调频调制解调系统

合集下载

(高频电子线路)第七章频率调制与解调

(高频电子线路)第七章频率调制与解调

02
频率调制
定义与原理
定义
频率调制是一种使载波信号的频率随 调制信号线性变化的过程。
原理
通过改变振荡器的反馈电容或电感, 使其等效谐振频率随调制信号变化, 从而得到调频信号。
调频信号的特性
线性关系
调频信号的频率与调制信号成线性关系, 即f(t)=f0+m(t),其中f(t)是瞬时频率, f0是载波频率,m(t)是调制信号。
介绍了多种调频解调的方法,包括相 干解调和非相干解调,并比较了它们
的优缺点和应用场景。
调频信号的特性分析
详细分析了调频信号的频率、幅度和 相位特性,以及这些特性如何影响信 号的传播和接收。
频率调制与解调的应用
讨论了频率调制与解调在通信、雷达、 电子战等领域的应用,并给出了具体 的应用实例。
未来研究方向与挑战
带宽增加
调频指数
调频指数是调频信号的最大瞬时频率与 载波频率之差与调制信号幅度之比的绝 对值,表示调频信号的频率变化范围。
调频信号的带宽随着调制信号的增加 而增加,因此具有较好的抗干扰性能。
调频电路实现
01
02
03
直接调频电路
通过改变振荡器元件的物 理参数实现调频,具有电 路简单、调频范围较窄的 优点。
调频系统集成化 与小型化研究
随着电子技术的进步,未来 的研究将更加注重调频系统 的集成化和小型化。这涉及 到系统架构的设计、电路的 优化以及新型材料的应用等 多个方面。
调频技术的跨领 域应用探索
除了传统的通信和雷达领域 ,频率调制与解调技术还有 望在物联网、无人驾驶、生 物医疗等领域发挥重要作用 。未来的研究将探索这些新 的应用场景,并寻求技术与 具体领域的结合点。

调频广播发射机的数字调制与解调技术

调频广播发射机的数字调制与解调技术

调频广播发射机的数字调制与解调技术调频广播发射机作为广播传输的主要设备之一,起着将音频信号转化为无线电信号并传输到接收端的重要作用。

在调频广播发射机的设计与运行中,数字调制与解调技术发挥着关键的作用。

本文将介绍数字调制与解调技术在调频广播发射机中的应用及其相关原理。

一、数字调制技术在调频广播发射机中的应用数字调制技术通过将模拟信号转化为数字信号,实现信号的高效编码和传输。

在调频广播发射机中,数字调制技术可以较好地抗干扰、提高传输效率和扩大频谱利用率。

以下是一些常见的数字调制技术在调频广播发射机中的应用:1. 正交幅度调制(QAM):正交幅度调制技术通过将调幅和调相结合,在相同的带宽内传输更多的信息。

调频广播发射机使用QAM技术可以提高数据传输速率和抗干扰能力。

2. 倍频调制(FM):倍频调制是调频广播发射机中最常见的调制技术之一。

通过改变频率的变化速度,将音频信号转化为无线电信号。

使用数字调制技术,可以实现更精确的频率控制和调制效果。

3. 正交频分复用(OFDM):正交频分复用技术将高速数据流分为多个较低速率的子流,分别调制到不同的子载波上,然后将它们合并为一个复合信号进行传输。

OFDM技术可在有限的频谱内传输更多的数据,并提高系统的容错能力。

4. 直接数字频率合成(DDS):DDS技术可用于产生高精度的频率合成信号。

通过数字控制,可以实现频率的实时调整和稳定性的优化,提高调频广播发射机的性能和效率。

二、数字解调技术在调频广播发射机中的应用数字解调技术是将数字信号转化为对应的模拟信号的过程,用于从接收到的信号中还原原始的音频信号。

以下是一些常见的数字解调技术在调频广播发射机中的应用:1. 直接数字解调(DDC):直接数字解调技术通过将收到的数字信号经过基带处理和滤波,直接还原原始的音频信号。

DDC技术可以提高抗干扰性能和解调精度,并消除传统解调器中的模拟处理环节。

2. 程序控制解调器(DPU):程序控制解调器是一种通过软件实现的数字信号解调设备。

频率调制与解调

频率调制与解调
连续波雷达
通过连续发射载波信号并调制频率,实现目标的测距和定位。
雷达测距与定位的优点
高精度、远距离、实时性强。
05 频率调制与解调的优缺点
优点
抗干扰能力强
频率调制技术通过改变信号的频率来传输信息,能够有效抵抗各种 干扰,如噪声和多径干扰,从而提高信号的传输质量和可靠性。
频带利用率高
频率调制技术可以在有限的频带内传输更多的信息,提高了频谱利 用率。
卫星通信
1 2
卫星电视信号传输
通过将视频和音频信号调制到高频载波上,实现 卫星电视信号的传输。
卫星电话通信
利用频率调制技术,实现远距离的语音通信。
3
卫星导航定位
通过频率调制技术,实现高精度的定位和导航服 务。
雷达测距与定位
脉冲雷达
利用频率调制技术,发射脉冲信号并接收反射回来的信号,通过 测量信号往返时间来计算目标距离。
动态频谱管理
利用智能化的动态频谱管 理技术,实现频谱资源的 灵活分配和高效利用。
新技术的应用与展望
人工智能与机器学习
利用人工智能和机器学习技术对调频信号进行智能分析和优化, 提高信号处理效率和可靠性。
物联网与5G通信
结合物联网和5G通信技术,实现大规模、高密度、低延迟的调 频信号传输和处理。
软件定义无线电
01
03
调频信号的解调方法有多种,包括相干解调、非相干 解调等。相干解调需要使用到载波信号的相位信息,
而非相干解调则不需要。
04
频率调制的基本原理是将输入信号控制载波的频率变 化,从而实现信息的传输。解调则是通过检测载波的 频率变化来还原出原始信息。
对实际应用的指导意义
01
02
03

调频解调电路工作原理

调频解调电路工作原理

调频解调电路工作原理
调频解调电路工作原理:
调频解调电路是一种用于将调频信号还原为原来的频率信号的电路。

其工作原理基于调频信号的特点,即频率会随着信号中的信息内容而变化。

调频信号可以表示为:fm(t) = Ac * cos(2π * (fc + kf * m(t)) * t),其中fm(t)为调频信号,Ac为载波幅度,fc为载波频率,kf为
调制系数,m(t)为调制信号。

