中考专题复习:第四讲 因式分解

合集下载

中考中的因式分解

中考中的因式分解

因式分解是中考数学中的一个重要知识点,也是中考数学中难度较大的考点之一。

在中考中,因式分解主要涉及整式的因式分解、多项式的因式分解和多项式根式化简等。

首先,整式的因式分解是中考中最常见的题型之一。

整式的因式分解是将一个整式拆分成两个或多个乘积的形式。

例如,对于整式 $a+b$,可以将其因式分解为 $(a+b)$。

在整式因式分解中,需要注意系数的一致性问题,即同类项的系数应该相同。

其次,多项式的因式分解也是中考中的一类重要题型。

多项式的因式分解是将一个多项式拆分成两个或多个乘积的形式。

例如,对于多项式 $a+bx+c$,可以将其因式分解为 $(a+bx+c)$。

在多项式因式分解中,需要注意系数的一致性问题,即同类项的系数应该相同。

最后,中考中还涉及到多项式根式化简的问题。

多项式根式化简是将根式化简成一个最简形式的过程。

例如,对于多项式根式 $\sqrt{a+b}$,可以将其化简为 $\sqrt{a}+\sqrt{b}$。

在多项式根式化简中,需要注意根式的符号问题,即根式的分子和分母应该同时乘以适当的正数,使得根式的符号发生变化。

在中考中,因式分解是一个较为重要的考点,需要我们熟练掌握因式分解的方法和技巧,以便在考试中能够更好地解决问题。

2022-2023年数学中考第一轮复习-专题四 因式分解

2022-2023年数学中考第一轮复习-专题四 因式分解
故选: .
2.(2022秋•高昌区校级期中)下列属于因式分解的是
A. B.
C. D.
【分析】根据因式分解,等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;
. ,从左至右的变形属于因式分解,故本选项符合题意;
. ,故本选项不符合题意;
. ,从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意.
故选: .
2.(2022春•细河区期末)下列分解因式正确的是
A. B.
C. D.
【分析】各式分解得到结果,即可作出判断.
【解答】解: 、原式不能分解,不符合题意;
、原式 ,符合题意;
、原式 ,不符合题意;
、原式 ,不符合题意.
故选: .
3.(2022秋•绿园区校级期中)分解因式: .
【分析】直接提取公因式3,再利用平方差公式分解因式得出答案.
选项不是因式分解,故不符合题意;
故选: .
2.(2021•兴安盟)下列等式从左到右变形,属于因式分解的是
A. B.
C. D.
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【解答】解: . ,原变形是整式乘法,不是因式分解,故此选项不符合题意;
故选: .
3.(2022秋•仁寿县校级月考)下列从左边到右边的变形,属于因式分解的是
A. B.
C. D.
【分析】根据因式分解的意义逐个判断即可.
【解答】解: . ,从等式的左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
. ,没有把把一个多项式化成几个整式的积的形式,不属于因式分解,故本选项不符合题意;

中考数学专题复习第4讲因式分解(含详细答案)

中考数学专题复习第4讲因式分解(含详细答案)

