丰富的图形世界专题-从三视图判断几何体的数量

合集下载

2023-2024学年九年级中考数学复习《丰富的图形世界》考题汇集专项练附答案解析

2023-2024学年九年级中考数学复习《丰富的图形世界》考题汇集专项练附答案解析

2023-2024学年九年级中考数学复习《丰富的图形世界》考题汇集专项练【满分100分】一、选择题(每小题3分,共36分)1.下列图形中,正方体的展开图有( A )①②③④A.1个B.2个C.3个D.4个2.一个几何体的展开图如图所示,则该几何体的顶点有( D )A.12个B.10个C.8个D.6个3.下列说法错误的是( C )A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成4.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的有( C )A.2个B.3个C.4个D.5个5.把如图所示的长方形绕着给定的直线旋转一周后形成的立体图形可能是( D )6.图中点A,B是正方体的两个顶点,将正方体按如下方式展开,则在展开图中点A,B的位置标注正确的是( A )A B C D7.如图所示几何体从左边看到的形状是( D )A B C D8.用平面去截下列几何体,若能截得长方形、三角形、等腰梯形三种形状的截面,则这个几何体是( D )9.如图所示的是由几个小立方块所搭成的几何体从上面所看到的,小正方形中的数字表示在该位置方块的个数,则从左边看到的这个几何体的形状图为( B )A B C D10.用若干个棱长为1的小立方体摆成如图所示的几何体,现拿掉其中的一个小立方体后,从正面看这个几何体得到的平面图形的面积与拿掉前相同,则这个拿掉的小立方体可以是( D )A.①B.②C.③D.④11.一个几何体是由几个大小相同的小立方块搭成的,从正面、左面、上面看到的这个几何体的形状图如图所示,则搭成这个几何体所需的小立方块的个数为( B )A.8B.7C.6D.512.(2021菏泽改编)如图所示的是一个几何体从三个方向看到的形状图,根据图中所标数据计算这个几何体的体积为( B )A.12πB.18πC.24πD.30π二、填空题(每小题3分,共18分)13.直升机的螺旋桨转起来形成一个圆形的面,这说明了线动成面.14.若一个直棱柱共有16个顶点,所有侧棱长的和等于72 cm,则每条侧棱的长为9 cm.15.一个正方体的平面展开图如图所示,若折成正方体后,每对相对面上标注的值的和均相等,则x+y= 10 .第15题图16.在墙角用若干个棱长为1 cm的小正方体摆成如图所示的几何体,则此几何体的体积为10 cm3.第16题图17.如图所示,长方形ABCD的长AB=4,宽BC=3,以AB所在直线为轴,将长方形旋转一周后所得几何体从正面看到的图形的面积是24 .第17题图18.如图所示,一个长方体长9 cm,宽5 cm,高4 cm.从这个长方体的一个角上挖掉一个棱长为3 cm的正方体,剩下的几何体的体积是153 cm3,表面积是202 cm2.第18题图三、解答题(共46分)19.(8分)如图所示的是由6个大小相同的小立方块搭建的几何体,其中每个小正方体的棱长为1 cm.(1)直接写出这个几何体的表面积(包括底部): ;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.解:(1)26 cm2(2)根据三视图的画法,画出相应的图形如下:20.(8分)把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面).(1)该几何体中有个小正方体;(2)其中有两面被涂色的有个小正方体,没被涂色的有个小正方体;(3)求出涂上颜色部分的总面积.解:(1)由题图,得该几何体中有14个小正方体.(2)由题图,得有两面被涂色的有4个小正方体;没被涂色的有1个小正方体.(3)涂上颜色部分的总面积为1×1×(12+9+8+4)=33(cm2).21.(8分)如图所示的是从三个方向看到的一个几何体的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看到的高为8 cm,从上面看到的三角形的三边长都为 5 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)它的一种表面展开图如图所示.(3)3×8×5=120(cm2),所以这个几何体的侧面积是120 cm2.22.(10分)(1)如图①所示,四个几何体分别是三棱柱、四棱柱、五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,并解答:四棱柱有个面, 条棱, 个顶点;六棱柱有个面, 条棱, 个顶点;由此猜想n棱柱有个面, 条棱, 个顶点.(2)如图②所示,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.若图中的正方形边长为2.1 cm,长方形的长为3 cm,宽为2.1 cm,请求出修正后所折叠而成的长方体的体积.①②解:(1)6 12 8 8 18 12 (n+2) 3n 2n(2)拼图存在问题,如图:多了一个正方形.折叠而成的长方体的体积为3×2.1×2.1=13.23(cm3).23.(12分)某玩具旗舰店根据积木数量的不同,订制了不同型号的外包装盒,所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图①所示),长方体纸箱的长为 a cm,宽为b cm,高为c cm.①②③(1)请用含有a,b,c的代数式表示制作长方体纸箱需要cm2纸板.(2)如图②所示为若干包装好的同一型号玩具堆成几何体从三个方向看到的平面图形,则组成这个几何体的玩具个数最少为多少个?(3)旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内,已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图③所示,现有甲、乙两种摆放方式,请分别计算甲、乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板更少.解:(1)(2ac+2bc+3ab)(2)根据题意知,组成这个几何体的玩具个数最少的分布情况如下图所示:所以组成这个几何体的玩具个数最少为9个.(3)由题意得a=c,a>b,甲:2(ac+2bc+2ab)+2ab,乙:2(2ab+2ac+bc)+2ab.因为a>b,所以ac>bc,所以ac-bc>0.因为甲所需纸板面积-乙所需纸板面积=2(ac+2bc-2ac-bc)=2(bc-ac)<0,所以甲种摆放方式所需外包装盒的纸板更少.。