调频解调电路主要包括两个部分:解调器和滤波器。

解调器的作用是提取调频信号中的调制信号,一般采用频率鉴频器或相干解调器来完成。

频率鉴频器通过与载波频率同步,将调频信号的频率变化转换为振幅变化,然后通过一个包络检波器来提取调制信号。

相干解调器则通过与载波信号相干检波的方式,将调频信号还原为基带信号。

滤波器的作用是去除解调过程中产生的干扰,保留所需的调制信号。

解调过程中可能会引入一些高频噪声或者其他信号,需要使用滤波器将它们滤除,只保留所需的调制信号。

通过解调器和滤波器的协同工作,调频解调电路可以将调频信号还原为原来的频率信号,从而实现对调频信号的解调。

基于matlab的fm系统调制与解调的仿真课程设计

基于matlab的fm系统调制与解调的仿真课程设计

基于matlab的fm系统调制与解调的仿真课程设计课程设计题目:基于MATLAB的FM系统调制与解调的仿真一、设计任务与要求1.设计并实现一个简单的FM(调频)调制和解调系统。

2.使用MATLAB进行仿真,分析系统的性能。

3.对比和分析FM调制和解调前后的信号特性。

二、系统总体方案1.系统组成:本设计包括调制器和解调器两部分。

调制器将低频信号调制到高频载波上,解调器则将已调制的信号还原为原始的低频信号。

2.调制方式:采用线性FM调制方式,即将低频信号直接控制高频载波的频率变化。

3.解调方式:采用相干解调,通过与本地载波信号相乘后进行低通滤波,以恢复原始信号。

三、调制器设计1.实现方式:使用MATLAB中的modulate函数进行FM调制。

2.参数设置:选择合适的载波频率、调制信号频率以及调制指数。

3.仿真分析:观察调制后的频谱变化,并分析其特性。

四、解调器设计1.实现方式:使用MATLAB中的demodulate函数进行FM解调。

2.参数设置:选择与调制器相同的载波频率、低通滤波器参数等。

3.仿真分析:观察解调后的频谱变化,并与原始信号进行对比。

五、系统性能分析1.信噪比(SNR)分析:通过改变输入信号的信噪比,观察解调后的输出性能,绘制信噪比与误码率(BER)的关系曲线。

2.调制指数对性能的影响:通过改变调制指数,观察输出信号的性能变化,并分析其影响。

3.动态范围分析:分析系统在不同输入信号幅度下的输出性能,绘制动态范围曲线。

六、实验数据与结果分析1.实验数据收集:根据设计的系统方案进行仿真实验,记录实验数据。

2.结果分析:根据实验数据,分析系统的性能指标,并与理论值进行对比。

总结实验结果,提出改进意见和建议。

七、结论与展望1.结论:通过仿真实验,验证了基于MATLAB的FM系统调制与解调的可行性。

实验结果表明,设计的系统具有良好的性能,能够实现低频信号的FM调制和解调。

通过对比和分析,得出了一些有益的结论,为进一步研究提供了基础。

第7章 频率调制与解调

第7章  频率调制与解调

未加调制信号时的频率 若γ=2,则得
一般情况下,γ≠2,这时,上式可以展开成幂级数
忽略高次项,上式可近似为
2013年8月23日星期五8时17分29秒
二次谐波失真系数可用下式求出:
2013年8月23日星期五8时17分29秒
调频灵敏度可以通过调制特性或式(7―27)求出。根据调频灵敏 度的定义,有
表明调频灵敏度由二极管的特性和静态工作点确定。
Bs=2nF=2mfF=2Δfm
最大频偏的 两倍 当mf很小时,如mf<0.5,为窄 带调频,此时 Bs=2F 图7―6 |Jn(mf)|≥0.01时的n/mf曲线
2013年8月23日星期五8时17分29秒
对于一般情况,带宽为 Bs=2(mf+1)F=2(Δfm+F) 更准确的调频波带宽计算公式为 根据mf的值来选择 带宽的计算公式
2013年8月23日星期五8时17分29秒
FM信号的频谱有如下特点: 1)以载频fc为中心,无穷多对以 调制信号频率为间隔的边频分量 组成,各分量的幅度值取决于 Bessel函数。 2)载频分量不总是最大,有时 为零。 3)FM信号的功率大部分集中在 载频附近。 4)频谱结构于mf有密切关系。 思考:哪些参量的变化 能够引起mf的变化,频 谱结构有何影响? (a)Ω为常数;(b)Δωm为常数
当mp≤π/12时,上式近似为
uPM≈Ucosωct-UmpcosΩtsinωct
当x很小时cosx≈1,sinx≈x
2013年8月23日星期五8时17分29秒
说明在调相指数很小时,调相波可以由两个信号合成。
先积分再调相 为调频信号
调相原理框图
调幅原理框图
图7―11 矢量合成法调频
2013年8月23日星期五8时17分29秒