第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。

2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。

】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。

提公因式法分解因式可表示为:ma+mb+mc= 。

【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。

2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。

3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。

】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。

①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。

【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。

如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。

】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。

2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。

3、 三查:分解因式必须进行到每一个因式都不能再分解为止。

【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。

中考数学专题-因式分解及其应用

中考数学专题-因式分解及其应用

第13讲 因式分解及其应用考点·方法·破译1.因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式;2.因式分解的基本方法有提公因式法、运用公式法、分组分解法等;3.因式分解的基本原则:有公因式先提出公因式、分解必须进行到每一个多项式都不能再分解为止;4.竞赛中常出现的因式分解问题,常用到换元法、主元法、拆项添项阿、配方法和待定系数法等方法、另外形如2x px q ++的多项式,当p =a +b ,q =ab 时可分解为(x +a )(x +b )的形式;5.利用因式分解求代数式的值与求某些特殊方程的解经典·考题·赏析【例1】⑴若229x kxy y ++是完全平方式,则k =______________⑵若225x xy ky -+是完全平方式,则k =______________【解法指导】形如222a ab b ±+的形式的式子,叫做完全平方式.其特点如下:⑴有三项;⑵有两项是平方和的形式;⑶还有一项是乘积的2倍,符号自由.解:⑴22229(3)x kxy y x kxy y ++=++是完全平方式,∴6kxy xy =± ∴6k =±; ⑵22225522y x xy ky x x ky -+=-⋅⋅+是完全平方式,∴225()2ky y = ∴254k = 【变式题组】01.若22199m kmn n -+是一个完全平方式,则k =________02.若22610340x y x y +-++=,求x 、y 的值03.若2222410a a b ab b +-++=,求a 、b 的值04.(四川省初二联赛试题)已知a 、b 、c 满足22|24||2|22a b a c ac -+++=+,求a b c -+的值【例2】⑴(北京)把3222x x y xy -+分解因式,结果正确的是( )A .()()x x y x y +-B .22(2)x x xy y -+C .2()x x y +D .2()x x y -⑵(杭州)在实数范围内分解因式44x -=____________⑶(安徽)因式分解2221a b b ---=_______________【解法指导】分解因式的一般步骤为:一提,二套,三分组,四变形解:⑴3222222(2)()x x y xy x x xy y x x y -+=-+=-⑵42224(2)(2)(2)(x x x x x x -=+-=+⑶22222221(21)(1)(1)(1)a b b a b b a b a b a b ---=-++=-+=++--【变式题组】⑴3223223612x y x y x y -+⑵2222(1)2a x ax +-⑶222045a bx bxy -⑷2249()16()a b b a --+⑸222(5)8(5)16a a -+-+【例3】要使二次三项式25x x p -+在实数范围内能进行因式分解,那么整数P 的取值可能有( )A .2个B .4个C .6个D .无数多个【解法指导】由2()()()x a b x ab x a x b +++=++可知,在整数范围内分解因式25x x p -+,p 为(5)n n -的积为整数,∴p 有无数多个,因而选D【变式题组】⑴已知212x ax +-能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )A .2个B .4个C .6个D .8个⑵在1~100间,若存在整数n ,使2x x n +-能分解为两个整系数的一次因式的乘积,则这样的n 有__个【例4】分解因式:⑴221112x x -+⑵22244x y z yz --+⑶22(52)(53)12x x x x ++++-⑷226136x xy y x y +-++-【解法指导】解:⑴ ∴221112(23)(4)x x x x -+=--⑵222244x y z y --+222(44)x y yz z =--+22(2)x y z =--(2)(2)x y z x y z =+--+ ⑶设2525x x ++=,则原式可变为2(1)1212(3)(4)t t t t t t +-=+-=-+∴原式=22(523)(524)x x x x ++-+++ 2 1 -3 -422(51)(56)x x x x =+-++2(51)(2)(3)x x x x =+-++⑷226136x xy y x y +-++-22(6)(13)6x xy y x y =+-++-(2)(3)(13)6x y x y x y =-+++-(23)(32)x y x y =-++-【变式题组】01.分解因式:⑴2224912x y z yz --- ⑵224443x x y y --+-⑶236ab a b --+ ⑷(1)(2)(3)(4)1x x x x +++++⑸261910y y -+【例5】⑴(上海竞赛试题)求方程64970xy x y +--=的整数解;⑵(希望杯)设x 、y 为正整数,且224960x y y ++-=,求xy 的值【解法指导】⑴结合方程的特点对其因式分解,将不定方程转化为方程组求解; ⑵将等式左边适当变形后进行配方,利用x 、y 为正整数的特点,结合不等式求解. 