北师大版数学七年级上册 第一章 丰富的图形世界 填空题训练很实用

北师大版数学七年级上册 第一章 丰富的图形世界 填空题训练很实用

第1章丰富的图形世界填空题训练很实用1.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.2.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)3.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).5.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)6.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.7.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是.9.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是.10.在一个高与底面直径相等的圆柱内放置一个体积最大的球.已知球的表面积公式为S n =4πr2,其中r为球的半径.那么该球与它的外切圆柱的表面积的比为.11.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是cm3.12.一个几何体的三视图如图,根据图示的数据计算该几何体的体积为.(结果保留π)13.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是cm2.14.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.15.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是cm2.17.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为cm2.18.如图为某几何体的展开图,该几何体的名称是.19.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为个.20.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为.21.如图,该正方体的主视图是形.22.已知一个几何体的三视图如图所示,这个几何体是.23.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.24.如图,在边长为12cm的正方形纸片ABCD中,EF∥AD,M、N是线段EF的六等分点,若把该正方形纸片折成一个正六棱柱,使AB与点DC重合,则M、N两点间的距离是cm.25.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是.26.一个几何体的三视图如图所示,这个几何体的侧面积为.27.如图是一个包装盒的三视图,则这个包装盒的体积是.28.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.29.如图所示是一种棱长分别为3cm,4cm,5cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用3块来搭,那么搭成的大长方体表面积最小是cm,如果用4块来搭,那么搭成的大长方体表面积最小是cm,如果用12块来搭,那么搭成的大长方体表面积最小是cm.30.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.31.如图是一个几何体的三视图,根据图中标注的数据可求得该几何体的侧面积为.32.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是.33.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是.34.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是.35.如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于.36.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为.37.一个油桶靠在墙边(其俯视图如图所示),量得AC=0.65米,并且AC⊥BC,这个油桶的底面半径是米.38.一个长方体的主视图和左视图如图所示,则这个长方体的俯视图的面积是.第1章丰富的图形世界填空题训练参考答案与试题解析1.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【解答】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16【点评】本题主要考查了几何体的表面积.2.【分析】由面F在前面,从左面看是面B知上面是E,左侧面是B,前面是F,后面是A,右侧面是D,下面是C.【解答】解:由题意知,上面是E,左侧面是B,前面是F,后面是A,右侧面是D,下面是C,故答案为:E.【点评】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其左视图的面积为3×=3(cm2),故答案为3cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.5.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.6.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.【点评】本题考查几何体的三视图.由几何体的主视图、左视图及小立方块的个数,可知俯视图的列数和行数中的最大数字.7.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.8.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“你”对面的字是顺.故答案为:顺.