调频广播发射机的模拟调制与解调技术

调频广播发射机的模拟调制与解调技术

调频广播发射机的模拟调制与解调技术调频广播发射机是广播电台中最为重要的设备之一,它们以模拟调制与解调技术为基础,将音频信号转换为调制信号并通过天线传播出去。

本文将深入探讨调频广播发射机的模拟调制与解调技术,包括调制原理、调制器和解调器的工作原理以及常见的调制方式。

1. 调制原理调频广播发射机中的调制是指将音频信号转换为适合传输的高频载波信号的过程。

常用的调制方式有频率调制(FM)和相移调制(PM)。

频率调制是通过改变载波的频率来表示音频信号的变化,而相移调制则是改变载波的相位来传递音频信号的信息。

2. 调制器的工作原理调频广播发射机中的调制器负责将音频信号进行调制。

它由振荡器和调制电路组成。

振荡器产生一个稳定的高频信号作为载波,而调制电路通过对载波的频率或相位进行调整来传递音频信号的信息。

常用的调制电路包括甄别器、电容和电感调制器、倍频锁相环等。

3. 解调器的工作原理解调器位于接收端,负责将调制后的信号解调为原始的音频信号。

调频广播发射机中常用的解调方式为鉴频解调。

鉴频解调器通过将接收到的信号与本地稳定的高频信号进行混频,得到中频信号,再经过一系列滤波、放大和音频处理步骤,最终得到原始的音频信号。

4. 常见的调制方式4.1 广播发射机中常用的调制方式有广域调制(WFM)、中域调制(NFM)和窄域调制(NFM)。

广域调制用于传输音乐等高保真度的信号,其调频指数较大。

中域调制用于传输对音质要求不高的语音信号,调频指数较小。

而窄域调制则用于传输短距离的通信信号,调频指数更小。

4.2 除了常见的调频调制方式,调频广播发射机还可以采用调相调制(PM)和脉冲调制(PWM)等。

调相调制通过改变载波的相位来传递音频信号的信息,适用于在噪声环境下传输。

脉冲调制则是将音频信号转换为脉冲宽度或脉冲位置来传递信息,适用于数字通信。

5. 调频广播发射机的应用与发展调频广播发射机作为广播电台中的重要设备,在传播领域扮演着重要角色。

通信系统中的调制与解调技术

通信系统中的调制与解调技术

通信系统中的调制与解调技术通信系统是现代社会中不可或缺的一部分,而调制与解调技术则是通信系统中至关重要的环节。

调制(Modulation)是将要传送的信号通过改变载波的某些特性来进行编码的过程,而解调(Demodulation)则是在接收端将调制后的信号还原为原始信号的过程。

本文将对通信系统中的调制与解调技术进行详细的探讨。

一、调制技术调制技术是将信息信号转换为与其调制的载波相适应的信号,以便在信道中传输。

常见的调制技术有以下几种:1.1. 幅度调制(AM)幅度调制是将信息信号的幅度变化与载波的幅度相对应的调制方式。

在幅度调制中,信号的幅度变化被编码到载波的振幅中,调制后的信号传输到接收端进行解调。

幅度调制简单、成本较低,广泛应用在AM广播和语音通信等领域。

1.2. 频率调制(FM)频率调制是将信息信号的频率变化与载波的频率相对应的调制方式。

在频率调制中,信号的频率变化被编码到载波的频率中,调制后的信号传输到接收端进行解调。

频率调制具有良好的抗干扰能力,广泛应用在调频广播和音频传输等领域。

1.3. 相位调制(PM)相位调制是将信息信号的相位变化与载波的相位相对应的调制方式。

在相位调制中,信号的相位变化被编码到载波的相位中,调制后的信号传输到接收端进行解调。

相位调制在数字通信和调制解调器等领域有着广泛的应用。

二、解调技术解调技术是在接收端将调制后的信号还原为原始信号的过程。

常见的解调技术有以下几种:2.1. 匹配滤波解调匹配滤波解调(Matched Filter Demodulation)是一种常见的解调技术,特点是在接收端使用滤波器来提取所需的信号。

该技术通过与已知信号进行相关,将输入信号与理想信号进行比较,从而识别和还原原始信息。

匹配滤波解调具有较好的信号还原能力和抗干扰能力。

2.2. 直接解调直接解调(Direct Demodulation)是一种简单直接的解调技术,适用于一些简单的调制方式。

第7章频率调制与解调

第7章频率调制与解调

2024/8/8
16
间接调频中的调相方法: (1) 矢量合成法:针对窄带调相。
uPM (t) Uc cos(ct mp cost)
Uc cosct cos(mp cost) Uc sinct sin(mp cost) 当m p π/12时:uPM (t) U c cosct U cmp cost sin ct
本章的重点是调频和鉴频。
2024/8/8
1
1、调频信号的时域分析
调制信号: u U cost;载波信号 :uc Uc cosct; 瞬时频率: (t) c (t) c k fU cost c m cost
k f :比例常数 (调制灵敏度 ); m k fU : 峰值角频偏。
调频信号瞬时相位: (t )
变容二极管调频器:用调制信号去控制振荡器的变容二极管的 结电容,是最常用的调频方法,本章要重点讲这种调频电路。
电抗管调频:用电子管、晶体管或场效应管作为振荡器的等效 可控电抗,在调制信号控制下实现调频,目前这种调频方法已 很少使用。
(2) 间接法:对调制信号先积分,再调相可以实现调频。
间接法的关键是如何调相,调相方法包括:矢量合成法、 可变移相法和可变延时法。
J
2 n
(mf
)
n
Uc2 2RL
Pc ,
J
2 n
(mf
)
1
n
说明:调频波的平均功率和未调载波的平均功率相等。因此调
频器可以理解为功率分配器,它的功能是将载波功率分配给每
个边频分量,而分配的原则与调频指数mf有关。
4、调频波和调相波的比较
调制信号:u U cost 载波信号:uc Uc cosct
Δfm=75kHz,Fmax=15kHz,Bs=180kHz>>2Fmax=30kHz。 适用频段:由于FM信号的带宽较宽,因此FM只用于超短 波和频率更高的波段。