解:⑴64970xy x y +--=,(64)(96)1xy x y +-+=,2(32)3(32)1x y y +-+=,∴(23)(32)1x y -+=,∵x 、y 都是整数 ∴{{(23)1(23)1(32)1(32)1x x y y -=-=-+=+=-或 ∴{21113x x y y =⎧⎪=⎨=-=-⎪⎩(舍去)或,∴方程的整数解为{11x y ==-, ⑵224960x y y ++-=,2244100y y x ++=-,22(2)100y x +=-,∵21000x -≥∴2100x ≤ ∵x 为正整数,∴x =1,2,…,10 ,又∵2(2)y +是平方数,∴x =6或8当x =6时2(2)y +=64,y =6,当x =8时2(2)y +=36,y =4,∴xy =36或32【变式题组】01.设x 、y 是正整数,并且222132y x =-,则代数式222x xy y x y+-+的值是___________ 02.(第二届宗沪杯)已知a 、b 为整数,则满足a +b +ab =2008的有序数组(a ,b )共有__________03.(北京初二年级竞赛试题)将2009表示成两个整数的平方差的形式,则不同的表示方法有( )A .16种B .14种C .12种D .10种04.方程332232x y x y xy -+-=的正整数解的个数为( )A .0个B .1个C .2个D .不少于3个05.一个正整数,如果加上100是一个完全平方数:如果加上168则是另外一个完全平方数,求这个正整数.【例6】已知k 、a 都是正整数,2004k +a 、2004(k +1)+a 都是完全平方数⑴请问这样的有序正整数(k 、a )共有多少组?⑵试指出a 的最小值,并说明理由.解:⑴22004k a m +=① 22004(1)k a n ++=②,这里m 、n 都是正整数,则222004n m -= 故()()2004223167n m n m +-==⨯⨯⨯注意到,m n +、n m -奇偶性相同,则{{100233426n m n m n m n m +=+=-=-=或,解得{{500164502170m m n n ====或, 当n =502,m =500时,由①得2004k +a =250000,所以2004(124)1504a k =-+③由于k 、a 都是正整数,故k 可以取值1,2,3,…,124,相应得满足要求的正整数数组(k 、a )共124组当n =170,m =164时,由①得2004k +a =26896所以2004(13)844a k =-+④由于k 、a 都是正整数,故k 可以取值1,2,3,…,13,相应得满足要求的正整数数组(k 、a )共13组从而,满足要求的正整数组(k 、a )共有124+13=137(组)⑵满足式③的最小正整数a 的值为1504,满足式④的最小正整数a 的值为844,所以,所求的a 的最小值为844【变式题组】01.(北京竞赛)已知a 是正整数,且22004a a +是一个正整数的平方,求a 的最大值02.设x 、y 都是整数,y y 的最大值演练巩固 反馈提高01.如果分解因式281(9)(3)(3)n x x x x -=++-,那么n 的值为( )A .2B .4C .6D .8 02.若多项式22(3)(3)x pxy qy x y x y ++=-+,则p 、q 的值依次为() A .12-,9- B .6,9- C .9-,9- D .0,9-03.下列各式分解因式正确的是( )A .291(91)(91)x x x -=+-B .4221(1)(1)a a a -=+-C .2281(9)(9)a b a b a b --=--+D .32()()()a ab a a b a b -+=-+-04.多项式()()()()x y z x y z y z x z x y +--+-+---的公因式是( )A .x y z +-B .x y z -+C .y z x +-D .不存在05.22()4()4m n m m n m+-++分解因式的结果是()A.2()m n+B.2(2)m n+C.2()m n-D.2(2)m n-06.若218x ax++能分解成两个因式的积,则整数a的取值可能有()A.4个B.6个C.8个D.无数个07.已知224250a b a b++-+=,则a ba b+-的值为()A.3 B.13C.3-D.13-08.分解因式:2(2)(4)4x x x+++-=__________________09.分解因式:22423a b a b-+++=__________________10.分解因式:33222x y x y xy-+=___________________11.已知5a b+=,4ab=-,那么22223a b a b ab++的值等于____________ 12.分解因式:2242x y x y-++=_______________13.分解因式:2()6()9a b b a---+=_________________14.分解因式:222(41)16a a+-=___________________15.已知20m n+=,则332()4m mn m n n+++的值为_____________ 16.求证:791381279--能被45整除17.已知9621-可被在60到70之间的两个整数整除,求这两个整数培优升级 奥赛检测01.(四川省初二数学联赛试题)使得381n +为完全平方数的正整数n 的值为( )A .2B .3C .4D .502.(四川省初二数学联赛试题)设m 、n 是自然数,并且219980n n m --=,则m +n 的最小值是( )A .100B .102C .200D .不能确定03.(四川省初二数学联赛试题)满足方程32326527991x x x y y y ++=+++的正整数对(x ,y )有( )A .0对B .1对C .3对D .无数对04.(全国初中数学竞赛试题)方程323652x x x y y ++=-+的整数解(x ,y )的个数是()A .0B .1C .3D .无穷多05.(四川省初二数学试题)已知42(1)M p p q =+,其中p 、q 为质数,且满足29q p -=,则M=()A .2009B .2005C .2003D .200006.(仙桃竞赛试题)不定方程2()7x y xy +=+的所有整数解为_________________07.已知多项式2223286x xy y x y +--+-可以分解为(2)(2)x y m x y n ++-+的形式,那么3211m n +-的值是______08.对于一个正整数n ,如果能找到a 、b ,使得n =a +b +ab ,则称n 为一个“好数”,例如:3=1+1+1×1,3就是一个好数,在1~20这20个正整数中,好数有_______个 09.一个正整数a 恰好等于另一个正整数b 的平方,则称正整数a 为完全平方数,如2648=,64就是一个完全平方数;若22222992299229932993a =+⨯+,求证a 是一个完全平方数10.已知实数a 、b 、x 、y 满足2a b x y +=+=,5ax by +=,求2222()()a b xy ab x y +++的值11.若a 为自然数,则4239a a -+是质数还是合数?请你说明理由12.正数a 、b 、c 满足3ab a b bc b c ca c a ++=++=++=,求(1)(1)(1)a b c +++的值13.某校在向“希望工程”捐款活动中,甲班有m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是(mn +9m +11n +145)元,已知每人的捐款数相同,且都是整数,求每人的捐款数。

