多面体外接球半径常见的5种求法
多面体外接球半径内切球半径的常见几种求法
如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB解:由已知建立空间直角坐标系)000(,,A )002(,,B )200(,,D3,,设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x222222)3()1(z y x z y x +-+-=++解得 1331===z y x所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四面体是正四面体外接球与内切球的圆心为正四面体高上的一个点,根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为a 46。
多面体外接球半径常见的5种求法
多面体外接球半径常见的5种求法公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.练习1 (2003,四个顶点在同一球面上,则此球的表面积为( )3π B. 4πC. D. 6π2(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A. 27B. 2C. 8D. 243 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .4(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截CDAB SO 1图3面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.外接球内切球问题1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
数学复习:多面体外接球半径的求法
数学复习:多面体外接球半径的求法近年来,求多面体的外接球半径成为全国各地高考的热点问题,是考察学生空间想象能力、画图能力和分析问题能力的一类综合题型,难度中等偏上。
因此,这类问题也是学生失分的重灾区,主要存在以下难点:一不能选择恰当的角度认识多面体;二不能准确分析几何体的线面关系找到球心。
这两个困难让学生对此类问题无从下手,渐渐地对此类问题失去信心。
本文从“画法”到“算法”,简单归纳出几类多面体的外接球半径的典型求法,试图突破此类问题在高三复习中的教学难点。
1通过补形直接求半径若多面体的每个顶点都落在长方体(或直三棱柱)的顶点上,那么该多面体的外接球也是该长方体(或直三棱柱)的外接球。
直三棱柱的外接球球心是上下底面外心连线的中点。
已知直三棱柱111C B A ABC -,设其上下底面的外接圆半径为r,三棱柱的高为h,则其外接球半径222r h R +⎪⎭⎫ ⎝⎛=。
长方体的外接球球心是体对角线的中点。
设长方体的长宽高分别为c b a ,,,则其外接球半径2222c b a R ++=。
1.1墙角锥若在一个三棱锥中,共顶点的三条棱两两垂直,那么我们可以把它补形成一个长方体。
例1.三棱锥P-ABC 的三条侧棱两两垂直,三个侧面的面积分别是22、32、62,则该三棱锥的外接球的体积是A.23B.8236π6π分析:如图(1),由题可以把三棱锥看成是以P 为墙角的墙角锥,易得,,3,21===c b a π6262222=∴=++=∴V c b a R 1.2三对对棱分别相等的四面体若一个三棱锥的三对对棱分别相等,那么我们可以把这个三棱锥看成是由一个长方体的六个面对角线构成的。
例2,在三棱锥A BCD -中,2AB CD ==5AD BC AC BD ====,则三棱锥A BCD -外接球的半径为________。
分析:如图(2),易得2,1,1===c b a 262222=++=∴c b a R 1.3四个面都是直角三角形的三棱锥利用长方体的线面关系,可将四个面都是直角三角形的三棱锥放在长方体内。
多面体外接球半径内切球半径的常见几种求法
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为8T 6x=3,T 1I ' I x =—解设正六棱柱的底面边长为x,咼为h,则有丿9 V3 2 2’_=6汉——xh, 石8 4 小一x/3•••正六棱柱的底面圆的半径r =-,球心到底面的距离d二上3.二外接球的半径2 2R=、r2d2「=1. . V球二—.3小结本题是运用公式R2-r2 d2求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16二B. 20 二C. 24 二D. 32 二解设正四棱柱的底面边长为x ,外接球的半径为R,则有4x2 = 16,解得x = 2.二2R = J22+22+42=2屈,二R = T6. •••这个球的表面积是4兀R2=24兀.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为.3,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,I把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球设其外接球的半径为R,则有(2R f =(応行(亦丫+(73$ =9.