通信信号的调制和解调技术

通信信号的调制和解调技术

通信信号的调制和解调技术随着科技的不断进步,通信技术在我们的生活中扮演着越来越重要的角色。

作为通信技术的核心,调制和解调技术起到了关键的作用。

本文将详细介绍通信信号的调制和解调技术,并分步骤进行说明。

一、调制技术1. 通信信号的调制是指将源信号转换为适合传输的调制信号。

调制技术可以将源信号变成需要传输的信号。

2. 常见的调制技术有:振幅调制(AM)、频率调制(FM)和相位调制(PM)。

3. 振幅调制(AM)是指通过改变调制信号的振幅来实现信号的调制。

这种调制技术广泛应用于广播和电视传输中。

4. 频率调制(FM)是指通过改变调制信号的频率来实现信号的调制。

这种调制技术常用于FM广播和音频传输。

5. 相位调制(PM)是指通过改变调制信号的相位来实现信号的调制。

这种调制技术在通信中也有广泛应用。

二、解调技术1. 通信信号的解调是指将调制后的信号还原为源信号的过程。

解调技术可以从调制信号中还原出源信号。

2. 解调技术主要包括同步、检测和滤波三个步骤。

3. 同步是指在解调过程中确保解调器的接收端和发送端保持同步,以便准确还原信号。

4. 检测是指将同步后的信号转化为模拟信号,以便后续处理。

5. 滤波是指通过滤波器去除解调后的信号中的噪声和杂波。

三、调制和解调的分类1. 数字调制和解调:数字调制和解调是指将数字信号转化为模拟信号或将模拟信号转化为数字信号的过程。

常用的数字调制技术包括正交振幅调制(QAM)和相移键控(PSK)等。

2. 模拟调制和解调:模拟调制和解调是指将模拟信号转化为模拟调制信号或将模拟调制信号转化为模拟信号的过程。

常用的模拟调制技术包括调幅调制(AM)、调频调制(FM)和调相调制(PM)等。

四、应用举例1. 无线通信:无线通信中广泛应用的调制技术包括频率调制和相位调制。

比如,蜂窝通信系统中使用的GSM系统就是用的GMSK(高斯最小频移键控)的调制技术。

2. 数字电视:数字电视通过使用数字调制技术将视频信号转化为数字信号进行传输,并通过解调技术将数字信号还原为视频信号。

调频广播发射机的信号调制与解调技术

调频广播发射机的信号调制与解调技术

调频广播发射机的信号调制与解调技术调频广播发射机在传输广播信号时使用的是调频技术。

调频技术是通过在载频信号上调制一个频率可变的信号来传输信息。

这种技术通常使用频率调制指数(Frequency Modulation, FM)方式来实现。

在本文中,我们将详细介绍调频广播发射机的信号调制与解调技术。

一、调频广播发射机的信号调制技术1.频率调制指数调频广播发射机使用频率调制指数来调制音频信号。

频率调制指数是指调频信号的瞬时频率与调制信号的瞬时振幅成正比关系。

在调频广播发射机中,音频信号被转换为电压信号,并通过调频电路进行处理,最后将调制信号发送到射频模块进行广播。

调频电路包括振荡器、频率倍频电路和频率限制电路等。

2.振荡器在调频广播发射机中,振荡器是一个重要的组件,用于产生射频信号。

振荡器通常采用压控振荡器(Voltage-Controlled Oscillator, VCO)来产生可变频率的射频信号。

VCO的频率稳定度对调频广播发射机的正常工作至关重要。

3.频率倍频电路为了改善射频信号的质量,调频广播发射机通常会使用频率倍频电路。

频率倍频电路将振荡器产生的低频信号通过倍频器进行频率倍增,得到所需的射频信号。

这样可以提高射频信号的频率稳定度和输出功率。

4.频率限制电路频率限制电路用于限制调频信号的频率范围,以保持广播信号的合法传输。

调频广播发射机会对调制信号进行限制,避免频率超过规定范围,防止干扰其他无线通信系统。

二、调频广播发射机的信号解调技术调频广播发射机的信号解调技术是将调制后的信号还原为原始输入信号。

信号解调是调频广播接收的关键步骤,主要有两种基本解调技术:鉴频解调和相频解调。

1.鉴频解调鉴频解调是调频广播发射机中常用的解调技术。

它通过将射频信号与本地振荡信号进行混频,将调制信号与本地振荡信号进行比较。

如果频率匹配,输出的信号将大幅度增强。

鉴频解调技术适用于调频广播接收机中,能够还原原始音频信号。

电磁波的调制与解调技术

电磁波的调制与解调技术

电磁波的调制与解调技术电磁波的调制与解调技术是现代通信系统中至关重要的一部分。

通过调制,我们可以将信息信号转换为适合传输的电磁波信号,而解调则是将接收到的电磁波信号转换回原始的信息信号。

本文将探讨电磁波的调制与解调技术,介绍常见的调制方式以及其原理。

一、调制的概念与原理调制是指将信息信号与载波信号相结合,通过改变载波信号的某些特性,将信息信号转换为适合传输的信号形式。

通常情况下,信息信号是低频信号,而载波信号是高频信号。

调制的主要目的是将低频信号转换为高频信号,以便能够进行远距离传输。

常见的调制方式包括调幅(AM)、调频(FM)和调相(PM)三种。

调幅是通过改变载波信号的振幅来携带信息信号,调频是通过改变载波信号的频率来传输信息信号,而调相则是通过改变载波信号的相位来传递信息信号。

在调制的过程中,需要使用调制器来实现信号的转换。

调制器可以分为模拟调制器和数字调制器两种类型。

模拟调制器利用模拟电路来改变载波信号的某些特性,而数字调制器则利用数字信号处理技术来进行信号的处理和转换。

二、调制技术的应用调制技术在现代通信系统中有着广泛的应用。

无线通信、广播电视、移动通信等领域都离不开调制技术的支持。

1. 无线通信:无线通信系统中,调制技术用于将语音、图像等信息转换为电磁波信号进行传输。

常见的调制方式是调幅和调频。

调幅在调制过程中改变载波信号的振幅来传输信息信号,而调频则通过改变载波信号的频率来传递信息信号。

2. 广播电视:广播电视系统利用调制技术将音频和视频信号转换为电磁波信号进行传播。

调幅是广播电视系统中常用的调制方式。

在调幅过程中,音频信号被用于改变载波信号的振幅,从而携带音频信息。

3. 移动通信:移动通信系统中,调制技术用于将语音、数据等信息转换为电磁波信号进行传输。

调频和调相是常见的调制方式。

调频通过改变载波信号的频率,将语音和数据信号转换为适合无线传输的信号形式。

调相则是通过改变载波信号的相位来传递信息信号。

FM调频与解调原理

FM调频与解调原理

二,调频立体声编码 MPX=(L+R)+38KHZ*(L-R)+19KHZ
立体声广播频谱图


L+R 频 L-R 频 L-R
下边带 上边带
辅助 通信通道
15 19 23
38
53 59
75
f(KHZ)
立体声广播信号的产生
左声道
L-R


右声道 R
38Khz振荡器
除2
L+R
衰减
去调频发射机
立体声广播的解调
单位以M调频的一些基本参数计算
Stereo Separation:立体是声分离度 VL=Vin , VR=0 Sep. = 20 log [V / L(Demod) V ] R(Demod)
Channel Balance:声道平衡度 VL=VR=Vin C.B. = 20 log [V / L(Demod) V ] R(Demod)
½ (L+R)
L
LPF 0-15KHZ
来自鉴 频信号
BPF 23-53KHZ
导频滤波 19KHZ
*2
LPF 0-15KHZ