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故答案为:200πcm2【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.10.【分析】设球的半径为r,根据球的表面积=4πr2,圆柱的表面积=2×πr2+2πr×2r=6πr2,即可得到该球与它的外切圆柱的表面积的比.【解答】解:设球的半径为r,依题意得球的表面积=4πr2,圆柱的表面积=2×πr2+2πr×2r=6πr2,∴该球与它的外切圆柱的表面积的比为2:3,故答案为:2:3.【点评】本题主要考查了几何体的表面积,几何体的表面积=侧面积+底面积(上、下底的面积和).11.【分析】由圆柱的侧面展开图的特点可知:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高,长方形的长已知,从而可以求出底面积半径,进一步求得该圆柱的体积.【解答】解:16π÷(2×π)=8(cm)π×82×3=192π(cm3)故该圆柱的体积是192πcm3.故答案为:192π.【点评】本题主要考查了立体图形,解答此题的关键是明白:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高.12.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的体积为π×32×4=12π,故答案为:12π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.13.【分析】易得此几何体为圆柱,那么侧面积=底面周长×高,依此即可求解.【解答】解:10×10=100(cm2).答:这个圆柱的侧面积是100cm2.故答案:100.【点评】考查了展开图折叠成几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.14.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.【点评】考查了截一个几何体,正方体的体积,关键是得到小正方体的个数.15.【分析】根据主视图是从正面看到的图形直接回答即可.【解答】解:主视图是正方形的几何体可以是正方体,故答案为:正方体(答案不唯一).【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.16.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=(底面周长×母线长)÷2 可计算出结果.【解答】解:由题意得底面直径为10cm,母线长为=13cm,∴几何体的侧面积为×10π×13=65πcm2.故答案为65π.【点评】此题主要考查了由三视图判断几何体,以及圆锥的侧面积公式的应用,关键是找到等量关系里相应的量.18.【分析】展开图为两个圆,一个长方形,易得是圆柱的展开图.【解答】解:∵圆柱的展开图为两个圆和一个长方形,∴展开图可得此几何体为圆柱.故答案为:圆柱.【点评】此题主要考查了由展开图得几何体,关键是考查同学们的空间想象能力.19.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有2个小立方体,第三层至少有1个,因此搭成这个几何体的小正方体的个数最少是8个.故答案为:8.【点评】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.20.【分析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.【解答】解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位,故答案为:250π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.21.【分析】根据主视图为正面所看到的图形进而得出答案.【解答】解:正方形的主视图为正方形,故答案为:正方.【点评】本题考查了三视图的知识,主视图即为从正面所看到的图形.22.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由该几何体的三视图知,这个几何体是正三棱柱,故答案为:正三棱柱.【点评】考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.23.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.24.【分析】根据正六边形的性质解答即可.【解答】解:如图所示:∵正六边形的周长为12cm,∴MQ=QN=2cm,∠MQN=120°,连接MN,过Q作QP⊥MN,在Rt△MQP中,MP=,同理可得PN=,∴MN=2,故答案为:2【点评】此题考查几何体的展开图,关键是根据正六边形的性质解答.25.【分析】若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号;若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号;据此可得.【解答】解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.【点评】本题主要考查由三视图判断几何体,根据题意正确掌握三视图的观察角度是解题关键.26.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵直径为2cm,母线长为4cm,∴侧面积=2π×4÷2=4π(cm2).故答案为4πcm2.【点评】本题考查了由三视图判断几何体,圆锥的有关计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键;本题体现了数形结合的数学思想,熟记圆锥的侧面积公式是解题的关键.27.【分析】根据三视图,易判断出该几何体是圆柱.已知底面半径和高,根据圆柱的体积公式可求.【解答】解:综合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为10,高为20.因此它的体积应该是:π×10×10×20=2000π.