专题04因式分解(基础巩固练习) 解析版

专题04因式分解(基础巩固练习) 解析版

2021年中考数学专题04 因式分解(基础巩固练习,共64个小题)一、选择题:1.(2020•金华)下列多项式中,能运用平方差公式分解因式的是( )A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b22.(2020•湖北荆州模拟)把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是( )A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)3.(2019•广西贺州)把多项式4a2-1分解因式,结果正确的是( )A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)24.(2019•四川泸州)把2a2﹣8分解因式,结果正确的是( )A.2(a2﹣4)B.2(a﹣2)2C.2(a+2)(a﹣2)D.2(a+2)25.(2020•山东潍坊模拟)下列因式分解正确的是( )A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)6.(2020•齐齐哈尔模拟)把多项式x2﹣6x+9分解因式,结果正确的是( )A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)7.(2019•黑龙江绥化) 下列因式分解正确的是( )A.x2-x=x(x+1)B.a2-3a-4=(a+4)(a-1)C.a2+2ab-b2=(a-b)2D.x2-y2=(x+y)(x-y)8.将(a﹣1)2﹣1分解因式,结果正确的是( )A.a(a﹣1)B.a(a﹣2)C.(a﹣2)(a﹣1)D.(a﹣2)(a+1)9.(2019·安徽)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则( ) A.b>0,b2﹣ac≤0 B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0 D.b<0,b2﹣ac≥010.(2019•江苏无锡)分解因式4x2-y2的结果是( )A.(4x+y)(4x﹣y) B.4(x+y)(x﹣y)C.(2x+y)(2x﹣y) D.2(x+y)(x﹣y)二、填空题:1.(2020•聊城)因式分解:x(x﹣2)﹣x+2=.2.(2020•株洲模拟)分解因式:x2+3x(x﹣3)﹣9= .3.(2020•绥化)因式分解:m3n2﹣m=.4.(2020•哈尔滨)把多项式m2n+6mn+9n分解因式的结果是.5.(2020•黔东南州)在实数范围内分解因式:xy2﹣4x=.6.(2020•济宁)分解因式a3﹣4a的结果是.7.(2020•宁波)分解因式:2a2﹣18=.8.(2020•温州)分解因式:m2﹣25=.9.(2020•铜仁市)因式分解:a2+ab﹣a=.10.(2020•黔西南州)把多项式a3﹣4a分解因式,结果是.11.(2019•湖北天门)分解因式:x4﹣4x2=.12.(2019•山东东营)因式分解:x(x-3)-x+3=____________.13.(2019•贵州省毕节市) 分解因式:x 4﹣16= .14.(2019•广东深圳)分解因式:ab 2-a=____________.15.(2019•黑龙江哈尔滨)分解因式:22396ab b a a +-= .16.(2019•贵州黔西南州)分解因式:9x 2﹣y 2= .17.(2019•湖南张家界)因式分解:x 2y -y = .18.(2019•年陕西省)因式分解:339x y xy -= .19.(2019•黑龙江大庆)分解因式:a 2b+ab 2-a -b =________.20.(2019•江苏常州)分解因式:ax 2-4a =__________.21.(2019•内蒙古赤峰)因式分解:x 3﹣2x 2y+xy 2= .22.(2020•贵州黔西南)多项式34a a -分解因式的结果是______.23.(2019•宁夏)分解因式:2a 3﹣8a = .24.(2020•聊城)因式分解:x(x ﹣2)﹣x+2= .25.(2019•齐齐哈尔)因式分解:a 2+1﹣2a+4(a ﹣1)= .26.(2020•广东)分解因式:xy x -= .27.(2020•吉林)分解因式:2a ab -= .28.分因式分解:a 2﹣2a= .29.分因式分解:3a 2﹣6a= .30.分解因式:2a 2-6a= .31.若a=2,a -2b=3,则2a 2-4ab 的值为 .32.分解因式:234a b b -= .33.分解因式:2222ax ay -+= ;不等式组24030x x -⎧⎨-+>⎩的整数解为 .34.(2020•安徽)分解因式:2ab a -= .35.(2019•赤峰)因式分解:x 3﹣2x 2y+xy 2= .36.(2019•呼和浩特)因式分解:x 2y ﹣4y 3= .37.(2018•呼和浩特)分解因式:a 2b ﹣9b = .38.(2018•兴安盟·呼伦贝尔)分解因式:a 3 (x-3)+(3-x) a= .39.(2018•赤峰)分解因式:2a 2﹣8b 2= .40.(2018•巴彦淖尔)分解因式:8a 2﹣8a 3﹣2a = .41.分解因式:3x 2-27 = .42.分解因式:x 3y -2x 2y+xy = .43.分解因式:ma 2-mb 2= .44.分解因式:3x 2-12= .45.分解因式:x 3-x = .46.因式分解: x 3y -xy= .47.分解因式:224)(b b a --= .48.a ﹣4ab 2分解因式结果是 .三、解答题:1.(2019•湖北咸宁)若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以多少(写一个即可).2.把ab ﹣a ﹣b+1分解因式。

专题复习:因式分解

专题复习:因式分解

专题因式分解☞解读考点☞2年中考 【2015年题组】1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( ) A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x - C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( )A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 5.(2015临沂)多项式2mxm -与多项式221x x -+的公因式是()A .1x -B .1x +C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B . 考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A 0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A . 【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x x x --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法.9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用. 11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y .考点:实数范围内分解因式. 12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= .【答案】2015. 【解析】试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用. 16.(2015东营)分解因式:2412()9()x y x y +-+-= .【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n ++=-+对x 恒成立,则n= .【答案】4. 【解析】试题分析:∵2(3)()x x m x x n ++=-+,∴22(3)3x x m x n x n ++=+--,故31n -=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除? 并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A 、x2+2x+1=x (x+2)+1,不是因式分解,故错误;B 、(x2﹣4)x=x3﹣4x ,不是因式分解,故错误;C 、ax+bx=(a+b )x ,是因式分解,故正确;D 、m2﹣2mn+n2=(m ﹣n )2,故错误.故选C . 考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 2.(2014年海南中考)下列式子从左到右变形是因式分解的是( ) A .()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+C .()()2a 3a 7a 4a 21-+=+-D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= . 【答案】()()x x 2x 2+-. 【解析】 试题分析:()()()32x 4x x x 4x x 2x 2-=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x (x ﹣3)﹣9= 【答案】(x ﹣3)(4x+3). 【解析】试题分析: x2+3x (x ﹣3)﹣9=x2﹣9+3x (x ﹣3)=(x ﹣3)(x+3)+3x (x ﹣3)=(x ﹣3)(x+3+3x ) =(x ﹣3)(4x+3). 考点:因式分解.5.(2014年徐州中考)若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2. 【解析】试题分析:∵ab=2,a ﹣b=﹣1,∴a2b ﹣ab2=ab (a ﹣b )=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x -=__________________.【答案】x (y+5)(y ﹣5). 【解析】试题分析:原式=x (y2﹣25)=x (y+5)(y ﹣5). 考点:提公因式法与公式法的综合运用. 7.(2014年绍兴中考)分解因式:2aa - = .【答案】()a a 1-.【解析】 试题分析:()2a a a a 1-=-.考点:提公因式法因式分解. 8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解. 9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念. 归纳 2:提取公因式法分解因式 基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂. 提取公因式法:ma +mb -mc=m (a+b-c ) 注意问题归纳: 提公因式要注意系数; 要注意查找相同字母,要提净.【例2】若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a 3ab += .【答案】()a a 3+.【解析】()2a 3ab a a 3+=+.考点:因式分解-提公因式法.归纳 3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳 4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50 【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4) B.(x+2)(x-2)C.2 (x+2)(x-2) D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056 D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数. 4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= . 【答案】2(x ﹣8)(x+2). 【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2). 考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ). 【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用. 6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+. 【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+.考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a = .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2. 【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2.考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= . 【答案】ab (a-b )2. 【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2.考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a(x+y)(x-y).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a (x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a (2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。

