl 4H AuCl NO 2H O --+-++++↑+ ②AB(4)3(2分)(5)NaCl 溶液 铁粉【解析】(4)用Zn 粉还原4HAuCl ,Zn 化合价由0升高为2Au +、化合价由3+降低为O ,H 化合价由1+降低为0,根据得失电子守恒,则参加反应的Zn 与4HAuCl .的物质的量之比为2:1.用足量Zn 粉将溶液中的41.5molHAuCl 完全还原,则参加反应的Zn 的物质的量是3mol . 6.(12分)(1)水浴加热 22Δ4Ag 4NaClO 2H O4AgCl 4NaOH O ++++↑(2)223242SO O 2SO --+ (3)①含银化合物总浓度随含硫化合物总浓度的增大而增大(1分)②pH 较小时,23SO -与H +结合生成3HSO -或23H SO ,尽管含硫化合物总浓度增大,但()23c SO -均较小(4)1:4 (5)67.0%【解析】(5)用8A 的电流电解60min ,则电子的物质的量为86060mol 0.298mol 96500⨯⨯≈,理论可得到32.23gAg ,实际得到21.6gAg ,剔该电解地的电解效车为21.6100%67.0%32.23⨯≈. 17.(15分) (1)(球形)干燥管 (2)b a d →→;e c ←(3)3NH 控制溶液不能碱性太强,否则易生成副产物碱式碳酸镧3La(OH)CO (4)()3322232432LaCl 6NH 3CO (x 3)H OLa CO xH O 6NH Cl ++++⋅↓+(5)将装置中产生的气体全部吹入后续装置中被吸收,减少测定误差 (6)3(7)()2141326m m 458m m 18---[或()()412141458m m m m 32618m m 326----或()()()214141326m m 458m m 18m m ----]【解析】(3)为增大2CO 溶解度,提高产率,Z 中应先通入3NH 再通入2CO ;根据题目信息可知,如果溶液碱性太强,易生成受热分解的碱式碳酸镧3La(OH)CO ,所以通入2CO 需要过量的原因是控制溶液不能碱性太强,否则易生成副产物碱式碳酸镧3La(OH)CO . (5)第二次通入2N ,将装置中残留的2CO 全部排入装置C 中被吸收,减小实验误差;D 中碱石灰的作用是防止空气中的2H O 和2CO 进入装置C 干扰实验.(6)如果制得的样品中不含有3La(OH)CO ,则由()2323La CO xH O ⋅化学式可知()()232n La O :n CO 1:3=,即5341m m 443m m 326-=-.(7)()()232323n La O n La CO xH O ⎡⎤=⋅⎣⎦,可求出水合碳酸镧化学式中结晶水数目:()()()()2223233n H O n H O x n La O n La CO ===⎡⎤⎣⎦()()412141458m m m m 32618m m 326----或()()()()2121414141326m m 458326m m 458m m m m 18m m 18------=-. 18.(15分)(1)(2)取代反应 还原反应(3)醚键、羧基(4)(5)24、 (6)。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
湖南省长沙市长郡中学2023届高三二模数学试题
x0 2.706 3.841 6.635 7.879 10.828
( ) 22.已知函数 f ( x) = (cos x -1) e-x , g ( x) = ax2 + 1- ex x (a Î R ) .
(1)当 x Î(0,π ) 时,求函数 f ( x) 的最小值;
(2)当
x Î éêë-
π 2
=
1
+ 3i 2
=
1 2
+
3 2
i
,
故
z
=
1 2
-
3 2
i
,虚部为
-
3 2
,
故选:C. 3.A 【分析】列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,用古典概型的概率 计算公式运算即可.
【详解】如图,从 O, A, B, C, D 5 个点中任取 3 个有 {O, A, B},{O, A,C},{O, A, D},{O, B,C} {O, B, D},{O, C, D},{A, B,C},{A, B, D}
C
相交于点
H
æ çè
-
2 3
,
4 3
ö ÷ø
,与
y
轴相交于点
S
,过点
S
的另一
条直线 l 与 C 相交于 M , N 两点,且△ASM 的面积是△HSN 面积的 3 倍,求直线 l 的方 2
程. 21.人工智能(AI)是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某
校成立了 A, B 两个研究性小组,分别设计和开发不同的 AI 软件用于识别音乐的类别.
【详解】
取 BP 的中点为 O ,连接 OA,OC , 因为 PA ^ 平面 ABC ,而 AB Ì 平面 ABC ,故 PA ^ AB , 故OP = OA = OB . 同理 PA ^ BC ,而 CA ^ BC , CA I PA = A,CA, PA Ì 平面 PAC , 故 BC ^ 平面 PAC ,而 PC Ì 平面 PAC ,故 BC ^ PC , 故 OP = OC = OB ,
湖南省长沙市长郡中学高三年级2021-2022学年第十次月考(模二)英语试卷
湖南省长沙市长郡中学高三年级2021-2022学年第十次月考(模二)英语试卷一、听力选择题1. What are the speakers mainly talking about?A.Some beautiful places.B.Different languages.C.A charming girl.2.A.Differences in customs.B.Differences in pronunciations.C.Differences in words.D.Differences in accents.3.A.The steakhouse is perfect for everyone.B.The food in the steakhouse is not satisfactory.C.The woman has been to the steakhouse twice.D.The food in the steakhouse is too expensive.4. Where is the woman eager to go?A.The Nile.B.The Pyramids.C.Egypt.5.A.It isn’t a good idea to buy the T-shirt.B.The printing on her T-shirt has faded.C.It isn’t in fashion to have a logo on a T-shirt.D.She regrets having bought one of the T-shirts.二、听力选择题6. 听下面一段较长对话,回答以下小题。
1. Where will the man be at 11: 00 this morning?A.At the office.B.At the airport.C.At the restaurant.2. What will the man probably be doing at 2: 00 this afternoon?A.Having a meeting.B.Receiving a guest.C.Reading a report.3. When will the woman see the man?A.This afternoon.B.Tomorrow morning.C.This noon.7. 听下面一段较长对话,回答以下小题。
湖南省长沙市长郡中学2025届高三上学期月考数学试卷(三)
湖南省长沙市长郡中学2025届高三上学期月考数学试卷(三)一、单选题1.设集合{}{}{}1,2,2,3,1,2,3,4A B C ===,则()A .AB =∅B .A B C= C .A C C= D .A C B= 2.在复平面内,复数1z 对应的点和复数212i z =+对应的点关于实轴对称,则12z z =()A .34i-+B .34i--C .5D3.已知向量a ,b 满足3a = ,b = 且()a ab ⊥+ ,则b 在a方向上的投影向量为()A .3B .3-C .3a- D .a-r 4.已知函数()f x 的定义域为R ,()54f =,()3f x +是偶函数,[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,则()A .()04f <B .()14f =C .()24f >D .()30f <5.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为()A .24B .32C .96D .1286.已知曲线e x y =在1x =处的切线l 恰好与曲线ln y a x =+相切,则实数a 的值为()A .1B .2C .3D .47.在直角坐标系中,绕原点将x 轴的正半轴逆时针旋转角π(0)2αα<<交单位圆于A 点、顺时针旋转角ππ()42ββ<<交单位圆于B 点,若A 点的纵坐标为1213,且OAB △的面积为4,则B 点的纵坐标为()A .2-B .C .D .8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为()0,,A F c 是双曲线C 的右焦点,点P 在直线2x c =上,且tan APF ∠C 的离心率是()A .B .2C .D .4+二、多选题9.函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则下列选项中正确的有()A .()f x 的最小正周期为2πB .2π3f ⎛⎫⎪⎝⎭是()f x 的最小值C .()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为33,22⎡⎤-⎢⎥⎣⎦D .把函数=的图象上所有点向右平移π12个单位长度,可得到函数3sin 2y x =的图象10.