故答案为2000π.【点评】本题主要考查了由三视图确定几何体的形状以及圆柱的体积的求法.28.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.29.【分析】如果用3块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用4块来搭,那么搭成的大长方体表面积最小是长4×2=8cm,宽3×2=6cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用12块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4×2=8cm,高5×2=10cm的长方体的表面积,根据长方体的表面积公式即可求解.【解答】解:长3×3=9cm,宽4cm,高5cm,(9×4+9×5+4×5)×2=(36+45+20)×2=101×2=202(cm2).答:如果用3块来搭,那么搭成的大长方体表面积最小是202cm2.长4×2=8cm,宽3×2=6cm,高5cm,(8×6+8×5+6×5)×2=(48+40+30)×2=118×2=236(cm2).答:如果用4块来搭,那么搭成的大长方体表面积最小是236cm2.长3×3=9cm,宽4×2=8cm,高5×2=10cm,(9×8+9×10+8×10)×2=(72+90+80)×2=242×2=484(cm2).答:如果用12块来搭,那么搭成的大长方体表面积最小是484cm2.故答案为:202;258;484.【点评】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.30.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.【点评】此题考查了由三视图判断几何体,本题要先判断出几何体的形状,然后根据其表面积公式进行计算即可.31.【分析】易得此几何体为圆柱,圆柱的侧面积=底面周长×高.【解答】解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得此几何体为圆柱;易得圆柱的底面直径为2,高为1,∴侧面积=2π×1=2π,故答案为:2π.【点评】本题考查圆柱的侧面积计算公式,关键是得到该几何体的形状.32.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“晋”与“祠”是相对面,“汾”与“酒”是相对面,“恒”与“山”是相对面.故答案为:祠.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.【分析】首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第二层、第三层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.【解答】解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是6故答案为:6【点评】此题主要考查了由三视图判断几何体,考查了空间想象能力,解答此题的关键是要明确:由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状.34.【分析】根据三视图的定义求解即可.【解答】解:主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=9,故答案为:9.【点评】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.35.【分析】由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,再根据侧面积公式可得.【解答】解:由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,∴这个几何体的侧面积等于3×2×3=18,故答案为:18.【点评】本题考查了由三视图求几何体的侧面积,根据三视图判断几何体的形状是关键.36.【分析】由主视图所给的图形可得到俯视图的对角线长为2,利用勾股定理可得俯视图的面积,乘以高即为这个长方体的体积.【解答】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为2,∴a2+a2=(2)2,解得a2=4,∴这个长方体的体积为4×3=12.【点评】解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.37.【分析】圆的圆心为O,连接OA、OB,可得四边形OBCA为正方形,从而求得这个油桶的底面半径.【解答】解:连接OA、OB,如图,∵BC⊥AC,OA⊥AC,OB⊥BC,OB=OA,∴四边形OBCA为正方形,∴OB=AC,∵AC=0.65m,∴这个油桶的底面半径是0.65m.故答案为:0.65【点评】本题考查了切线的性质,是基础知识比较简单.38.【分析】通过观察长方体的主视图和左视图可以得到,这个长方体的高4厘米,长3厘米,宽2厘米,因此俯视图是长3厘米,宽2厘米的长方形,因此得解.【解答】解:3×2=6(平方厘米);答:则其俯视图的面积是6平方厘米.故答案为:6.【点评】此题考查了从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.北师版七年级上册第一章丰富的图形世界1.2.2棱柱、圆柱、圆锥的展开与折叠同步测试一.选择题(共10小题,3*10=30)1.如图由7个小正方体组合而成的几何体,从物体正面看所得到的是( )2.将五个相同的小正方体堆成如图所示的物体,从上面看到的是( )3.如图所示的几何体是由五个小正方体组成的,从左面看到的是( )4.如图,几何体上半部分为正三棱柱,下半部为圆柱,其从上面看的形状图是( )5.下列四个几何体从上面看到的图形中与众不同的是( )6.下列四个几何体:其中从左面看与从上面看得到的形状图相同的几何体共有( )A.1个B.2个C.3个D.4个7.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的从三个方向看的形状图说法正确的是( )A.从正面看的形状图相同。