中考复习《因式分解》

中考复习《因式分解》

《四》因式分解1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ , ⑶ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a⑵ =++222b ab a ,⑶ =+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 .6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式).7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 例题讲解1.简便计算:=2271.229.7-. 2.分解因式:=-x x 422____________________.3.分解因式:=-942x ____________________.4.分解因式:=+-442x x ____________________.5.分解因式2232ab a b a -+= .6.将3214x x x +-分解因式的结果是 . 7.(2008合肥)下列多项式中,能用公式法分解因式的是( ) A.x 2-xy B . x 2+xy C. x 2-y 2 D. x 2+y 28、若20a a +=,则2007222++a a 的值为 .三、实战练习1、(2a +b)(2a -3b)+(2a +5b)(2a +b);2、2(2)(4)4x x x +++-.3、(a +b)2-4a 2; (4)x 2(x-y)+y 2(y-x);5、 (m+n)2-6(m+n)+9. 6、 (x 2+4)2-2(x 2+4)+1 ;用因式分解求下列各式的值(1)7.6×199.9+4.3×199.9-1.9×199.9;(2)20022-4006×2002+20032(3)5652×11-4352×11; (4)(543)2-(241)2.。

2013年中考数学专题复习第4讲:因式分解

2013年中考数学专题复习第4讲:因式分解

例9:在实数范围内分解因式:
(1)1 a
4
(2) x 2 3x 3
2
【基础知识回顾】
三、因式分解的一般步骤: 一提: 如果多项式即各项有公因式,要先提公因式; 二用: 如果多项没有公因式,可以尝试运用公式法来分解。 三查: 分解因式必须进行到每一个因式都解因为止。 【提醒】: 分解因式不彻底是因式分解常见错误之一,中考 中的因式分解题目一般为两次分解,做题时要特 别注意,另外分解因式的结果是否正确可以用整 式乘法来检验。
例1:(2012•济宁)下列式子变形是因式分解的是( B ) A.x2-5x+6=x(x-5)+6 B.x2-5x+6=(x-2)(x-3) C.(x-2)(x-3)=x2-5x+6 D.x2-5x+6=(x+2)(x+3)
例2:(2012•安徽)下面的多项式中,能因式分解的是( D ) A.m2+n B.m2-m+1 C.m2-n D.m2-2m+1 例3:(2012•凉山州)下列多项式能分解因式的是( C ) A.x2+y2 B.-x2-y2 C.-x2+2xy-y2 D.x2-xy+y2
【基础知识回顾】 一、因式分解的定义。 1、把一个 多项式 式化为几个整式 积 的形式,叫做 把这个多项式分解因式。 2、因式分解与整式乘法是 互逆 运算, 多项式
因式分解 整式乘法
整式的积
【提醒】 :判断一个运算是否是因式分解或判断因式 分解是否正确,关键看等号右边是否为积的形式。
【重点考点例析】 考点一:分解因式的概念
ቤተ መጻሕፍቲ ባይዱ
【重点考点例析】 考点二:分解因式
例 7: (1)m 7 m 18 ( m 9)( m 2)

中考数学复习《分解因式》教学课件

中考数学复习《分解因式》教学课件

【预测5】 图(1)是边长为(a+b)的正方形,将图(1)中的阴 影部分拼成图(2)的形状,由此能验证的式子是 ( )
A.(a+b)(a-b)=a2-b2
B.(a+b)2-(a2+b2)=2ab
C.(a+b)2-(a-b)2=4ab
D.(a-b)2+2ab=a2+b2 解析 图 1 中大正方形的面积为(a+b)2,图 1 的中间空白部 分的正方形的边长为 a2+b2,所以它的面积为 a2+b2,所 以图 1 中阴影部分的面积可表示为:(a+b)2-(a2+b2);图 2 是对角线长分别为 2a 和 2b 的菱形,面积为12×2a×2b=2ab. 答案 B
【预测4】 已知实数a,b满足a+b=3,ab=1.求代数式 a2b+ab2的值. 解 a2b+ab2=ab(a+b)=1×3=3.
对接点四:拼图与因式分解
常考角度:通过图形的变化验证代数式的变化,培养数形
结合的思想.
甲图中阴影部分面积 【例题 4】 (2013·杭州)如图,设 k=乙图中阴影部分面积(a>
【即时应用1】 把a2-4a多项式分解因式,结果正确的是
()
A.a(a-4)
B.(a+2)(a-2)
C.a(a+2)(a-2)
D.(a-2)2-4
答案 A
因式分解的基本方法 1.提公因式法:ma+mb+mc=_m_(_a_+__b_+__c_); 2.运用公式法
(1)平方差公式:a2-b2=_(_a_+__b_)(_a_-__b_); (2)完全平方公式:a2±2ab+b2=_(a_±__b_)_2.
解析 A.x2-5x+6=x(x-5)+6右边不是整式积的形式, 故不是分解因式,故本选项错误; B.x2-5x+6=(x-2)(x-3)是整式积的形式,且左右两 边相等,故是分解因式,故本选项正确; C.(x-2)(x-3)=x2-5x+6是整式的乘法,故不是分解 因式,故本选项错误; D.x2-5x+6=(x-2)(x-3),故本选项错误. 答案 B