在长方体1111ABCD A B C D -中,1222AB AA AD ===,点P 满足AP AB AD λμ=+,其中[0,1]λ∈,[0,1]μ∈,则()A .若1B P 与平面ABCD 所成角为π4,则点P 的轨迹长度为π4B .当λμ=时,1//B P 面11ACD C .当12λ=时,有且仅有一个点,使得1A P BP ⊥D .当2μλ=时,1A P DP +11.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线2:2(0)C y px p =>绕其顶点分别逆时针旋转90180270 、、后所得三条曲线与C 围成的(如图阴影区域),,A B 为C 与其中两条曲线的交点,若1p =,则()A .开口向上的抛物线的方程为212y x =B .A =4C .直线x y t +=截第一象限花瓣的弦长最大值为34D .阴影区域的面积大于4三、填空题12.若52345012345(1)x a a x a x a x a x a x -=+++++,则2a =.13.已知函数24,1()ln 1,1x x a x f x x x ⎧++<=⎨+≥⎩,若函数()2y f x =-有3个零点,则实数a 的取值范围是.14.设n T 为数列{}n a 的前n 项积,若n n T a m +=,其中常数0m >,数列1n T ⎧⎫⎨⎬⎩⎭为等差数列,则m =.四、解答题15.记ABC V 的内角,,A B C 所对的边分别为,,a b c ,已知()()b c a b c a bc +-++=.(1)求A ;(2)若D 为BC 边上一点,3,4,BAD CAD AC AD ∠∠==,求sin B .16.如图,三棱柱111ABC A B C -中,160A AC ∠=︒,AC BC ⊥,1A C AB ⊥,1AC =,12AA =.(1)求证:1A C ⊥平面ABC ;(2)直线1BA 与平面11BCC B 所成角的正弦值为4,求平面11A BB 与平面11BCC B 夹角的余弦值.17.人工智能(AI )是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某公司研究了一款答题机器人,参与一场答题挑战.若开始基础分值为m (*m ∈N )分,每轮答2题,都答对得1分,仅答对1题得0分,都答错得1-分.若该答题机器人答对每道题的概率均为12,每轮答题相互独立,每轮结束后机器人累计得分为X ,当2X m =时,答题结束,机器人挑战成功,当X 0=时,答题也结束,机器人挑战失败.(1)当3m =时,求机器人第一轮答题后累计得分X 的分布列与数学期望;(2)当4m =时,求机器人在第6轮答题结束且挑战成功的概率.18.已知椭圆G22+22=1>>0的长轴是短轴的3倍,且椭圆上一点到焦点的最远距离为3,,A B 是椭圆左右顶点,过,A B 做椭圆的切线,取椭圆上x 轴上方任意两点,P Q (P 在Q 的左侧),并过,P Q 两点分别作椭圆的切线交于R 点,直线RP 交点A 的切线于I ,直线RQ 交点B 的切线于J ,过R 作AB 的垂线交IJ 于K .(1)求椭圆的标准方程.(2)若()1,2R ,直线RP 与RQ 的斜率分别为1k 与2k ,求12k k 的值.(3)求证:IK IA JKJB=19.对于函数()f x ,若实数0x 满足00()f x x =,则称0x 为()f x 的不动点.已知0a ≥,且21()ln 12f x x ax a =++-的不动点的集合为A .以min M 和max M 分别表示集合M 中的最小元素和最大元素.(1)若0a =,求A 的元素个数及max A ;(2)当A 恰有一个元素时,a 的取值集合记为B .(i )求B ;(ii )若min a B =,数列{}n a 满足12a =,1()n n n f a a a +=,集合141,3nn k k C a =⎧⎫=-⎨⎬⎩⎭∑,*N n ∈.求证:*N n ∀∈,4max 3n C =.。
2020-2021学年湖南省长沙市长郡中学高三(下)月考数学试卷(六)
2020-2021学年湖南省长沙市长郡中学高三(下)月考数学试卷(六)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2≤4},N={x|2x<4},则M∩N=()A.{x|x≤﹣2}B.{x|﹣2≤x<2}C.{x|﹣2≤x≤2}D.{x|0<x<2} 2.(5分)已知复数z满足z(2+i)=3﹣4i(i为虚数单位),则|z|=()A.B.C.D.53.(5分)已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为()A.B.C.D.4.(5分)a是的零点,若0<x0<a,则f(x0)的值满足()A.f(x0)的符号不确定B.f(x0)<0C.f(x0)=0D.f(x0)>05.(5分)在矩形ABCD中,AB=1,AD=2,AC与BD相交于点O,过点A作AE⊥BD,则=()A.B.C.D.6.(5分)已知双曲线的一条渐近线与圆相交于A,B两点,若|AB|=2,则C的离心率为()A.B.C.2D.47.(5分)已知函数f(x)=sin(πx+φ)某个周期的图象如图所示,A,B分别是f(x)图象的最高点与最低点,C是f(x)图象与x轴的交点,则tan∠BAC=()A.B.C.D.8.(5分)概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是()A.甲48枚,乙48枚B.甲64枚,乙32枚C.甲72枚,乙24枚D.甲80枚,乙16枚二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(5分)已知α,β是空间中两个不同的平面,m,n是空间中两条不同的直线,则给出的下列说法中,正确的是()A.若m⊥α,n⊥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥β,m∥β,则m⊥αD.若α∥β,m⊥α,则m⊥β10.(5分)若a,b,c都是正数,且4a=6b=9c,那么()A.ab+bc=2ac B.ab+bc=ac C.=+D.=﹣11.(5分)一袋中有大小相同的4个红球和2个白球,则下列结论正确的()A.从中任取3球,恰有一个白球的概率是B.从中有放回的取球6次,每次任取一球,则取到红球次数的方差为C.现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为D.从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为12.(5分)关于函数,下列说法正确的是()A.f(1)是f(x)的极小值B.函数y=f(x)﹣x有且只有1个零点C.f(x)在(﹣∞,1)上单调递减D.设g(x)=xf(x),则三、填空题:本题共4小题,每小题5分,共20分.13.(5分)的展开式中x3的系数为.14.(5分)已知,则sin2θ=.15.(5分)如图,某湖有一半径为100m的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距200m的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且满足AB=AC,∠BAC=90°.定义:四边形OACB及其内部区域为“直接监测覆盖区域”;设∠AOB=θ.则“直接监测覆盖区域”面积的最大值为.16.(5分)已知两条抛物线C:y2=2x,E:y2=2px(p>0且p≠1),M为C上一点(异于原点O),直线OM与E的另一个交点为N.若过M的直线l与E相交于A,B两点,且△ABN的面积是△ABO面积的3倍,则p=四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{a n}的公比为q(q>1),前n项和为S n,若,且S3+2=a4.(1)求a n;(2)设数列的前n项和为T n,求证:.18.△ABC的内角A,B,C的对边分别为a,b,c,设b sin A=a(2+cos B).(1)求B;(2)若△ABC的面积等于,求△ABC的周长的最小值.19.在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,平面P AC⊥底面ABCD,P A=PC=2.(1)求证:PB=PD;(2)点M,N分别在棱P A,PC,PM=AM,PN=CN,求直线PB与平面DMN所成角的正弦值.20.已知椭圆的焦距为2,且过点(,1).(1)求C的方程;(2)若直线l与C有且只有一个公共点,1与圆x2+y2=6交于A,B两点,直线OA,OB的斜率分别记为k1,k2.试判断k1•k2是否为定值,若是,求出该定值;否则,请说明理由.21.某地区在一次考试后,从全体考生中随机抽取44名,获取他们本次考试的数学成绩(x)和物理成绩(y),绘制成如图触点图:根据散点图可以看出y与x之间有线性相关关系,但图中有两个异常点A,B.经调查得知,A考生由于1感冒导致物理考试发挥失常,B考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计k的值:,其中x i,y i分别表示这42名同学的数学成绩、物理成绩,i=1,2,…,42,y与x的相关系数r=0.82.(1)若不剔除A,B两名考生的数据,用44组数据作回归分析,设此时y与x的相关系数为r0.试判断r0与r的大小关系,并说明理由;(2)求y关于x的线性回归方程(系数精确到0.01),并估计如果B考生加了这次物理考试(已知B考生的数学成绩为125分),物理成绩是多少?(精确到个位);(3)从概率统计规律看,本次考试该地区的物理成绩ξ服从正态分布N(μ,σ2).以剔除后的物理成绩作为样本,用样本平均数作为μ的估计值,用样本方差s2作为σ2的估计值.试求该地区5000名考生中,物理成绩位于区间(62.8,85.2)的人数Z的数学期望.附:①回归方程②若ξ﹣N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.③=11.222.已知函数f(x)=lnx﹣x+a.(1)讨论函数f(x)零点的个数;(2)若函数f(x)存在两个零点x1,x2(x2<x2),证明:2lnx1+lnx2<0.。