½ ((L-R)
R
AGND
4
AVDD
7
GND_VCO 11
GND_PA 12
VDD_PA 14
VDD_VCO 15
DGND 18
DVDD 24
SELTC_PIN
REX
1
32
X’TAL_SEL S3 S2 S1 S0 OSCOUT
31 30 29 28 27
26
OSCIN 25
SINGLE TO
DIFEERENTIAL

1、调频波的调制与解调

1、调频波的调制与解调

实验一、调频波的调制与解调一、实验内容1.调频波的调制2.调频波的解调二、实验目的和要求1.熟悉MATLAB系统的基本使用方法2.掌握调制原理和调频波的调制方法3.掌握解调原理和调频波的解调方法三、预习要求1.熟悉有关调频的调制和解调原理2.熟悉鉴频器解调的方法并了解锁相环解调四、实验设备〔软、硬件〕1.MATLAB软件通信工具箱,SIMULINK2.电脑五、实验注意事项通信仿真的过程可以分为仿真建模、实验和分析三个步骤.应该注意的是,通信系统仿真是循环往复的发展过程.也就是说,其中的三个步骤需要往复的执行几次之后,以仿真结果的成功与否判断仿真的结束.六、实验原理1调频波的调制方法1.1 调制信号的产生产生调频信号有两种方法,直接调频法和间接调频法.间接调频法就是可以通过调相间接实现调频的方法.但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加.对调频器的基本要求是调频频移大,调频特性好,寄生调幅小.所以本实验中所用的方法为直接调频法.通过一振荡器,使它的振荡频率随输f的正弦波;当输入基带入电压变化.当输入电压为零时,振荡器产生一频率为信号的电压变化时,该振荡频率也作相应的变化.1.2 调频波的调制原理与表达式此振荡器可通过VCO〔压控振荡器〕来实现.压控振荡器是一个电压——频率转化装置,振荡频率随输入控制电压线性变化.在实际应用中有限的线性控制范围体现了压控的控制特性.同时,压控振荡器的输出反馈在鉴相器上,而鉴相器反应的是相位不是频率,而这是压控相位和角频率积分关系固有的,所以需要压控的积分作用,压控输出信号的频率随输入信号幅度的变化而变化,确切的说输出信号频率域输入信号幅度成正比,若输入信号幅度大于零,输出信号频率高于中心频率;若小于零,则输出信号频率低于中心频率.从而产生所需的调频信号.利用压控振荡器作为调频器产生调频信号,模型框图如图1所示:图1 利用压控振荡器作为调制器在本章的调频仿真中,用到的调制信号为单音正弦波信号.因此,这里讨论调制信号为单频余弦波的情况.在连续波的调制中,调制载波的表达式为()cos()C C t A t ωφ=+ (1)如果幅度不变,起始相位为零时,而瞬时角频率时调制信号的线性函数,则这种调制方式为频率调制.此时瞬时角频率偏移为()FM K f t ω∆= (2)瞬时角频率为()C FM K f t ωω=+ (3)其中()f t 为调制信号,FM K 为频偏常数.由于瞬时角频率与瞬时相位之间互为微分或积分关系,即()()C FM d t K f t dtφωω==+...........................〔4〕 ()()C FM t dt t K f t dt φωω==+⎰⎰ (5)故调频信号可表达为()cos[()]FM C FM S t A t K f t dt ω=+⎰ (6)在本章的调频仿真中,用到的调制信号为单音正弦波信号.因此,这里讨论调制信号为单频余弦波的情况.调制信号为()cos m m f t A t ω= (7)如果进行频率调制,则由公式〔6〕可得调频信号表达式为〔8〕调制指数………………………………〔9〕 其中、取具体数值:采样频率fs=10000Hz振荡器的振荡频率〔即调频波的调制信号的频率〕实验要求800Hz ——17KHz初始相位信号灵敏度Kc=0.12 调频波的解调原理和解调方法解调主要方法:调频收音机的核心部件是调频解调器,其中调频解调器有三种:普通鉴频器、调频负反馈解调器和利用锁相环的调频解调器.2.1普通鉴频器的原理图2 普通鉴频器原理框图普通鉴频器是先将调频信号变换为调幅调频信号,使该调幅调频信号幅度与调频信号的瞬时频率成比例,然后再利用调幅解调器提取其包络,恢复出原基带信号.2.2调频负反馈解调器原理图3 调频负反馈解调框图在调频解调器中引入负反馈,使得加于鉴频器输入端的调频信号的调制指数很小,这样使得鉴频器前的带通滤波器的带宽是窄的,它对抑制鉴频前的加性噪声有益处.带通滤波器输出的调频信号,其调制指数远远小于接收输入调频信号的调制指数,因此带通滤波器输出的调频信号是窄带调频信号,所以调频负反馈接收机的带通滤波器与鉴频器的带宽均是窄带,低通滤波器的限制于基带信号的带宽,输出即是所需的原基带信号.调频负反馈解调器可降低门限信噪比大约3dB.2.3利用锁相环作调频解调器原理]sin cos[)(S ϕωω++=t A K t A t m m FM c FM c fmK 2K π=c f πω2c =0=ϕ图4 利用锁相环作调频解调器锁相环解调器一种低门限的解调电路,与调频负反馈不同之处在于该锁相环在锁定时,VCO 输出的调频信号与接收输入的调频信号是同频且几乎是同相的,两者的相位差甚小.环路滤波器频率相应的带宽与基带信号的带宽相同,因而对在环路滤波器输出端的噪声也进行了限带,而VCO 的输出是宽带调频信号,它的瞬时频率跟随接收频率信号的瞬时频率而变.2.4 利用锁相环解调器解调调频信号原理:在锁相环中,PFD 鉴相器检测参考信号与反馈信号之间的误差信号,是一个具有抽样性质的电路.