中考数学常考的知识点:因式分解

中考数学常考的知识点:因式分解

中考数学常考的知识点:因式分解(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!中考数学常考的知识点:因式分解中考数学常考的知识点:因式分解在日常过程学习中,是不是听到知识点,就立刻清醒了?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

2024年九年级中考数学压轴题锦囊妙计—因式分解(含答案)

2024年九年级中考数学压轴题锦囊妙计—因式分解(含答案)

因式分解定义:把一个整式写成几个整式乘积的形式,称为因式分解。

在因式分解中,通常要求每个因式都是既约多项式(不可约多项式),这样的因式称为质因式。

因式分解常用的方法有提公因式法,公式法,十字相乘法,分组分解法,换元法,待定系数法等。

◆一、提公因式法:◆二、公式法①平方差公式:②完全平方和公式:③完全平方差公式:④立方和公式:⑤立方差公式:⑥完全立方和公式:⑦完全立方差公式:⑧三项平方和公式:⑨三项立方公式:◆三、分组分解法有一些整式(如:)既没有公因式可提,也不能运用公式直接分解,这样的式子需要采用分组分解法。

(一)分组后能直接提公因式)(c b a m mc mb ma ++=++))((22b a b a b a -+=-222)(2b a b ab a +=++222)(2b a b ab a -=+-))((2233b ab a b a b a +-+=+))((2233b ab a b a b a ++-=-33223)(33b a b ab b a a +=+++33223)(33b a b ab b a a -=-+-2222)(222c b a ac bc ab c b a ++=+++++))((3222333ac bc ab c b a c b a abc c b a ---++++=-++bn bm an am +++例1、分解因式:解:原式== =例2、分解因式:解:原式== =(二)分组后能直接运用公式例3、分解因式:解:原式== =例4、分解因式:解:原式== = 【举一反三】bnbm an am +++)()(bn bm an am +++)()(n m b n m a +++))((b a n m ++bxby ay ax -+-5102)5()102(bx by ay ax -+-)5()5(2y x b y x a ---)2)(5(b a y x --ayax y x ++-22)()(22ay ax y x ++-)())((y x a y x y x ++-+))((a y x y x +-+2222c b ab a -+-222)2(c b ab a -+-22)(c b a --))((c b a c b a --+-1、2、3、4、5、6、7、3223yxyyxx--+baaxbxbxax-+-+-22181696222-+-++aayxyxabbaba4912622-++-92234-+-aaaybxbyaxa222244+--222yyzxzxyx++--8、9、10、11、12、◆四、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——进行分解。

因式分解知识要点

因式分解知识要点

因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。

1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。

本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。

2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。

如:()++=++。

ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。

公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。

2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。

运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。

初中数学知识点:因式分解知识点

初中数学知识点:因式分解知识点

初中数学知识点:因式分解知识点初中数学知识点:因式分解知识点导语:因式分解是数学学习的重要内容,是学习分式、解方程等知识的基础,也是中考必考的内容之一。

以下是小编为大家精心整理的初中数学知识点:因式分解知识点,欢迎大家参考!初中数学知识点:因式分解知识点1一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字"1"。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是"十"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;如果括号前是"一"号,把括号和它前面的"一"号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

中考考点专题:因式分解

中考考点专题:因式分解

———————————————————————————————————————戴氏教育中高考名校冲刺教育中心【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】专题:因式分解考点归纳1、因式分解的概念把一个多项式化为几个整式的积的形式 注意:(1)结果应是积的形式(2)每个因式都是整式(3)要分解到不能分解为止 2、因式分解的基本方法 (1)提公因式法:说明:提公因式法的关键是确定公因式;找公因式的方法是 一看系数、二看字母; (2)运用公式法:平方差公式:))((22b a b a b a -+=-完全平方公式:222)(2b a b ab a ±=+±说明:运用公式法首先观察项数,若是二项式,应先考虑平方差公式;若是三项式,则考虑完全平方公式,然后观察各项的次数、系数是否符合公式的特征。

(3)分组分解法:。

ma +mb +na +nb=m (a +b )+n (a +b )=(a +b )(m +n ) 注意:在实际应用中,分组分解的形式有很多种: ①分组后能提公因式; ②分组后能运用公式.(4)十字相乘法:))(()(2b x a x ab x b a x ++=+++注意:用这种方法要先把待分解的多项式整理成左边的形式说明;分组分解法和十字相乘法新课标已不做要求,但可以了解一下,对分式的运算解题有帮助3、因式分解的一般步骤(1)多项式的各项有公因式时,应先提取公因式; (2)考虑所给多项式能否用公式法分解;(3)对于二次三项式,可考虑用十字相乘法分解;(4)如果用以上方法不能分解,特别是当项数多于三项时,还考虑使用分组分解法分解。