湖南省长沙市长郡中学2022-2023学年高三上学期月考 数学
长郡中学2023届高三月考试卷数 学本试卷共8页。
时量120分钟,满分150分。
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合||1|1,{} ==--∈A y y x x R ,{}3|log 1,=≥B x x ,则A∩=RBA .{|1}≥-x xB .{}|3<x xC .}{|13-≤≤x xD .{}|13-≤<x x2.若复数z 满足||2,3-=⋅=z z z z ,则2z 的实部为A -2B .-1C .1D . 2★3.函数()()241--=-x x x e e f x x 的部分图象大致是★4.如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则⋅=EM ENA . 12-B .32-C . -2D .-3★5.随着北京冬奥会的举办,中国冰雪运动的参与人数有了突飞猛进的提升。
某校为提升学生的综合素养、大力推广冰雪运动,号召青少年成为“三亿人参与冰雪运动的主力军”,开设了“陆地冰壶”“陆地冰球”“滑冰”“模拟滑雪”四类冰雪运动体验课程,甲、乙两名同学各自从中任意挑选两门课程学习,设事件A=“甲乙两人所选课程恰有一门相同”事件B=“甲乙两人所选课程完全不同”,事件C=“甲乙两人均未选择陆地冰壶课程”,则 A . A 与B 为对立事件 B .A 与C 互斥 C . B 与C 相互独立D . A 与C 相互独立★6.已知三棱锥P-ABC 中,PA ⊥平面ABC ,底面△ABC 是以B 为直角顶点的直角三角形,且23,π=∠=BC BCA ,三棱锥P-ABC的体积为3,过点A 作⊥AM PB 于M ,过M 作MN ⊥PC 于N ,则三棱锥P-AMN 外接球的体积为A .323π B.3C.3D .43π 7.若sin 2sin ,sin()tan()1αβαβαβ=+⋅-=,则tan tan αβ=A .2B .32C . 1D .128.已知函数f (x ),g (x )的定义域为R 。
2021届湖南省长沙市长郡中学高三第二次月考英语试题(解析版)
长郡中学2021届高三月考试卷(二)英语试题本试题卷共10页。
时量120分钟。
满分150分。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £ 19.15.B. £ 9.18.C. £ 9.15.答案是C.1. What does the man want the woman to do with the clothes?A. Dry them.B. Fold them.C. Wash them.2. How was the weather recently?A. Rainy.B. Snowy.C. Sunny.3. What does the man write about first?A. An earthquake.B. A fire.C. His boss.4. Who thought Sara should go overseas to study?A. Her friends.B. Her parents.C. Her teacher.5. What is the probable relationship between the speakers?A. Neighbors.B. Roommates.C. Husband and wife.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
湖南省长沙市长郡中学2023届高三上学期第三次月考数学试题
又 , , … ,累加可得 ,故 正确,故B正确;
故选:ABD
12.已知 ,则()
A. B.
C. D.
【答案】AD
【解析】
【分析】A.先构造函数 ,通过函数的单调性确定 的大致范围,再构造
,通过函数 的单调性确定 与 的大小关系,进而得到A选项.
B.先构造函数 ,通过函数的单调性确定 的大致范围,再构造
有图可得出 ,由 可得 计算即可.
【详解】由题图可知, ,由 ,得 .
故答案为: .
【点睛】本题考查复数的代数表示法及其几何意义,考查复数的运算法则,属于常考题.
14.已知等边三角形 的边长为6,点P满足 ,则 _________.
【答案】
【解析】
【分析】
以BC所在的边为x轴,垂直平分线为y轴建立坐标系,用坐标表示 可求得P点坐标求得答案.
A. B.
C. 或 D. 或
4.已知平面 ,直线 、 ,若 ,则“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
5.如图,边长为2 正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()
A. B.
C. D.
【答案】ABD
【解析】
【分析】观察图形,分析剪掉的半圆的变化,纸板 相较于纸板 剪掉了半径为 的半圆,再分别写出 和 的递推公式,从而累加得到通项公式再逐个判断即可
【详解】根据题意可得纸板 相较于纸板 剪掉了半径为 的半圆,故 ,即 ,故 , , , … ,累加可得 ,所以 ,故A正确,C错误;
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3πB.2C .12πD .24π2.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .206.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( )A .[2,4]B .[4,6]C .[5,8]D .[6,7]7.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 8.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-9.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]10.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .311.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)12.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .4二、填空题:本题共4小题,每小题5分,共20分。
2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)(含答案)
2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x||x|⩽2},B ={t|1⩽2t ⩽8(t ∈Z)},则A ∩B =( )A. [−1,3]B. {0,1}C. [0,2]D. {0,1,2}2.已知复数z 满足|z−i|=1,则|z|的取值范围是( )A. [0,1]B. [0,1)C. [0,2)D. [0,2]3.已知p :f(x)=ln(21−x +a)(−1<x <1)是奇函数,q :a =−1,则p 是q 成立的( )A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.若锐角α满足sinα−cosα=55,则sin (2α+π2)=( )A. 45B. −35 C. −35或35D. −45或455.某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生6.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP =BP ,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )A. 2B. 12C.5D.557.在平面直角坐标系xOy 中,已知直线l :y =kx +12与圆C :x 2+y 2=1交于A ,B 两点,则△AOB 的面积的最大值为( )A. 1B. 12C.32D.348.设函数f(x)=(x 2+ax +b)lnx ,若f(x)≥0,则a 的最小值为( )A. −2B. −1C. 2D. 1二、多选题:本题共3小题,共18分。
湖南省长郡中学2021届高三第二次月考 英语试卷含答案+全解全析
长郡中学2021届高三月考试卷(二)英 语得分: ___________本试题卷共10页。
时量120分钟。
满分150分。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例: How much is the shirt?A. £ 19.15.B. £ 9.18.C. £ 9.15.答案是C.1. What does the man want the woman to do with the clothes?A. Dry them.B. Fold them.C. Wash them.2. How was the weather recently?A. Rainy.B. Snowy.C. Sunny.3. What does the man write about first?A. An earthquake.B. A fire.C. His boss.4. Who thought Sara should go overseas to study?A. Her friends.B. Her parents.C. Her teacher.5. What is the probable relationship between the speakers?A. Neighbors.B. Roommates.C. Husband and wife.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
【数学】湖南省长郡十五校2021届高三第二次联考试卷(解析版)
∴由抛物线的定义知则 = =3+2 ,
如果x2>x1,
∴x2= ,x1= ,
∴由抛物线的定义知则 = =3﹣2 ,
故选:BC.