当PFD 〔鉴相器〕检测到两个信号均有一次下降沿是,PFD 〔鉴相器〕输出一次相位误差,随后相位误差被送到低通滤波器,低通滤波器滤除其中的高频信号,计算出控制信号送入压控震荡器,压控根据控制信号输出合成信号,在反馈给PFD 〔鉴相器〕,与参考信号比较相位误差.相位误差输出一次,锁相环状态改变一次,同理不输出相位误差,则锁相环信号均不改变.其中调频负反馈以与锁相环解调器与普通鉴频器相比,它们的主要优点是可以扩展门限、降低门限信噪比,是低门限解调电路.所以首选调频负反馈以与锁相环解调器作为普通鉴频器的升级版.就本实验而言以锁相环解调器为核心器件.非相干解调器由限幅器、鉴频器和低通滤波器等组成,其方框图如图2-3所示.限幅器输入为已调频信号和噪声,限幅器是为了消除接收信号在幅度上可能出现的畸变;带通滤波器的作用是用来限制带外噪声,使调频信号顺利通过.鉴频器中的微分器把调频信号变成调幅调频波,然后由包络检波器检出包络,最后通过低通滤波器取出调制信号.设输入调频信号为: (10)〔一〕微分器的作用是把调频信号变成调幅调频波.微分器输出为 (11)))(cos()()(S ττωd m K t A t S t tf c FM t ⎰∞-+==dt t dS dt t dS t FM i d )()()(S ==))(sin()]([ττωωd m K t t K tf c fm c ⎰∞-++-=〔二〕包络检波的作用是从输出信号的幅度变化中检出调制信号.包络检波器输出为: (12)K d称为鉴频灵敏度〔V/Hz〕,是已调信号单位频偏对应的调制信号的幅度,经低通滤波器后加隔直流电容,隔除无用的直流,得: (13)连续傅里叶变换是一个特殊的把一组函数映射为另一组函数的线性算子.傅里叶变换就是把一个函数分解为组成该函数的连续频率谱.在数学分析中,信号f<t>的傅里叶变换被认为是处在频域中的信号.离散傅里叶变换的一种快速算法,简称FFT.为了节省电脑的计算时间,实现数字信号的实时处理,减少离散傅里叶变换〔DFT〕的计算量.七、实验步骤1 调频波调制Matlab仿真模拟第一步,设计原理框图:第二步,首先需要对调制信号进行积分,然后将积分过后的信号对载频信号进行调相,输出得到调频信号.第三步,具体操作:<1>通过sine wave模块〔正弦信号源〕输入幅度为5,角频率为200*pi rad/s,周期为200Hz,初始相位为90度以满足输出为单频余弦信号;<2>后跟着积分器integrator模块;作为调相的输入.<3>同时在两侧高频载波由正弦与余弦cos<2*pi*u>,sin<2*pi*u>产生,然后乘上高频载波,得到了两路载波,相乘后利用积化和差原理得到调频信号.第四步,SIMULINK模型的连接与参数配置)()]([)(S tKKKtKKt fmdcdfmcdo+=+=ωω)()(m0tKKt fmd=图6第四步,具体参数设置如下:图7 Sine wave 单频余弦信号源的参数图8 Sine wave1单频余弦信号源的参数配置图9 Sine wave2单频正弦信号源的参数配置2、解调设计的步骤与参数要求第一步,设计原理框图非相干解调器有限幅器、鉴频器和低通滤波器组成,(1)原信号的幅度为5,所以限幅器saturation 模块参数设置上下限为5,是为了消除接受信号在幅度上可能出现的畸变;(2)带通滤波器Analog Filter Design 模块截止频率为语音信号的两倍即800Hz-10000Hz,换算为角频率为2pi*f 是用来限制带外噪声.(3)鉴频器包括微分器Derivative 和包络检波器,其中的微分器把调频信号变成调幅调频波.(4)然后又通过包络检波器检出包络,包络检波器包括限幅器上下限为2和低通截止频率为300Hz,再换算成角频率填入参数(5)最后通过带通滤波器取50-150Hz,取出调制的源信号.解调的主要过程就是:非相干解调器由限幅器、鉴频器和低通滤波器组成.已调信号首先经过限幅器1,通过带通滤波器1,经包络检波器<即限幅器和低通滤波器组成>检出包络,经过带通滤波器得到解调出的信号.第二步,simulink模块的连接与参数设置图12 第一个限幅器的参数配置图13第一个带通滤波器的参数配置图14 包络检波器中的限幅器的参数配置图15 包络检波器中的低通滤波器参数配置图16 带通滤波器的参数配置调频波的仿真构建与结果分析两个仿真模块连接起来就成了调频波的调制与解调,见下图:图17 调频波的调制与解调simulink模块图18 各项仿真结果1.输入的余弦信号2.调频波3.解调后的信号图18〔2〕仿真结果1.输入的余弦信号2.调频波3.解调后的信号上面两幅图第一个调制波失真较为严重,恢复的较为理想,在积分器后插入示波器,未失真,那么是调相时的失真.第二幅图是更改了调相的两个正余弦高频载波的频率,可能是带通滤波器的参数设置超出了恢复信号的频率范围造成的,第二幅图符合解调的结果 .调频波的调制解调系统仿真分析:在此次仿真过程中,依照原有的通信Fm调频信号的调制解调原理,通过对相关模块参数的配置,经过间接调频,中心频率较为稳定,但是实现有点复杂,可能参数还是不够细腻,得到的调频波仍有一定的失真,但经过非相干解调还是能够很好地恢复,在其间不免有过很多次的更改参数,甚至有过想删除模块的冲动,但还是克服了很多的错误与不足,最后得到了比较理想的结果.八、实验报告要求1、结合实验要求,写明实验所需模块、实验原理、实验内容、画出仿真图以与步骤.2、分析实验结果.分析调频收音机输入输出信号的变化.3、通过调节不同的参数观察输出波形的变化.九、参考资料1、《通信原理教程》秦静主编中国人民公安大学 2014年9月出版2、《基于MATLAB/Simulink的系统仿真技术与应用》薛定宇,陈阳泉著清华大学 2011年出版十、思考题1、观测并分析调频波的频谱特点?2、调频波的时域波形与调幅波的时域波形有什么异同?。