———————————————————————————————————————例题:一、因式分解的意义:因式分解是把一个多项式化成几个整式的乘积形式例01.下列四个从左到右的变形,是因式分解的是( )A .1)1)(1(2-=-+x x xB .))(())((m n a b n m b a --=--C .)1)(1(1--=+--b a b a abD .)32(322mm m m m --=-- 例02.在下面多项式中,能通过因式分解变形为)2)(13(y x x +--的是( )A .y x xy x 2632--+B .y x xy x 2632-+-C .xy x y x 6322+++D .xy x y x 6322--+二、因式分解的方法 类型一、提公因式法例01.在下面因式分解中,正确的是( )A .)5(522x x y y xy y x +=-+B .2)()()()(c b a c a b c b a c b c b a a ---=+-++-+--C .)1)(2()2()2(2--=-+-x a x a x a x D .)12(2422232--=--b b ab ab ab ab例02.把y x y x y x 3234268-+-分解因式的结果为 。

专题04 因式分解(28题)(解析版)--2024年中考数学真题分类汇编

专题04 因式分解(28题)(解析版)--2024年中考数学真题分类汇编

专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .2.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.【答案】()()222x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.【答案】()()222m x y x y +-【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.5.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.【答案】()()322m m m +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据多项式的结构特征,先提公因式再利用平方差公式因式分解即可得到答案,综合应用提公因式法因式分解及公式法因式分解是解决问题的关键.【详解】解:3312m m -()234m m =-()()322m m m =+-,故答案为:()()322m m m +-.8.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.【答案】6-【分析】本题考查了因式分解的应用,先把2212a b -=的左边分解因式,再把2a b -=-代入即可求出a b +的值.【详解】解:∵2212a b -=,∴()()12a b a b +-=,∵2a b -=-,∴6a b +=-.故答案为:6-.11.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +13.(2024·四川广安·中考真题)分解因式:39a a -=.【答案】()()33a a a +-【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a -=+-,故答案为:()()33a a a +-.14.(2024·四川自贡·中考真题)分解因式:23x x -=.【答案】()3x x -【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.(2024·四川内江·中考真题)分解因式:25m m -=.【答案】()5m m -【分析】原式提取公因式即可得到结果.【详解】原式=()5m m -.故答案为:()5m m -.【点睛】本题考查了提公因式法.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.【答案】()()311a m m +-【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.【答案】()21a -/()21a -+【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.18.(2024·陕西省·中考真题)分解因式:2a ab -=.【答案】a (a ﹣b ).【详解】解:2a ab -=a (a ﹣b ).故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).20.(2024·四川宜宾·中考真题)分解因式:222m -=.【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.【答案】3(x ﹣3)2【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.23.(2024·福建省·中考真题)因式分解:x 2+x =.【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).25.(2024·江西省·中考真题)因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()2144cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -【答案】(1)7;(2)()()222a a b a b +-【分析】本题考查了实数的混合运算,因式分解;(1)根据算术平方根,特殊角的三角函数值,零指数幂,负整数指数幂,进行计算即可求解;(2)先提公因式2a ,进而根据平方差公式因式分解,即可求解.【详解】(1)解:原式124142=+⨯-+2214=+-+7=;(2)解:原式()2224a a b =-()()222a a b a b =+-27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m-+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.【答案】(1)证明见解析;(2),m n 不可能都为整数,理由见解析.【分析】本小题考查整式的运算、因式分解、等式的性质等基础知识:考查运算能力、推理能力、创新意识等,以及综合应用所学知识分析、解决问题的能力.(1)根据题意得出()3,b a m n c amn =+=,进而计算212b ac -,根据非负数的性质,即可求解;(2)分情况讨论,①,m n 都为奇数;②,m n 为整数,且其中至少有一个为偶数,根据奇偶数的性质结合已知条件分析即可.【详解】(1)解:因为3,b c m n mn a a+==,所以()3,b a m n c amn =+=.则()22212[3]12b ac a m n a mn-=+-。

中考数学复习之因式分解专题

中考数学复习之因式分解专题

中考数学复习之因式分解专题1.分解因式:(x﹣1)2+2(x﹣5).2.(1)计算:(﹣)﹣2+(π﹣3.14)0+4cos45°﹣|1﹣|;(2)因式分解:﹣3xy3+12xy.3.(8分)(1)计算:sin30°+﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣484.(8分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)5.(8分)健康生技公司培养绿藻以制作「绿藻粉」,再经过后续的加工步骤,制成绿藻相关的保健食品.已知该公司制作每1公克的「绿藻粉」需要60亿个绿藻细胞.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)假设在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞亦可继续分裂.今从1个绿藻细胞开始培养,若培养期间绿藻细胞皆未死亡且培养环境的光照充沛,经过15天后,共分裂成4k个绿藻细胞,则k之值为何?(2)承(1),已知60亿介于232与233之间,请判断4k个绿藻细胞是否足够制作8公克的「绿藻粉」?6.(8分)先因式分解,再计算求值:2x3﹣8x,其中x=3.7.(8分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)8.(8分)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.9.(8分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.10.(8分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.11.(8分)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.12.(8分)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为10,则称数M为“合和数”,并把数M分解成M=A×B的过程,称为“合分解”.例如∵609=21×29,21和29的十位数字相同,个位数字之和为10,∴609是“合和数”.又如∵234=18×13,18和13的十位数字相同,但个位数字之和不等于10,∴234不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M进行“合分解”,即M=A×B.A的各个数位数字之和与B的各个数位数字之和的和记为P(M);A的各个数位数字之和与B的各个数位数字之和的差的绝对值记为Q(M).令G(M)=,当G(M)能被4整除时,求出所有满足条件的M.13.(8分)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”.例如:m=3507,因为3+7=2×(5+0),所以3507是“共生数”;m=4135,因为4+5≠2×(1+3),所以4135不是“共生数”.(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F(n)=.求满足F(n)各数位上的数字之和是偶数的所有n.14.(8分)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.15.(8分)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c.【基础训练】(1)解方程填空:①若+=45,则x=;②若﹣=26,则y=;③若+=,则t=;【能力提升】(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被整除,﹣一定能被整除,•﹣mn一定能被整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532﹣235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为;②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数.。