11.已知函数f(x)=﹣sin(2x+ ),g(x)=cos(2x﹣ ),则( )
【答案】B
【解析】根据题意,分2步进行分析:
①将6名教师分为5组,要求乙与丙不在同一组,有C62﹣1=14种分组方法,
②将甲所在的组分到A山区,剩下的4组安排到其他4个山区,有A44=24种情况,
则有14×24=336种安排方法,
故选:B.
8.当x∈R时,不等式 ≤ax﹣1恒成立,则实数a的取值范围为( )
A.a=2B.a=
C.a≥2D.e ≤a≤e
【答案】A
【解析】令f(x)= ,
∵x>1时,f(x)>0,∴a≤0时不合条件;
令h(x)= ,得h′(x)= ,
令g(x)=2﹣x﹣aex,知g(x)在R上单调递减,
∵h(0)=0,∴h(x)要在x=0处取得最大值,∴g(0)=2﹣a=0,即a=2.
故选:A.
由图可知电视动画节目播出时间的方差最小,故D正确,
故选:BD.
10.过抛物线C:y2=2px(p>0)的焦点F作斜率为1的直线交抛物线C于A,B两点,
则 =( )
A.5﹣2 B.3﹣2 C.3+2 D. Nhomakorabea+2
【答案】BC
【解析】设A(x1,y1)B(x2,y2)
由 可得x2﹣3px+ =0,
如果x1>x2,
∴B={0,2,4,6,8}.
故选:C.
2.已知复数z满足:z2= +6i(i为虚数单位),且z在复平面内对应的点位于第三象限,
2024届湖南省英才大联考长郡中学月考卷(二)作文“韬光养晦与勇于自荐”审题指导+优秀题目+作文素材
2024届湖南省英才大联考长郡中学高三月考试卷(二)作文“韬光养晦与勇于自荐”审题指导+优秀题目+作文素材【原题呈现】23.阅读下面的材料,根据要求写作。
(60分)战国时期,平原君的门客毛遂主动自荐,最终打动楚王出兵联合抗击秦国。
《小窗幽记·集法》中:“凡事韬晦,不独益己,抑且益人;凡事表暴,不独损人,抑且损己。
”以上材料对我们颇具启示意义。
请结合材料写一篇文章,体现你的感悟和思考。
要求:选准角度,确定立意,明确文体,自拟标题;不要套作,不得抄袭,不得泄露个人信息;不少于800字。
【审题指导】这是一道引语式材料作文题。
材料提到了成就人生的两种不同方法。
毛遂通过主动自荐的方式,打动楚王出兵联合抗击秦国的侵略,毛遂的这次自荐不仅帮平原君完成了任务,也为国家立下了功劳,让大家对他刮目相看,平原君也因此待他为上宾。
此则典故意在启示我们要勇于展示自我,这个世界充满机会,只是它永远不会点名,需要我们主动出手,抓住机遇,成就人生。
材料还选取《小窗幽记·集法》一句,“凡事韬晦,不独益己,抑且益人;凡事表暴,不独损人,抑且损己。
”意思是,凡事注意收敛低调,不仅有益于自己,而且有益于别人;凡事过于张扬外露,不仅损害别人,而且也害了自己。
懂得韬光养晦,低调内敛,是一种人生智慧,可以避免遭人忌恨,既能保全自己,也能得到别人的尊敬。
强调了韬光养晦的意义,以及过于张扬的危害。
以此告诉我们人生之道,做人做事切忌张扬自满,应谦虚低调,韬光养晦,厚积薄发。
材料围绕着“主动自荐”“韬光养晦”这两个含义相对的关键词展开,写作时要辩证分析二者的关系,体现出考生的辩证思维。
写作时,可采用递进式的论证结构,从“主动自荐”与“韬光养晦”的内涵,各自的好处,二者的关系,何时该"主动自荐”,何时要“韬光养晦”等角度展开具体论证。
行文过程中,可以综合采用举例论证、引用论证、对比论证、比喻论证等多种论证方法。
如运用比喻论证时,可说谦虚低调与自我表现就像太极的阴阳两鱼,相辅相成,以此来论证二者的密切关系。
湖南省长沙市长郡中学2021届高三第一学期月考数学试题(三)
长郡中学2021届高三月考试卷(三)
数学
一、选择题:本题共8小题,共40分。
1.集合A=,B=且A∪B=,则实数a的可能取值组成的集合是()
A. B. C. D.
2.已知a+3i=2+bi(a,b∈R,i为虚数单位),则实数a+b的值为()
A. 3
B. 5
C. 6
D. 8
3.在平面直角坐标系xOy中,角α的顶点在坐标原点O,以x轴的正半轴为始边,其终边与单位圆
交点为P,P的坐标是P(x,y),若x=-,则cos 2α=()
A. B. - C. D. -
4.在的展开式中,若常数项为-40,则正实数a=()
A. B. 2 C. 3 D. 4
5.5G技术的数学原理之一便是著名的香农公式:C=Wlog2.它表示:在受噪声干扰的信道
中,最大信息传递速率C(单位:bit/s)取决于信道带宽W(单位:HZ)、信道内信号的平均功率S(单位:dB)、信道内部的高斯噪声功率N(单位:dB)的大小,其中叫做信噪比.按照香农公式,若不改变
带宽W,而将信噪比从1000提升至2000,则C大约增加了()
A. 10%
B. 30%
C. 50%
D. 100%
6.若平面向量,满足==·=2,则对于任意实数λ,|λ+(1-λ)|的最小值
是()
第4页共6页。
2021年湖南省长沙市长郡中学高考数学考前冲刺试卷(附答案详解)
2021年湖南省长沙市长郡中学高考数学考前冲刺试卷一、单选题(本大题共8小题,共40.0分)1.设集合A={x|y=√x−2},B={y|y=√x−2},C={(x,y)|y=√x−2},则下列集合不为空集的是()A. A∩BB. A∩CC. B∩CD. A∩B∩C2.已知一元二次方程ax2+bx+c=0有两个不同的实数根x1,x2,则“x1⋅x2>4且x1+x2>4”的_____________是“x1>2且x2>2”.()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知数列{a n},a n=1f(n),其中f(n)为最接近√n的整数,若{a n}的前m项和为20,则m=()A. 15B. 30C. 60D. 1104.《九章算术》是我国古代的数学巨著,书中有这样一道题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问何日相逢?”题意为:有一堵墙厚五尺,有两只老鼠从墙的正对面打洞穿墙.大老鼠第一天打进一尺,以后每天打进的长度是前一天的2倍;小老鼠第一天也打进一尺,以后每天打进的长度是前一天的一半.若这一堵墙厚16尺,则几日后两鼠相逢()A. 3B. 4C. 5D. 65.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为|y|=(2−12[2xπ])|sinωx|(0≤x≤2π,其中记[x]为不超过x的最大整数),且过点P(π4,2),若葫芦曲线上一点M到y轴的距离为5π3,则点M到x轴的距离为()A. 14B. √34C. 12D. √326.某地举办“迎建党100周年”乒乓球团体赛,比赛采用新斯韦思林杯赛制(5场单打3胜制,即先胜3场者获胜,比赛结束).现有两支球队进行比赛,前3场依次分别由甲、乙、丙和A、B、C出场比赛.若经过3场比赛未分出胜负,则第4场由甲和B进行比赛;若经过4场比赛仍未分出胜负,则第5场由乙和A进行比赛,假设甲与A或B比赛,甲每场获胜的概率均为0.6;乙与A或B比赛,乙每场获胜的概率均为0.5;丙与C比赛,丙每场获胜的概率均为0.5;各场比赛的结果互不影响,那么,恰好经过4场比赛分出胜负的概率为()A. 0.24B. 0.25C. 0.38D. 0.57.如表所示是采取一项单独防疫措施感染COVID−19的概率统计表:单独防疫措施戴口罩勤洗手接种COVID−19疫苗感染COVID−19的概率p 145(1−p)p100一次核酸检测的准确率为1−10p.某家有3人,他们每个人只戴口罩,没有做到勤洗手也没有接种COVID−19疫苗,感染COVID−19的概率都为0.01.这3人不同人的核酸检测结果,以及其中任何一个人的不同次核酸检测结果都是互相独立的.他们3人都落实了表中的三项防疫措施,而且共做了10次核酸检测.以这家人的每个人每次核酸检测被确诊感染COVID−19的概率为依据,这10次核酸检测中,有X 次结果为确诊,X的数学期望为()A. 1.98×10−6B. 1.98×10−7C. 1.8×10−7D. 2.2×10−78.