初中数学丰富的图形世界知识点归纳

初中数学丰富的图形世界知识点归纳

第一章丰富多彩的图形总结济宁附中李涛1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

点、线、面、体都是几何图形。

任何一个几何体都由点、线、面构成,点无大小,线有曲直而无粗细,平面是无限延伸的,面有平面和曲面,面面相交得线,线线相交得点。

本节拓展习题:将一个平面按一定方式旋转得到什么样的几何体3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱体生活中的立体图形棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥体圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)球体还有一种分类看是否有曲面:曲面体和多面体。

棱柱与圆柱的异同点相同点:圆柱、棱柱都有(相同的)个底面不同点:a.圆柱的底面是(圆)形,棱柱的底面是(多边形)形。

b.圆柱的侧面是一个(曲)面,棱柱的侧面是(平行四边形)形4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点。

1.性质:棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,2.分类:1.根据侧棱是否与底面垂直分为直棱柱和斜棱柱。

直棱柱的侧面是长方形。

斜棱柱的侧面是平行四边形。

2.棱柱还可以根据底面多边形的边数(或侧棱的条数)分类的,如:五棱柱说明它有五条侧棱而不是五条棱,它的底面为五边形。

七年级数学上册 第一章 丰富的图形世界1.4《从三个方向看物体的形状》学案北师大版

七年级数学上册 第一章 丰富的图形世界1.4《从三个方向看物体的形状》学案北师大版

2.4 从三个方向看物体的形状【学习目标】1、学会从不同的方向观察一个物体的方法2、能识别简单物体的三视图3、会画立方体及其简单组合体的三视图.【学习重点】三视图的画法【学习难点】根据三视图求立方体的数量及表面积多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。