初三数学因式分解法

初三数学因式分解法

初三数学因式分解法因式分解是一种重要的恒等变形,作为一种数学思想方法,它有着十分广泛的运用。

下面是店铺为大家整理的初三数学因式分解法,希望大家喜欢。

初三数学因式分解法篇1许多数学问题的有力工具。

因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。

而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等。

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003淮安市中考题)解:x -2x -x=x (x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x2 -19x-6 分析: 1 -3 7 22-21=-19解:7x2 -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考专题复习:第四讲因式分解
【重点考点例析】
考点一:因式分解的概念
例1 (xx•株洲)多项式x2+mx+5因式分解得(x+5)(x+n),则m= ,n= .
思路分析:将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.
解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n
∴,∴,
故答案为6,1.
点评:本题考查了因式分解的意义,使得系数对应相等即可.
对应训练
1.(xx•河北)下列等式从左到右的变形,属于因式分解的是()
A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1
C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)
1.D
考点二:因式分解
例2 (xx•无锡)分解因式:2x2-4x= .
思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.
解:2x2-4x=2x(x-2).
故答案为:2x(x-2).
点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.
例3 (xx•南昌)下列因式分解正确的是()
A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2
C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)
思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.
解:A、x2-xy+x=x(x-y+1),故此选项错误;
B、a3-2a2b+ab2=a(a-b)2,故此选项正确;
C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;
D、ax2-9,无法因式分解,故此选项错误.
故选:B.
点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.
例4 (xx•湖州)因式分解:mx2-my2.
思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,
=m(x2-y2),
=m(x+y)(x-y).
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
对应训练
2.(xx•温州)因式分解:m2-5m= .
2.m(m-5)
3.(xx•西宁)下列分解因式正确的是()
A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)
C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)2
3.B
4.(xx•北京)分解因式:ab2-4ab+4a= .
4.a(b-2)2
考点三:因式分解的应用
例5 (xx•宝应县一模)已知a+b=2,则a2-b2+4b的值为.
思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,
∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.
故答案为:4.
点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解本题的关键,同时还隐含了整体代入的数学思想.
对应训练
5.(xx•鹰潭模拟)已知ab=2,a-b=3,则a3b-2a2b2+ab3= .5.18
【聚焦山东中考】
1.(xx•临沂)分解因式4x-x2= .
1.x(4-x)
2.(xx•滨州)分解因式:5x2-20= .
2.5(x+2)(x-2)
3.(xx•泰安)分解因式:m3-4m= .
3.m(m-2)(m+2)
4.(xx•莱芜)分解因式:2m3-8m= .
4.2m(m+2)(m-2)
5.(xx•东营)分解因式:2a2-8b2= .
5.2(a-2b)(a+2b)
6.(xx•烟台)分解因式:a2b-4b3= .
6.b(a+2b)(a-2b)
7.(xx•威海)分解因式:-3x2+2x-= .
7.
8.(xx•菏泽)分解因式:3a2-12ab+12b2= .
8. 3(a-2b)2
【备考真题过关】
一、选择题
1.(xx•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9
1.D
2.(xx•佛山)分解因式a3-a的结果是()
A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)2.C
3.(xx•恩施州)把x2y-2y2x+y3分解因式正确的是()
A.y(x2-2xy+y2)B.x2y-y2(2x-y) C.y(x-y)2D.y(x+y)2 3.C
二、填空题
4.(xx•自贡)多项式ax2-a与多项式x2-2x+1的公因式是.4.x-1
5.(xx•太原)分解因式:a2-2a= .
5.a(a-2)
6.(xx•广州)分解因式:x2+xy= .
6.x(x+y)
7.(xx•盐城)因式分解:a2-9= .
7.(a+3)(a-3)
8.(xx•厦门)x2-4x+4=()2.
8.x-2
9.(xx•绍兴)分解因式:x2-y2= .
9.(x+y)(x-y)
10.(xx•邵阳)因式分解:x2-9y2= .
11.(x+3y)(x-3y)
12.(xx•南充)分解因式:x2-4(x-1)= .
12.(x-2)2
13.(xx•遵义)分解因式:x3-x= .
13.x(x+1)(x-1)
14.(xx•舟山)因式分解:ab2-a= .
14.a(b+1)(b-1)
15.(xx•宜宾)分解因式:am2-4an2= .
15.a(m+2n)(m-2n)
16.(xx•绵阳)因式分解:x2y4-x4y2= .
16.x2y2(y-x)(y+x)
17.(xx•内江)若m2-n2=6,且m-n=2,则m+n= .
17.3
18.(xx•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.24
19.(xx•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .
19.-3135630 8B2E 謮
-33313 8221 舡32866 8062 聢rl30996 7914 礔31611 7B7B 筻c20002 4E22 丢C
39564 9A8C 验。

相关文档
最新文档