如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度恰为正方体棱长的一半,在该正方体侧面CDD1C1上有一个小孔E,E点到CD的距离为3,若该正方体水槽绕CD倾斜(CD始终在桌面上),则当水恰好流出时,侧面CDD1C1与桌面所成角的正切值为()A. √55B. 12C. 2√55D. 2二、多选题(本大题共4小题,共20.0分)9.已知i为虚数单位,以下四个说法中正确的是()A. i +i 2+i 3+i 4=0B. 复数z =3−i 的虚部为−iC. 若z =(1+2i)2,则复平面内z −对应的点位于第二象限D. 已知复数z 满足|z −1|=|z +1|,则z 在复平面内对应的点的轨迹为直线10. 函数f(x)的定义域为I.若∃M >0使得∀x ∈I 均有|f(x)|<M ,且函数f(x +1)是偶函数,则f(x)可以是( )A. f(x)=|ln x2−x | B. f(x)=sin(π2x)+cos(2πx) C. f(x)=12x +2−14D. f(x)={0,∁R Q1,x ∈Q11. 已知F 1,F 2分别为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,C 的一条渐近线l 的方程为y =√3x ,且F 1到l 的距离为3√3,点P 为C 在第一象限上的点,点Q 的坐标为(2,0),PQ 为∠F 1PF 2的平分线,则下列正确的是( )A. 双曲线的方程为x 29−y 227=1 B. |PF 1||PF 2|=2 C. |PF 1⃗⃗⃗⃗⃗⃗⃗ +PF 2⃗⃗⃗⃗⃗⃗⃗ |=3√6D. 点P 到x 轴的距离为3√15212. 将平面向量a ⃗ =(x 1,x 2)称为二维向量,由此可推广至n 维向量a⃗ =(x 1,x 2,⋯,x n ).对于n 维向量a ⃗ ,b ⃗ ,其运算与平面向量类似,如数量积a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |cosθ=∑x i n i=1y i (θ为向量a ⃗ ,b ⃗ 的夹角),其向量a ⃗ 的模|a ⃗ |=√∑x i 2n i=1,则下列说法正确的有( )A. 不等式(∑x i 2n i=1)(∑y i 2n i=1)≤(∑x i n i=1y i )2可能成立 B. 不等式(∑x i 2n i=1)(∑y i 2n i=1)≥(∑x i n i=1y i )2一定成立 C. 不等式n ∑x i 2n i=1<(∑x i n i=1)2可能成立D. 若x i >0(i =1,2,⋯,n),则不等式∑1x in i=1∑x i n i=1≥n 2一定成立 三、单空题(本大题共4小题,共20.0分)13. 设(x −√x )6的展开式中x 3的系数为a ,则a 的值为______ .14. 锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2=a 2+bc ,b =2,则△ABC 的面积的取值范围是______ .15. 如果数列{a n }满足a 1=2,a 2=1,且a n−1−ana n−1a n =a n −a n+1a n a n+1(n ≥2),则这个数列的第2021项等于______ .16. 函数f(x)=(x 2−10x +26)e x ,若∀x 1,x 2∈I ,x 1≠x 2,都有f(x 1+x 22)>f(x 1)+f(x 2)2成立,则满足条件的一个区间I 可以是______ (填写一个符合题意的区间即可).四、解答题(本大题共6小题,共70.0分)17. 如图,在梯形ABCD 中,AB//CD ,AB =2,CD =5,∠ABC =2π3.(1)若AC =2√7,求梯形ABCD 的面积; (2)若AC ⊥BD ,求tan∠ABD .18. 已知数列{a n }中,a 1=1,a 2=2,且a n+2=2a n+1+3a n ,设数列b n =a n+1+a n .(1)求证:数列{b n }是等比数列,并求数列{b n }的通项公式; (2)若数列{b n }的前n 项和为S n ,数列{94b nS n ⋅S n+1}的前n 项和为T n ,求证:T n <14.19. 某商城玩具柜台元旦期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送元旦礼品.而每个甲系列盲盒可以开出玩偶A 1,A 2,A 3中的一个,每个乙系列盲盒可以开出玩偶B 1,B 2中的一个.(1)记事件E n :一次性购买n 个甲系列盲盒后集齐A 1,A 2,A 3玩偶;事件F n :一次性购买n 个乙系列盲盒后集齐B 1,B 2玩偶;求概率P(E 6)及P(F 5);(2)礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为15,购买乙系列的概率为45;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34;前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为Q n . ①Q n ;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.20. 如图所示的几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD⏜的中点,且C 、E 、D 、G 四点共面. (1)证明:平面BFD ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成锐二面角的余弦值为√155,求直线DF 与平面ABF 所成角的大小.21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,O 为坐标原点,直线l :x =1与C 的两个交点和O ,B 构成一个面积为√6的菱形. (1)求C 的方程;(2)圆E 过O ,B ,交l 于点M ,N ,直线AM ,AN 分别交C 于另一点P ,Q ,点S ,T 满足AS⃗⃗⃗⃗⃗ =13SP ⃗⃗⃗⃗⃗ ,AT ⃗⃗⃗⃗⃗ =13TQ ⃗⃗⃗⃗⃗ ,求O 到直线ST 和直线PQ 的距离之和的最大值.22. 已知函数f(x)=12e 2x +be x +ax 在x =0处取得极值f′(x)为f(x)的导数.(1)若a >0,讨论f(x)的单调性;(2)若f(x)<f′(x)−x ,a 的取值集合是A ,求A 中的最大整数值与最小整数值. 参考数据:ln16∈(2.77,2.78),ln17∈(2.83,2.84),ln18∈(2.89,2.90)答案和解析1.【答案】A【解析】解:∵集合A={x|y=√x−2}={x|x≥2},B={y|y=√x−2}={y|y≥0},C={(x,y)|y=√x−2},∴A∩B=[2,+∞),A∩C=⌀,B∩C=⌀,A∩B∩C=⌀,故选:A.求出集合A,B,利用交集定义直接求解.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力等数学核心素养,是基础题.2.【答案】A【解析】解:已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实数根,①当x1>2且x2>2时,可得x1⋅x2>4,x1+x2>4,②当x1=10,x2=0.5时,满足x1⋅x2>4且x1+x2>4,此时不满足x1>2且x2>2,∴x1⋅x2>4且x1+x2>4的充分不必要条件为x1>2且x2>2,故选:A.利用不等式的性质和充分条件和必要条件的应用求出结果.本题考查不等式的性质,充分条件和必要条件,主要考查学生的运算能力和转换能力及思维能力,属于基础题.3.