二R2=9.4故其外接球的表面积S =4二R2=9二.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为 a b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R= a 2b 2c 2.寻求轴截面圆半径法例4正四棱锥S - ABCD 的底面边长和各侧棱长都为 V 2,点S 、A 、B 、C 、都在同 一球面上,则此球的体积为.解设正四棱锥的底面中心为O i ,外接球的球心为0, 所示.二由球的截面的性质,可得 00i _平面ABCD .又SO i _平面ABCD ,二球心0必在SO 所在的直线上.ASC 的外接圆就是外接球的一个轴截面圆,外接圆的 是外接球的半径.在 ASC 中,由 SA = SC = .2, AC =2,得 SA 2SC 2二 AC 2.••• AASC 是以AC 为斜边的Rt :.••• AC =1是外接圆的半径,也是外接球的半径.故V 球二—.23小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴 截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外 接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几 何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,AB = 4,BC = 3,沿AC 将矩形ABCD 折成一个直二面角半径就如图3B - AC -D ,则四面体ABCD 的外接球的体积为A. 125 -- n 12B.空二C.D.125 3解 设矩形对角线的交点为0 ,则由矩形对角线互相平分,0A =0B =0C =0D . •••点0到四面体的四个顶点A 、B 、C 、D 的距离相等,即点0为四面体的外接球的球心,可知 如图2所示.二外接球的半径R = 0A =总.故2球='二R 3= 125二.选C.236出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥 A - BCD 中,AD _面ABC ,. BAC =120,AB 二AD 二AC = 2, 求该棱锥的外接球半径 解:由已知建立空间直角坐标系 由平面知识得 5-1, 3,0)设球心坐标为x, y, z) 贝U A0 二 B0 二 CO 广 Dq 由.空间两.点 1间C 距离公式知解得 x = 1 y 3z = 13所以半径为R-12( 3)212=-21\ 33【结论】:空间两点间距离公式:P^ (x 1 -x 2)2(y 〔 - y 2)2 (乙-z 2)2四面体是正四面体外接球与内切球的圆心为正四面体高上的一个点,根据勾股定理知,假设正四面体的边长为 a 时,它的外接球半径为a 。
多面体外接球问题方法总结
多面体外接球问题方法总结
求多面体的外接球的方法有两种:
1. 利用多面体的顶点坐标求解:
a. 首先求解多面体的质心坐标。
可以通过计算多面体的顶点坐标的平均值得到质心坐标。
b. 然后,求解多面体顶点到质心的距离,取最大距离作为外接球的半径。
c. 外接球的中心坐标为质心坐标,半径为最大距离。
2. 利用多面体的边长/面积求解:
a. 首先,根据多面体的类型,求解多面体的特定的边长、面积或者角度。
b. 利用上述的边长、面积或者角度的关系,可以求解外接球的半径。
c. 外接球的中心坐标可以通过找到多面体的对称中心或者中心对称点来获取。
需要注意的是,方法一比方法二更为常用且通用,但对于某些特殊的多面体,可能需要使用方法二来求解。
同时,在实际应用中,还可以借助计算机软件来进行多面体外接球的求解,提高计算的精度和效率。
多面体外接球半径常见的五种求法
例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 ,底面周长为3,则这个球的体积为.
解设正六棱柱的底面边长为 ,高为 ,则有
∴正六棱柱的底面圆的半径 ,球心到底面的距离 .∴外接球的半径 . .
小结本题是运用公式 求球的半径的,该公式是求球的半径的常用公式.
寻求轴截面圆半径法
例4正四棱锥 的底面边长和各侧棱长都为 ,点 都在同一球面上,则此球的体积为.
解设正四棱锥的底面中心为 ,外接球的球心为 ,如图1所示.∴由球的截面的性质,可得 .
又 ,∴球心 必在 所在的直线上.
∴ 的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.
在 中,由 ,得 .
确定球心位置法
例5在矩形 中, ,沿 将矩形 折成一Leabharlann 直二面角 ,则四面体 的外接球的体积为
A. B. C. D.
解设矩形对角线的交点为 ,则由矩形对角线互相平分,可知 .∴点 到四面体的四个顶点 的距离相等,即点 为四面体的外接球的球心,如图2所示.∴外接球的半径 .故 .选C.