调制与解调的概念

调制与解调的概念

调制与解调的概念调制与解调是通信技术中重要的概念,它们是实现信息传输的关键技术。

在通信系统中,调制与解调的作用是将信息信号转换成一定的形式,以便能够在传输媒介中传输。

本文将从调制与解调的基本概念、调制与解调的分类、调制与解调的实现原理以及调制解调器的应用等方面进行介绍。

一、调制与解调的基本概念调制是指把信息信号(如语音、图像等)按照一定的规律转换成调制信号,使得信息信号能够适应传输媒介的特性,以便能够在传输媒介中传输。

调制的过程就是在信号中加入一定的高频载波信号,使得信息信号的频率被调制到高频载波信号的频率范围内,从而形成调制信号。

解调是指在接收端将调制信号还原成原始信息信号的过程。

解调的过程就是将接收到的调制信号中的高频载波信号去除,从而得到原始的信息信号。

解调是调制的逆过程,也是通信系统中非常重要的一个环节。

二、调制与解调的分类调制和解调可以根据不同的分类方式进行划分。

1. 按照信号的调制方式分类调制和解调可以按照信号的调制方式进行分类,常见的调制方式有模拟调制和数字调制。

模拟调制是指将模拟信号进行调制,将其转换成模拟调制信号。

模拟调制分为调幅、调频和调相三种方式。

调幅是指将模拟信号的幅度加到载波信号上,形成调幅信号;调频是指将模拟信号的频率加到载波信号上,形成调频信号;调相是指将模拟信号的相位加到载波信号上,形成调相信号。

数字调制是指将数字信号进行调制,将其转换成数字调制信号。

数字调制分为ASK、FSK、PSK、QAM等多种方式。

ASK是指将数字信号转换成调幅信号;FSK是指将数字信号转换成调频信号;PSK是指将数字信号转换成调相信号;QAM是指将数字信号同时转换成调幅和调相信号。

2. 按照载波信号的性质分类调制和解调可以按照载波信号的性质进行分类,常见的载波信号有连续波和脉冲波。

连续波调制是指将信息信号加到连续的正弦波或余弦波上,形成连续波调制信号。

连续波调制主要包括调幅、调频和调相三种方式。

调频解调原理

调频解调原理

调频解调原理
调频解调是一种用于无线通信系统中的信号处理技术,用于将调幅(AM)信号转换为原始基带信号。

调频解调采用的是频率调制(FM)技术,通过改变载波信号的频率来传输信息。

调频解调的原理基于傅里叶变换和锁相环技术。

在调频调制过程中,输入信号的频率变化将导致载波信号频率的变化。

解调器中的锁相环电路可以追踪并恢复出原始信号的频率特征,从而实现解调操作。

具体而言,调频解调由以下几个步骤组成:
1. 调频调制:输入信号作为调制信号,通过乘法运算将其与高频载波信号相乘。

乘积信号的频率将随着调制信号的变化而变化。

2. 预降噪:为了减少解调过程中的噪声对输出信号的影响,通常会在解调器中加入进行预降噪处理的环节。

3. 锁相环:解调器中的锁相环电路用于跟踪和恢复原始信号的频率。

它通过比较输入信号和本地参考信号的频率差异,调整自身的本地参考频率,使其尽可能地与输入信号保持同步。

4. 低通滤波:解调器中的低通滤波器用于去除由调制过程引入的高频成分,将信号恢复到基带频率范围。

通过上述步骤,调频解调器可以将调幅信号转换为原始基带信
号。

这种信号处理技术在无线通信系统中广泛应用,如无线电广播、移动通信等领域。

它能够有效地提取出所需的信息,并消除因传输过程中的噪声和干扰引入的失真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书学生姓名:学号:学院: 信息工程学院班级:题目: 通信系统计算机仿真设计——频率调制解调系统的仿真指导教师:职称:2014 年 1 月 5 日通信系统计算机仿真设计——频率调制解调系统的仿真摘要:通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,本次课程设计是基于System view的通信系统的仿真,也就是在System view软件环境下进行频率调制解调系统的仿真设计。

调制可分为模拟调制和数字调制,模拟调制。

模拟调制常用的方法有AM调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。

经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。

调制方式往往决定着一个通信系统的性能。

关键词:FM调制解调原理;频率调制;FM信号产生和解调;System view。

前言在模拟通信系统中,信号的频率相对于信号的幅度来说,不容易受噪声的干扰,在收信端更容易准确无误地回复所发送的信号,所以频率角度调制在模拟通信中占有非常重要的作用。

角度调制与线性调制不同,已调信号频率不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生于频率搬移不同的新的频率成分,故又被称为非线性调制。

角度调制主要包裹频率调制(FM)和相位调制(PM),他们之间可相互转换。

如果载波的频率变化量与调制信号电压成正比,则称为调频(FM);由于载波频率的变化和相位的变化都表现为载波总相角的变化,因此讲调频和调相统称为调角。

由于FM用得比较多,因此这里只讨论频率调制系统。

一、设计要求(1)掌握FM调制解调的基本原理。

(2)掌握FM信号的产生方法和解调方法(3)掌握FM信号的波形及频谱特点。

二、知识要点与原理2.1 FM信号的产生频率调制是用调制信号x(t)控制载波的频率,使已调信号x FM(t)的频率按x(t)的规律变化,载波的振幅不变。

更明确一点说,瞬时角频率偏移随x(t)成正比例变化,即FM信号的振幅是不变的,调制信号x(t)的大小用FM信号与时间轴上零交点的疏密来表示,x(t)越大,则实践轴上的零交点越多。

FM信号零交叉点的变化规律直接反映了x (t)的变化规律。

角度调制的一般表达式为:x m(t)=A c cos[c t+(t)] (1)式中,A c为载波振幅;[w c t+ (t)]为信号瞬时相位。

对调频波来说,有 k f x(t) (2)式中,kf 为调制灵敏度。

所以,调频波通常表示为 X FM (t)= A c cos[c t+f x()d ]为简化问题,假设调试信号时单载波,即 x(t)=Acos m t,m << c (3)则 X FM (t)= A c cos[c t+f x()d ]= A c cos[c t+ sin m t]= A c cos[c t+m f sin m t] (4)式中,m f =,称为调频指数,也是最大相位偏移。