【答案】D【解析】解:由题意可得f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,f(6)=2,f(7)=3,f(8)=3,f(9)=3,f(10)=3,f(11)=3,f(12)=3,...,可得依次为2个1,4个2,6个3,8个4,10个5,...,因此a1+a2=2×1=2,a3+a4+a5+a6=4×12=2,a7+a8+...+a12=6×13=2,a13+a14+...+a20=8×14=2,...,由20=10×2,可得m=2+4+6+8+...+20=12×10×(2+20)=110.故选:D.写出f(n)的前几项,求出一些项的和,由等差数列的求和公式,可得所求值.本题考查数列的求和,注意总结规律,考查归纳推理能力,属于中档题.4.【答案】B【解析】解:根据题意,大老鼠每天打进的长度是首项为1,公比为2的等比数列,设该数列为{a n},前n项和为S n,小老鼠每天打进的长度是首项为1,公比为12的等比数列,设该数列为{b n},前n项和为T n,则S n=1×(1−2n)1−2=2n−1,T n=1×(1−12n)1−12=2−12n−1,若S n+T n=(2n−1)+(2−12n−1)≥16,即2n−12n−1)≥15,又由n≥1且n∈Z,必有n≥4,故选:B.根据题意,分析可得大老鼠每天打进的长度是首项为1,公比为2的等比数列,小老鼠每天打进的长度是首项为1,公比为12的等比数列,由等比数列的前n项和公式可得S n+T n=(2n−1)+(2−12n−1)≥16,分析可得n的取值范围,即可得答案.本题考查等比数列的应用,涉及等比数列的求和,属于基础题.5.【答案】B【解析】解:∵|y|=(2−12[2xπ])|sinωx|(0≤x≤2π),过点P(π4,2),∴2=(2−12[2π×π4])|sinπ4ω|,∴2=(2−12[12])|sinπ4ω|,∴|sinπ4ω|=1,即sinπ4ω=±1,∴π4ω=π2+kπ(k∈Z),∴ω=2+4k(k∈Z),由图像|y|上下对称可知:T=π4×4=π,∴k=0,ω=2,∴|y|=(2−12[2xπ])|sin2x|(0≤x≤2π),∵点M到y轴的距离为5π3,∴x=5π3,当x=5π3时,|y|=(2−12[2π×5π3])|sin2×5π3|=(2−12×3)|sin10π3|=12×√32=√34,∴点M到x轴的距离为√34.故选:B.由|y|=(2−12[2xπ])|sinωx|(0≤x≤2π),过点P(π4,2),可求出ω的值,从而得到|y|的解析式,再令x=5π3求出|y|的值即可求出结果.本题主要考查了三角函数的图像和性质,考查了学生的运算能力,是基础题.6.【答案】C【解析】解:记“恰好经过4场比赛分出胜负”、“恰好经过4场比赛甲所在球队获胜”、“恰好经过4场比赛A所在球队获胜”的事件分别为D、E、F,由E,F互斥,且P(D)=P(E)+P(F),若事件E发生,则第四场比赛甲获胜,且前3场比赛甲所在球队恰有一场比赛失利,由于甲对A,B比赛每场获胜的概率均为0.6,乙与A或B比赛,乙每场获胜的概率均为0.5,丙与C比赛,丙每场获胜的概率均为0.5,各场比赛的结果互不影响,∴甲所在球队恰好经过4场比赛获得胜利的概率为:P(E)=0.6×(0.4×0.5×0.5+0.6×C21×0.5×0.5)=0.24,若事件F发生,则第四场比赛B获胜,且前3场比赛A所在球队恰有一场比赛失利,由于甲对A,B比赛每场获胜的概率均为0.6,乙与A或B比赛,乙每场获胜的概率均为0.5,丙与C比赛,丙每场获胜的概率均为0.5,各场比赛的结果互不影响,∴A所在球队恰好经过4场比赛获利胜利的概率为:P(F)=0.4×(0.6×0.5×0.5+0.4×C21×0.5×0.5)=0.14,∴恰好经过4场比赛分出胜负的概率为:P(D)=P(E)+P(F)=0.38.故选:C.记“恰好经过4场比赛分出胜负”、“恰好经过4场比赛甲所在球队获胜”、“恰好经过4场比赛A所在球队获胜”的事件分别为D、E、F,由E,F互斥,且P(D)=P(E)+P(F),若事件E发生,则第四场比赛甲获胜,且前3场比赛甲所在球队恰有一场比赛失利,求出甲所在球队恰好经过4场比赛获得胜利的概率;若事件F发生,则第四场比赛B获胜,且前3场比赛A所在球队恰有一场比赛失利,求出A所在球队恰好经过4场比赛获利胜利的概率.由此能求出恰好经过4场比赛分出胜负的概率.本题考查概率的运算,涉及到相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力等数学核心素养,是基础题.7.【答案】B【解析】解:由题意可知p=0.01,3人都落实了表中的三项防疫措施,也被感染的概率为:0.01×145(1−0.01)×0.01100=2.2×10−8,又因一次核酸检测的准确率为1−10×0.01=0.9,所以这3人一次检测能确诊的概率为:2.2×10−8×0.9=1.98×10−8,∴10次检测中确诊的期望为:10×1.98×10−8=1.98×10−7,故选:B.利用题中的条件确定3人落实三项防疫措施任然被感染的概率,进而确定数学期望.本题考查了统计与概率,二项分布的数学期望,学生的数学运算能力,属于基础题.8.【答案】D【解析】解:由题意知,水的体积为4×4×2=32,如图所示,设正方体水槽倾斜后,水面分别与棱AA1,BB1,CC1,DD1交于M,N,P,Q,则PC=3,水的体积为S BCPN⋅CD=32,∴BN+CP2⋅BC⋅CD=32,即BN+32×4×4=32,∴BN=1.在平面BCC1B1内,过点C1作C1H//NP,交BB1于H,则四边形NPC1H是平行四边形,NH=C1P=1,∴B1H=BB1−NH−BN=4−1−1=2,∵侧面CDD1C1与桌面所成的角即侧面CDD1C1与水面MNPQ所成的角,即侧面CDD1C1与平面HC1D1所成的角,∴∠HC1C即为所求,而∠HC1C=∠B1HC1,在Rt△B1HC1中,tan∠B1HC1=B1C1B1H =42=2,∴侧面CDD1C1与桌面所成角的正切值为2.故选:D.由题意知,水的体积为32,设正方体水槽倾斜后,水面分别与棱AA1,BB1,CC1,DD1交于M,N,P,Q,则PC=3,此时水的体积为S BCPN⋅CD,从而求得BN=1;在平面BCC1B1内,过点C1作C1H//NP,交BB1于H,侧面CDD1C1与桌面所成的角即侧面CDD1C1与水面MNPQ所成的角,即侧面CDD1C1与平面HC1D1所成的角,故∠HC1C即为所求,再在Rt△B1HC1中,由tan∠HC1C=tan∠B1HC1=B1C1B1H即可得解.本题考查二面角的求法,将所求的角逐步转化为边长已知的直角三角形中的角是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.9.【答案】AD【解析】解:对于A:i+i2+i3+i4=i−1−i+1=0,故A正确;对于B:复数z=3−i的虚部为−1,故B错误;对于C:若z=(1+2i)2=1+4i−4=−3+4i,所以z−=−3−4i,则复平面内z−对应的点位于第三象限,故C错误;对于D:复数z满足|z−1|=|z+1|,表示z到A(1,0)和B(−1,0)两点的距离相等,即z 的轨迹为线段AB的垂直平分线,故D正确.故选:AD.直接利用复数的定义,复数的运算和几何意义判断A、B、C、D的结论.本题考查的知识要点:复数的定义,复数的运算和几何意义,主要考查学生的运算能力和数学思维能力,属于基础题.10.【答案】BD【解析】解:当x →0时,x2−x →0,则ln x2−x →−∞,f(x)→+∞,f(x)无界,A 错误; f(x +1)=sin(π2x +π2)+cos(2πx +2π)=cos π2x +cos2πx 为偶函数,且|f(x +1)|≤2,B 正确;因为2x >0,2+2x >2, 所以−14<12+2x <14,所以|f(x)|<14,存在符合题意的M , 因为f(x +1)=12x+1+2−14, f(−x +1)=12−x+1+2−14=2x 2+2x+1−14, 所以f(−x +1)+f(x +1)=12x+1+2−14+2x2+2x+1−14=1+2x2+2x+1−12=0, 故f(x +1)为奇函数,不符合题意; f(x)={0,∁R Q1,x ∈Q,则|f(x)|≤1,因为−x +1与x +1要么都是有理数,要么都是无理数, 所以f(x +1)=f(−x +1), 故f(x +1)为偶函数,符合题意. 