∴ .
∴ 是外接圆的半径,也是外接球的半径.故 .
小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
多面体几何性质法
例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A. B. C. D.
解设正四棱柱的底面边长为 ,外接球的半径为 ,则有 ,解得 .
多面体外接球半径内切球半径的常见几种求法之欧阳法创编
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解 设正六棱柱的底面边长为x ,高为h ,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,且侧棱长,则其外接球的表面积是.解 据题意可知,该三棱锥的三条侧棱两两垂的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==. 小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长都S A B C D 、、、、都在同一球面上,则此球的体积为.解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面. 又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得C DA B S O 1图3222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC=是外接圆的半径,也是外接球的半径.故43V π=球. 小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径CA O DB 图452R OA ==.故3412536V R ππ==球.选C.出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB径。
外接球半径求法
外接球半径求法
外接球半径是指一个几何体的外接球的半径,它可以通过该几何体的某些特征来求解。
以下是几种常见的求解方法:
1. 对于正四面体、正六面体、正八面体等正多面体,其外接球半径可以直接通过公式计算得出。
例如,对于正四面体,其外接球半径R等于边长a乘以根号2除以4,即R=a√2/4。
2. 对于任意三角形ABC,其外接圆的半径R可以通过三角形的三边长度a、b、c来计算。
具体而言,可以使用海伦公式计算三角形的面积S,然后通过公式R=abc/4S求解外接圆半径R。
其中a、b、c分别为三角形的三边长度。
3. 对于任意四面体ABCD,其外接球半径可以通过四个顶点之间的距离来计算。
具体而言,假设四个顶点分别为A、B、C和D,则可以先计算出任意两个顶点之间的距离(如AB、AC等),然后使用这些距离来计算四面体各个侧面上三角形的面积,并使用这些面积来计算四面体总表面积S。
最后使用公式R=abc/4S求解出外接球半径R。
以上是几种常见的求解外接球半径的方法,不同的几何体可能需要使
用不同的方法来求解。
在实际应用中,可以根据具体情况选择合适的方法来计算外接球半径。
多面体的外接球的半径求法
立体几何专题:多面体外接球的半径求法引理:点O 为多边形E ABCD ⋅⋅⋅⋅⋅的外接圆的圆心,过点O 作一条直线l 垂直平面E ABCD ⋅⋅⋅⋅⋅,则l 上的任意一点P 到多边形的顶点的距离相等。
确定多面体外接球的球心方法:先确定一个三角形,找出此三角形外接圆的圆心,过圆心作此三角形所在平面的垂线1l ;再确定另一则外接球的半径h R R h r R 2)(222=⇒-+= 八、三棱锥BCD A -中,若AB =CD =a ,AC =BD =b ,AD =BC =c ,则外接球的半径R 221222c b a ++= 方法:构造长方体,c b a ,,为长方体面对角线的长,设长方体的长、宽、高分别为z y x ,,。
则)(21222222222222222c b a z y x c x z b z y a y x ++=++⇒⎪⎩⎪⎨⎧=+=+=+,∴外接球的半径R 221222c b a ++= 附:三角形ABC 的外接圆半径r 的求法: 设Cc B b A a r a BC b AC c AB sin 2sin 2sin 2,,,===⇒===(由正弦定理) S Sabc r (4=表示⊿ABC 的面积)①。
②例2 1 2球 3球4 A π26 B π36 C π6 D π125、三棱锥BCD A -,,5,90=︒=∠=∠AC ADC ABC 则三棱锥BCD A -外接球的体积为 。
6、三棱锥BCD A -,,2,3,90===︒=∠=∠=∠BD CB AB CBD ABD ABC 则三棱锥BCD A -外接球的表面积为 。
7、点D C B A ,,,在同一球面上,,2,2===AC BC AB 若球的表面积为425π,则四面体ABCD 体积的最大值为 。
多面体外接球、内切球的半径求法