由贝赛尔函数公式可将式(4)化简为X FM (t)=C J n (m f )cos[2(f c +nf m )] (5)对式(5)进行傅里叶变换,可得FM 的频域表达式为X FM (f)=A Cn (m f )[(f-f c -nf m )+(f+f c +nf m )] (6)可见,单频调频信号的频谱是由频率位于f c 的冲激和以f c 为中心的无穷多个旁频分量组成的,由贝塞尔函数可以知道,离f c 越远,分量的幅度越小。

调频信号的带宽一般取 B FM =(m f +1)f m (7) 对调制信号和调频信号的时域波形进行分析,可以算出基带信号和调频信号的频谱。

对于任意信号调制的贷款也可以应用此公式,即 B FM =2(m f +1)f m =2(f+f m ) (8)式中,f m 是基带信号的最高频率。

调频信号产生有直接调频和间接调频两种方法。

图1(a )所示是采用压控振荡器(VCO )的直接调频法,因为VCO 本身就是FM 调制器。

间接法调频框图如图1(b )所示,即调制信号积分后,对载波调相,再经n 次倍频得到FM 信号。

(a )直接调频 (b )间接调频 图1 调频原理框图x(t)x(t)x FM (t)x FM (t)积分器PM 调制器VCOx FM (t)倍频器图2 FM 信号的产生原理框图2.2、FM 信号的解调调频信号的解调是通过鉴频器来实现的,常用方法主要有限幅鉴频、锁相鉴频和相干解调。

调频信号的鉴频器解调方框图如图3所示,接限幅器的目的是为了消除接收信号在幅度上可能出现的畸变。

图3 调频信号的鉴频器解调调频信号的鉴相解调方框图如图4所示。

调频信号的相干解调方框图如图5所示。

图5 调频信号的相干解调+-x p (t)x o (t)x NBFM (t) x d (t)x i (t) x FM (t) x o (t)A c cosc t积分器-90o 相移∑BPF 及限幅器鉴频器LPFx FM (t) LPFLF PD VCO解调 解调输出BPF微分 LPF相干解调c(t) x WBFM (t)x(t)在图5中,相干载波c(t)=-sin c t,乘法器输出为x p(t)=-sin2c t+[k f d](1-cos2c t) (9)经低通滤波器滤除高频分量,得x d=k f d(10)再经微分,得输出信号为x0(t)=k f x(t) (11)三、仿真设计及显示图利用System View提供的调频信号图符号产生调频信号,以锁相鉴频法建立调频信号解条的仿真模型,如图6所示。

图6 调频信号的System View 仿真模型在这个系统中,图符0为调制信号,图符1为系统提供的调频器,图符3在这里做VCO。

系统的时间设置:采样频率(Sample Rate)1kHZ,采样点数(No.of Samples)4000。

系统各图符的参数设置见下表。

FM锁相鉴频法调制解调仿真模型各图符参数图符编号图库、图符名称参数设置0 Source:simusoid Freq=100HZ,Amp=1V1 Function:Freq Mod Amp=0.5VMod Gain=400HZ/V Stio Freq=2000HZ2 Multiplier --3 Function:Freq Mod Amp=4VMod Gain=800HZ/V Stio Freq=2000HZ4 Operator:Linear Sys Butterworth Lowpass IIR 1 poles,Fc=100HZ5、6、7 Sink:Analysis --系统运行后可以得到调制信号、调频信号和解调信号的时域波形,如图7(a)调制信号(b)调频信号(c)解调信号图7信号的时域波形根据调制信号和调频信号的功率谱,调频信号的频谱的频谱离f c越远,分量的幅度越小。

根据FM调制解调原理,采用相干解调方式,建立System View 仿真模型,如图8所示。

图8 FM调制解调模型系统的时间设置:采样频率20kHz,采样点数1024。

系统各图符的参数见下表FM锁相鉴频法调制解调仿真模型各图符参数图符编号库/图符名称参数0 Source:Sinusoid Amp=1V.Freq=10Hz,Phase=0deg2 Operator:Gain/Scale:Gain Gain Units=Linear,Gain=503、4 Multiplier --5、6 Source:Sinusoid Amp=1V,Freq=100Hz,Phase=0deg7、8 Operator:Negate --9 Adder --10 Operator:Filter/Systems:Linear Sys Filters Design:Analog;Bandpass,Chebyshev,Low Cuttoff=80Hz,Hi Cuttoff=120Hz,No.of Poles=511 Operator:Filter/Systems:Linear Sys Filters Design:Analog;Lowpass,Chebyshev,Low Cuttoff=25Hz, No.of Poles=512 Operator:Derivative Gain=1013~16 Sink:Analysis --系统运行后可以得到调制信号、调频信号和解调信号的时域波形,如图9所示。

(a)调制信号(b)调频信号(c)解调信号图9 FM信号的时域波形四、总结本次设计叙述了利用System View仿真FM频率调制解调的基本原理及方法,通过这次的学习,发现了自己的很多不足,自己知识的很多漏洞,让我认识到自己知识运用上的欠缺,实践能力较差,不断熟悉课本知识,体会从理论到实践的思想,提高分析问题解决问题的能力。

通过本次课程设计,让我熟悉掌握了System View仿真软件,使我更加深刻的理解了FM频率调制解调的原理以及Syetem View软件的工作原理与相关知识,扩展了知识面,增强了能力。

通过这段时间的课程设计,自己确实学到了不少东西,能将课本知识运用到实践中,真正做到学以致用,受益匪浅。

另外,在设计过程中,更加学会了对学习资源的利用,;例如在图书馆和网上查阅相关资料,自己动手解决不懂得难题,自学能力也得到相应提高。

此外还要特别感谢老师的指导,在此,请允许我们对您表示崇高的敬意。

五、参考文献[1]验樊昌信. 通信原理及系统实验[M].电子工业出版社.2007,3.[2]冯育涛. 通信系统仿真[M].国防工业出版.2009,8.[3]戴志平、梅进杰. System View 数字通信系统仿真设计[M].北京邮电大学出版.2011,8.[4]邬春明.通信原理实验与课程设计[M].北京大学出版社2013,7.[5]尹立强、张海燕. 通信原理及System View仿真测试尹[M].西安电子科技大学出版社2012,6.。

相关文档
最新文档