故选:BD .结合选项分析各函数的取值范围,然后检验f(x +1)与f(−x +1)的关系进行判断即可. 本题以新定义为载体,主要考查了函数的值域的求解及函数奇偶性的判断,属于中档题.11.【答案】ABD【解析】解:∵渐近线l 的方程为y =√3x ,∴ba =√3, ∵F 1(−c,0)到l 的距离为3√3,∴3√3=|b a⋅(−c)|√1+(ba )2=b ,∴a =3,∴双曲线的标准方程为x 29−y 227=1,即选项A 正确;∵c =√a 2+b 2=√9+27=6, ∴F 1(−6,0),F 2(6,0),由角分线定理知,|PF 1||PF 2|=|F 1Q||QF 2|=84=2,即选项B 正确;由双曲线的定义知,|PF 1|−|PF 2|=2a =6, ∴|PF 1|=12=|F 1F 2|,|PF 2|=6, 在等腰△PF 1F 2中,cos∠PF 2F 1=12|PF 2||F 1F 2|=312=14, ∴sin∠PF 2F 1=√1−cos 2∠PF 2F 1=√154, ∴x P =|OF 2|−|PF 2|⋅cos∠PF 2F 1=6−6×14=92, y P =|PF 2|⋅sin∠PF 2F 1=6×√154=3√152,即选项D 正确;∴|OP|=(92)(3√152)=3√6,∴|PF 1⃗⃗⃗⃗⃗⃗⃗ +PF 2⃗⃗⃗⃗⃗⃗⃗ |=|2OP ⃗⃗⃗⃗⃗ |=2|OP|=6√6,即选项C 错误. 故选:ABD .选项A ,易知b =3√3,a =3,从而写出双曲线的标准方程; 选项B ,由角分线定理知,|PF 1||PF 2|=|F 1Q||QF 2|;选项D ,结合选项B 中结论和双曲线的定义,可得|PF 1|=12,|PF 2|=6,再利用三角函数,求得点P 的坐标;选项C ,由|PF 1⃗⃗⃗⃗⃗⃗⃗ +PF 2⃗⃗⃗⃗⃗⃗⃗ |=|2OP ⃗⃗⃗⃗⃗ |,得解.本题考查双曲线的定义与几何性质,角分线定理,三角函数的简单计算,考查数形结合思想、逻辑推理能力和运算能力,属于中档题.12.【答案】ABD【解析】解:对于A ,构造a ⃗ =(x 1,x 2,⋯,x n ),b ⃗ =(y 1,y 2,⋯,y n ), 所以|a ⃗ ⋅b ⃗ |≤|a ⃗ ||b⃗ |⇒|x 1y 1+x 2y 2+⋯+x n y n |≤√x 12+x 22+⋯+x n n √y 12+y 22+⋯+y n n ⇒(∑x i n i=1y i )²≤∑x i n i=1²∑y i n i=1²,当且仅当x 1y 1=x 2y 2=⋯=xny n 时取“=”,例如(a²+1)(b²+1)≥(ab +1)²,当a =b =1时取“=”,故A 正确; 对于B ,由A 的分析过程知,B 正确;对于C ,构造a ⃗ =(x 1,x 2,⋯,x n ),b ⃗ =(1,1,⋯,1),知|a ⃗ ⋅b ⃗ |≤|a ⃗ ||b ⃗ |⇒|x 1+x 2+⋯+x n |≤√x 12+x 22+⋯+x n n ⋅√n , 所以n ∑x i n i=1²≥(∑x i ni=1)²,故C 错误;对于D ,构造a ⃗ =(√1x 1,√1x 2,⋯,√1x n),b ⃗ =(√x 1,√x 2,…,√x n ),所以|a ⃗ ⋅b ⃗ |≤|a ⃗ ||b ⃗ |⇒√1x 1+1x 2+⋯+1x n√x 1+x 2+⋯+x n ≥n ⇒∑1x in i=1⋅∑x i ni=1≥n²,D 正确. 故选:ABD .构造a ⃗ =(x 1,x 2,⋯,x n ),b ⃗ =(y 1,y 2,⋯,y n ),利用平面向量的推广运算即可判断选项A ,B ;构造a ⃗ =(x 1,x 2,⋯,x n ),b ⃗ =(1,1,⋯,1),利用平面向量的推广运算即可判断选项C ;构造a ⃗ =(√1x 1,√1x 2,⋯,√1x n),b ⃗ =(√x 1,√x 2,…,√x n ),利用平面向量的推广运算即可判断选项D .本题主要考查类比推理,向量的数量积公式以及向量模的公式,考查逻辑推理与运算求解能力,属于中档题.13.【答案】60【解析】解:二项式(x −√x )6的展开式为:T r+1=C 6r x 6−r ⋅(−2)r ⋅(x)−r2=C 6r ⋅(−2)r ⋅x6−32r ,所以6−32r =3,解得r =2, 故x 3的系数为a =15×4=60。
湖南省长沙市长郡中学2022-2023学年高三上学期月考(二)生物试题(含答案)
长郡中学2023届高三月考试卷(二)生物得分:__________本试题卷包括选择题、非选择题两部分,共10页。
时量75分钟。
满分100分。
第Ⅰ卷选择题(共40分)一、选择题(本题共12小题,每小题2分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.叶酸亦称维生素M,分子式是C l9H19N7O6。
孕妇怀孕期间需补充叶酸,胎儿缺乏叶酸会导致胎儿发生神经系统缺陷等疾病。
下列说法正确的是A.叶酸的元素组成与核酸相同B.叶酸彻底氧化分解后只产生二氧化碳和水C.根据其元素组成推断叶酸可能参与氨基酸的合成D.人体内叶酸只能从食物中获取,由此推测叶酸在体内必须循环利用2.下列叙述表明动物细胞正在进行细胞分裂的是A.核糖体合成活动加强B.线粒体产生大量ATPC.高尔基体数目明显增多D.中心体周围发射出星射线3.保卫细胞吸水膨胀使植物气孔张开。
适宜条件下,制作紫鸭跖草叶片下表皮临时装片,观察蔗糖溶液对气孔开闭的影响,下图为操作及观察结果示意图。
下列叙述错误的是A.比较保卫细胞细胞液浓度,③处理后>①处理后B.质壁分离现象最可能出现在滴加②后的观察视野中C.滴加③后有较多水分子进入保卫细胞D.推测3种黑糖溶液浓度高低为②>①>③4.为解析不同温度下牡丹花瓣衰老的细胞学机制及生理原因,科学家以牡丹花为材料,研究(25±1)℃[室温对照(CK组)]、2℃、4℃和8℃处理对花瓣寿命的影响,结果如下图。
下列叙述错误的是A.细胞正常的生理活动依赖于细胞核的完整性,其形态可反映植物细胞衰老程度B.实验结果表明低温对花瓣细胞核正常率有影响C.4℃花瓣细胞核正常率下降缓慢,该温度是牡丹花保存的最适温度D.适当低温处理可能减缓自由基对花瓣细胞核的侵蚀,延长花瓣寿命5.某实验小组利用低温处理某种二倍体鱼(2N=24)的卵原细胞,以获得染色体数目和体细胞相同的卵细胞,如右图表示低温处理鱼的卵原细胞后观察到的卵原细胞分裂过程中产生的某细胞的结构示意图(图中仅以细胞中的两对同源染色体为例)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学2021届高三月考试卷(二)
数 学
本试卷共8页。
时量120分钟。
满分150分。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={}{
}2340=28x x x x B x --≤>, ,那么集合A
B=
A. (3,)+∞
B. [1,)-+∞
C. [3,4]
D. (3,4] 2.设i 是虚数单位,若cos sin z i θθ=+,且其对应的点位于复平面的第二 象限,则θ位于
A.第一象限
B.第二象限
C.第三象限
D.第四象限 3.曲线3
()3f x x x =-+在点P 处的切线平行于直线21y x =-,则点P 的坐标为 A. (1,3) B. (-1,3) C. (1,3)和(-1,3) D. (1,-3)
4.如图,网格纸上的小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为
A.