多面体外接球、内切球的半径的求法第一部分外接球方法一、公式法例1 一个六棱柱的底面是正六边形,苴侧棱垂直于底面,已知该六棱柱的顶点都在同—个球面上,且该六棱柱的体积为底面周长为3,则这个球的体和为8 ---------------------------------6x = 3<9 A VT 2 ——6 x —x ■解设正六棱柱的底面边长为x ,高为力,则有8 4二正六棱柱的底面圆的半径r 球心到底面的距离rf = —. /■外接球的半径R= J尸二护=1 .3小结君题是运网公式用=r:+d‘求球的半径旳,该公式是求球的半径的営同公式.方法二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16^-B. 20^C. 24^D. 32穴解设正四棱柱的底面边长为工,外接球的半径为则有4x:=16.解得x = 2.•:= +2,+ 4’ =2忆二7?=亦…••这个球的表面积是亠了尺‘ =24^ •选C.小结本题是运同-正四技炷的朱对角线的长等于其外接球的宜径^这一性熨来求解的. 方法三、补行法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是解据题意可知,该三棱锥的三条侧棱两两垂直…•.把这个三棱锥可以补成一个棱长为d的正方体,于是正方体的外接球就是三棱锥的外接球.设苴外接球的半径为Q 则有(2尺)‘ =(>/1「+丨\/7「+(\/7「=9.二疋二?故其外接球的表面和S = 4^R: =9兀・小结一般地.若一个三陵锥的三条例祓两两垂直,且其良覽分别为队亠—则就牙以特这个三谡维补成一令枚方体.于是长方俸的依对筒贱的悅就是该三谡维的外接球的直徑设其外接球的半桎为乩则有2应二J/ +F +F .方法四、寻求轴截面半径法例4正四棱锥S-ABCD的底面边长利各侧棱长都为JT,点S、A, B y C. D都在同一球面上•则此球的体和为 _______ .解设正四棱锥的底面中心为O:,外接球的球心为O,如图3 所示•二由球的截面的性质,可得06丄平.又SO:丄平面/1ECD,二球心O必在SQ所在的直线上.■■- 4SC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ZUSC 中,由血= SC = Q AC = 2, ^SA2 +SC;= AC2r二AJSC是以JQ为斜边的RM■ ■ —= 1是外接圆的半径,也是外接球的半径.故4 =也*2 3小结檢拇题意、我们可以遶择聂佳商叟找出含有正愎锥超•圧元董的外接球的一个轴耘习王’二是该圜旳半径弐是斫文旳外茯球旳半逐,轧题炭厲蓟这呻退路是袄求三梭红歼接球半経的通解通法,该方法的实质就是逸过寻我外接球的一个轴截霽圆,从而把立体几何问瑟转化为平厨几何问题来研究.这釉竽价转化的数学魁想方法值得我们学习.方法五、确定球心位置法例5在矩形ABCD中,AB = 4,BC = i r沿卫C将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为125 125 125A.——広B.——広C*——才12 9 6D求该棱锥的外接球半径求该棱锥的外接球半径 ZDD((W)C(-bv5,0) 由平面知识得 B禅潯所以半径为R选+ (Zl_Z2)【例题】:已知在三A -BCD 中,貝Q 丄®4BCW :由已知建立空间直角坐标系设球心坐标为O(x.y.z)则AO = BO = CO = DO :生空间两点间臣离公式知X 2+ v 2 +Z =(x-l): +O - 石)‘ +Z ^(0,0,0) 5(2,0,0) 根据勾股定瑾知.假设正四面体的边长为。
多面体外接球半径常见的5种求法111
多面体外接球半径常见的5种求法一、公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 二、多面体几何性质法例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 .解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为 .解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是.故该球的体积为.例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为14π.例4、(2006年全国卷I ) 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 三、补形法例5 (2008接球的表面积是 .例3,则其外接球的表面积是 . 解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.例 6 (2003,四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. D. 6π解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由图1图2于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体A BDE -满足条件,即AB=AD=AE=BD=DE BE ==1,从而外接球的直径也为 A. (如图2)例7(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A.B.C.D. 解析:(如图3) 因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,这与例6就完全相同了,故选C.例8 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.(如图4)CDCE图3例9(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .解析:首先可联想到例8,构造下面的长方体,于是AD 为球的直径,O 为球心,OB=OC=4为半径,要求B 、C 两点间的球面距离,只要求出BOC ∠即可,在Rt ABC ∆中,求出=4BC ,所以0C=60BO ∠,故B 、C 两点间的球面距离是43π.(如图5)小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =. 四、寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.S图4C图5∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径. 在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习. 五、确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. C A O DB图4。