83 B. 4
3
C. 3
D. 35.下列函数中,最小正周期为π且图象关于原点对称的函数是
A. cos(2)2y x π
=+
B. sin(2)2
y x π
=+ C. sin 2cos 2y x x =+ D. sin cos y x x =+
6.已知直三棱柱ABC- A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC,AA 1=12,
则球O 的半径为 A.
3172 B. 10 C. 13
2
D. 310
7.中华文化博大精深,我国古代算书《周髀算经》中介绍了用统计概率得到圆周率π的近似值的方法.古代数学家用体现“外圆内方”文化的钱币(如图1)做统计,现将其抽象成如图2所示的图形,其中圆的半径为2cm,正方形的边长为1 cm,在圆内随机取点,若统计得到此点取自阴影部分的概率是p,则圆周率π的近似值为
A.
41p - B. 11p - C. 114p - D. 14(1)
p -
8.设n S 是数列{}n a 的前n 项和,满足2
12n n n a a S +=.且0n a >,则10S =
A.10
B. 11
C. 10311-
D.11
二、多项选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.已知函数2
()lg(1)f x x ax a =+--,给出下述论述,其中正确的是 A.当a =0时, ()f x 的定义域为(,1)(1,)-∞-+∞
B. ()f x 一定有最小值;
C.当a =0时, ()f x 的值域为R;
D.若()f x 在区间[2,)+∞上单调递增,则实数a 的取值范围是{
}4a a ≥ 10.已知02
π
αβ<<<,且tan ,tan αβ是方程2
20x kx -+=的两不等实根, 则下列结论
正确的是
A. tan tan k αβ+=-
B. tan()k αβ+=-
C. 22k >
D. tan 4k α+≥ 11.正方体ABCD- A 1B 1C 1D 1的棱长为1,E 、F 、G 分别 为BC ,,CC 1,BB 1的中点.则 A.直线D 1D 与直线AF 垂直 B.直线A 1G 与平面AEF 平行
C.平面AEF 截正方体所得的截面面积为98
D.点C 与点G 到平面AEF 的距离相等
12.已知函数3
()sin f x x x ax =+-,则下列结论正确的是
A. ()f x 是奇函数
B.若()f x 是增函数,则a ≤1
C.当3a =-时,函数()f x 恰有两个零点
D.当3a =时,函数()f x 恰有两个极值点 三、填空题:本题共4小题.每小题5分,共20分. 13.在7
1(3)x x
-的展开式中,
4
1
x 的系数是_______ 14.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF,则AF BC ⋅的值为_______
15.已知函数()sin(33)cos(22)f x x x ϕϕ=++,其中ϕπ<,若()f x 在区间2(,)63
ππ
上单调递减,则ϕ的最大值为___________。
16.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵,记
n b 为数阵从左至右的n 列,从上到下的n 行共n 2个数的和,则数列n n b ⎧⎫
⎨⎬⎩⎭
的前2020项和为____
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (12分)在递增的等比数列{}n a 中, 162532,18a a a a ⋅=+=,其中n N *∈
(1)求数列{}n a 的通项公式; (2)记1
2log n a n n b a +=+,求数列{}n b 的前n 项和n T
18. (10分)现在给出三个条件:①a =2;②B=
4
π
;③3b .试从中选出两个条件,补充在下面的问题中,使其能够确定∆ABC,并以此为依据,求△ABC 的面积.
在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,_______,_______,且满足
(23)cos 3cos b c A a C =C,求△ABC 的面积. (选出一种可行的方案解答,若选出多个方
案分别解答,则按第一个解答记分)
19. (12分)某地随着经济的发展,居民收入逐年增长,下表是该地某银行连续五年的储蓄存款(年底余额),表1:
为了研究计算的方便,工作人员将上表的数据进行了处理, 2010,5t x z y =-=-得到下表2:
(1)求z 关于t 的线性回归方程;
(2)用所求的线性回归方程预测,到2020年年底该银行储蓄存款额可达多少?
20. (12分)已知四棱柱ABCD- A’B’C’D’中,底面ABCD 为菱形,AB=2, AA'=4,∠BAD=60°,E 为BC 中点,C' 在平面ABCD.上的投影H 为直线AE 与DC 的交点. (1)求证:BD ⊥A’H;
(2)求二面角D'- BB' -C 的正弦值.
21. (12分)已知函数()=ln (1)1,, 2.718
x a
f x e
x x a x a R e -----∈=为自然对数的底数.
(1)若a =1,证明: (1)()0x f x -≥; (2)讨论()f x 的极值点个数.
22.(12分)随着5G 商用进程的不断加快,手机厂商之间围绕5G 用户的争夺越来越激烈,5G 手机也频频降价飞入寻常百姓家.某科技公司为了打开市场,计划先在公司进行“抽奖免费送5G 手机”优惠活动方案的内部测试,测试成功后将在全市进行推广。
(1)公司内部测试的活动方案设置了第()i i N ∈次抽奖中奖的名额为32i + ,抽中的用户退出活动,同时补充新的用户,补充新用户的名额比上一次中奖用户的名额少2个.若某次抽奖,剩余全部用户均中奖,则活动结束.
参加本次内部测试第一次抽奖的有15人,甲.乙均在其中. ①请求甲在第一次中奖和乙在第二次中奖的概率分别是多少? ②请求甲参加抽奖活动次数的分布列和期望?
(2)由于该活动方案在公司内部的测试非常顺利,现将在全市进行推广报名参加第一次抽奖活
动的有20万用户,该公司设置了第()i i N ∈次抽奖中奖的概率为9(1)40
i
i p +-=,每次中奖的
用户退出活动,同时补充相同人数的新用户,抽奖活动共进行2()n n N +∈次.已知用户丙参加了第一次抽奖,并在这2n 次抽奖活动中中奖了,在此条件下,求证:用户丙参加抽奖活动次数的均值小于
92。