多面体外接球半径常见的几种求法
多面体外接球半径常见的几种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 此题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的外表积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的外表积是2424R ππ=.选C.小结 此题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 假设三棱锥的三个侧面两两垂直,则其外接球的外表积是 .解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的外表积249S R ππ==.小结 一般地,假设一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长CD ABSO 1图3S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =43V π=球.小结 根据题意,我们可以选择最正确角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.此题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B. 1259π C. 1256π D. 1253π解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.出现两个垂直关系,利用直角三角形结论【原理】:直角三角形斜边中线等于斜边一半。
多面体外接球、内切球的半径求法
设正多面体外接球、内切球得半径得求法第一部分外接球方法一、公式法例1—个六棱柱的底面是正六边形,其側棱垂直于底面,已知该六棱柱的顶点都在同9—个球面上,且该六棱柱的体和为二,底面周长为了,则这个球的休积为8一正六棱柱的底面圆的半径F =±球心到底面的距离巾二二外接球的半径R— J 厂亠二一1. “--------- .3小结■轧题是运円公式尺二十用术球的半径的,该公式是求球的半径的兽円公式. 方法二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4体积为16,则这个球的表面和是扎16 龙 B.20T C. 24/r D.32 疔解设正四棱柱的底面边长为匚外接球的半径为尺,则有4,? =16,解得v = 2.A 2R・VFZFTF二ls/6匸R二离*二这个球的表面积是4疗7?6二21选C.小结本題是运用••正四陵柱的体苦角线的长茅于其外接球的宜径粹这一性质来求錢的.方法三、补行法例3若三稜锥的三个侧棱两两垂直,且侧棱长均为41・则其外接球的表面积是例5在矩/宓9中,二 二沿解 据題意可知,该三棱锥的三条侧棱两两垂直,二把这个三棱锥可以补成一个棱长为 的正方体•于是 正方体的外接球就是三棱锥的肺接球.设其外接球的半径为则有(2町二(同十阿+ (旬=9・• •庆斗 故其外接球的表面积5 =曲耳『小结一般地,若一个三祓惟的三条便檢两两垂宜,且共悅度分别为z b 、。
则就 可以將这个三按 维社成一个长方农于是戋方体钓本对角线的戈就是该三擁锥的外接球的車径.设其外接球的半衽为R, 则有2?二十方:十/ .方法四、寻求轴截面半径法例4正四棱锥5 ■宓9的底面边长和各侧棱长都为JT ,点5•儿及6 D 都在同一球面上,则此球的体和为 _____________解设正四棱锥的福面中心为外接球的球心为O,如图3所示…由球的截面的性质,可得00:丄平面月QCQ •又S3丄平面乩?CQ,二球心O 必在S6所在的直线上的外接圖就是外接球的一个轴截面圆,外接圜的半径就是外接球的半径.在&LSC 中•由 S£ 二 SC 二 JI 二2 , A SA +SC 2=AC\ ・'・AJSC 是以JC 为斜边的RtA ・ACIiT-—二1呈外接圆的半径,也是外接球的半径■故卩人二一・ 2 3小结框拇题意,我们可以选择壷佳角覽找出舍肓正唆链蚌爼元畫的外接球的一个抽截Sr 圆、于 是该圜的半径就是所求的外接球的半径•本题提供的这种思■路是探求正棱锥外接球半桎的逸塀逸 法,该方法的实质就是通过寻找外接球的一个軸截笛園,从而把虫体几何问题 特化为平石几■何问题 来研究•这释等价转化的数学思想方去位得我們翅方法五、确定球心位置法B-AC-D,贝叮四面他⑦的外接球的体积为125 —n 12 B.125C ■——圧125D.——+ Gi — JJ+ (可一可)解设拒形对角线的交点2则由矩形对角线互相平分,可知0A = OB = 0C =0D,点0到四面体的四个顶点4 B, C.刀的 距离相等,即点O 为四面体的外 接球的掠心,如图2所示二外接球的半径R - 0A=二•故几一TJ7—丄二 才•选CL 2 3 6方法六、出现多个垂直尖系时建立空间直角坐标系 ,利用向量只就是求解 【洌題】:己知在三棱锥不如?中,且。
多面体外接球半径常见的五种求法
多面体外接球半径常见的5种求法文/xx如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为.86x3,1x,x2解设正六棱柱的底面边长为,高为h,则有932xh,64h3.8∴正六棱柱的底面圆的半径r31,球心到底面的距离d.∴外接球的半径22R r2d21.V球4.3222小结本题是运用公式R r d求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16B.20C.24D.32解设正四棱柱的底面边长为x,外接球的半径为R,则有4x16,解得x2.∴2R 222224226,R6.∴这个球的表面积是4R224.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有2R223232329.∴R29.4故其外接球的表面积S4R9.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R a2b2c2.寻求轴截面圆半径法例4正四棱锥S ABCD的底面边长和各侧棱长都为2,点S、A、B、C、D都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为O1,外接球的球心为O,如图1所示.∴由球的截面的性质,可得OO1平面ABCD.DCO1图3BS又SO1平面ABCD,∴球心O必在SO1所在的直线xx.∴ASC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASCxx,由SA SC A2,AC2,得SA2SC2AC2.∴ASC是以AC为斜边的Rt.∴AC4.1是外接圆的半径,也是外接球的半径.故V球23小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5在矩形ABCD中,AB4,BC3,沿AC将矩形ABCD折成一个直二面角B AC D,则四面体ABCD的外接球的体积为125125A.B.C.D.12963解设矩形对角线的交点为O,则由矩形对角线互相平分,可知OA OB OC OD.∴点O到四面体的四个顶点A、B、C、D的距离相等,即点O为四面体的外接球的球心,如图2所示.∴外接球的半541253.选C.径R OA.故V 球R236DCBAO图4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体外接球半径常见的5种求法
如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.
公式法
例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98
,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h
,则有263,1,296,8
x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12
r =
,球心到底面的距离d =.
∴外接球的半径1R ==.43
V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.
多面体几何性质法
例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.16π
B.20π
C.24π
D.32π
解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.
∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.
补形法
例3 若三棱锥的三个侧面两两垂直,
则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,
∴把这个三棱锥可以补成一个棱长为.
设其外接球的半径为R ,则有(
)
222229R =
++=.∴294R =. 故其外接球的表面积249S R ππ==.
小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R
,则有2R =.
寻求轴截面圆半径法
例4 正四棱锥S ABCD -
,点S A B C D 、、、、都在同一球面上,则此球的体积为 .
解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1
所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.
又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.
∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就
是外接球的半径.
在ASC ∆
中,由2SA SC AC ===,得222SA SC AC +=.
∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43
V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
确定球心位置法
例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253
π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知
OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的
距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536
V R ππ==球.选C. C
D A B S O 1
图3A O D B 图4。