横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

从数学的角度来理解是什么意思呢?基础知识1.三种形状图从不同的方向观察同一物体,由于方向和角度不同,通常可以看到不同的图形.如图所示.【例1】有一辆汽车如图所示,小红从楼上往下看这辆汽车,小红看到的形状是图中的( ).解析:小汽车从上面看只能看到驾驶室的顶部和车身的上面,从上面看到的是两个长方形,故选B.答案:B2.基本几何体的三种形状图【例2】如图所示的4个立体图形中,从正面看到的形状是四边形的个数是( ).A.1 B.2 C.3 D.4解析:正方体及圆柱从正面看到的形状是四边形,球与圆锥从正面看到的形状分别是圆与三角形,所以这4个几何体中从正面看到的形状是四边形的个数为2.答案:B点技巧判断几何体三个不同方向的形状图首先要弄清几何体的形状,然后想象从正面、左面、上面观察时能看到几何体的哪些部分,从而得出三个不同方向的形状图.3.三种形状图的画法(1)常见几何体的三种形状图的画法①确定从不同方向看到的几何体的形状.例如圆锥从正面看到的是三角形,从左面看到的是三角形,从上面看到的是带圆心的圆.②虚实要求:画图时,看得见的轮廓线画实线,看不见的轮廓线画虚线.(2)正方体搭建的几何体的画法画三种形状图,要注意从相应的方向看几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图.我的笔记___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【例3】画出下面几何体的三种形状图.分析:从正面看,有3列,左边第1列有1层,第2列有3层,第3列有2层;从左面看,有2行,前面一行有1层,后面一行有3层;从上面看,有3列,从左面数第1列,有1个正方形,第2列有2个正方形,第3列有1个正方形(横着叫行,竖着叫列).解:思维扩展4.三种形状图的运用(1)根据三种形状图确定几何体都从某一个方向看,不同的几何体也可能会得到相同的平面图形(如球),因此,要全面了解一个几何体的形状,常需要从正面、左面和上面三个不同的方向进行观察.物体长度、高度和宽度的确定:①三种形状图中的从正面看到的形状图和从左面看到的形状图反映物体的高度;②从正面看到的形状图和从上面看到的形状图反映物体的长度;③从左面看到的形状图与从上面看到的形状图反映物体的宽度.(2)由三种形状图判断小正方体的个数如图,①从正面看到的形状图和从左面看到的形状图中可以看出几何体的层数有3层;②从左面看到的形状图和从上面看到的形状图中可得到排数有3排;③从正面看到的形状图和从上面看到的形状图中可得到列数有2列.具体数量:从上面看到的形状图中第一排和第三排只有1列,而从左面看到的形状图中看出第一排有3层,第三排有1层,故第一列第一排位置上有3个小正方体;同样的方法,由从上面看到的形状图和从正面看到的形状图可以确定第二列第二排有1个小正方体,从左面看到的形状图看出第二排有两层,故第一列第二排位置上有2个小正方体.【例4-1】如图是某几何体的三种形状图.(1)说出这个几何体的名称; (2)画出它的表面展开图;(3)若从正面看到的形状图的长为15 cm ,宽为4 cm ;从左面看到的形状图的宽为3 cm ,从上面看到的形状图的最长边长为5 cm ,求这个几何体的所有棱长的和为多少?它的侧面积为多大?它的体积为多大?分析:由三种形状图可确定该几何体为三棱柱,然后确定出各棱的长,从而可画出它的表面展开图,并计算出它的侧面积和体积.解:(1)这个几何体是三棱柱; (2)它的表面展开图如图所示;(3)它的所有棱长之和为(3+4+5)×2+15×3=69(cm).它的侧面积为3×15+4×15+5×15=180(cm 2);它的体积为12×3×4×15=90(cm 3).【例4-2】 如图是一个由小正方体摆成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?分析:先画出从上面看到的图形,然后作出正确的判断.分别画出最多和最少正方体从上面看到的形状图,如图所示(其中小正方形中的数字代表该位置上的小正方体的数目):由所画的图形可以作出判断:最多可以用2×4+1×5=13(块),最少可以用2×2+1=5(块).解:最多可以用13块,最少可以用5块. 基本方法1、如图3.4-3,是一个由五个小正方体搭成的物体,请画出它的三视图。

第一章 丰富的图形世界(知识归纳+题型突破)(解析版)

第一章  丰富的图形世界(知识归纳+题型突破)(解析版)

第一章丰富的图形世界1、认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类;2、经历展开与折叠、切截以及从不同方向看等数学活动,积累数学活动经验;3、在平面图形与几何体相互转换等的活动过程中,发展空间观念;4、通过丰富的实例,进一步认识点、线、面,了解有关点、线及某些平面图形的一些简单性质;5、初步体会从不同方向看同一物体时可能看到不同的图形,能识别简单物体的三视图(主视图、俯视图、和左视图),会画立方体极其简单组合体的三种视图;6、了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型;知识点1:立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.拓展:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)拓展:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.知识点2:展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.知识点3:截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.知识点4:从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)题型一立体图形的辨析【典例1】(2022秋•沈丘县月考)下列几何体是柱体的有( )A.2个B.3个C.4个D.5个【答案】C【解答】解:如图,各个几何体的名称如下:因此这些几何体中,是柱体的有四棱柱、三棱柱、圆柱,三棱柱,共有4个,故选:C.【变式1-1】(2023•平谷区二模)下列几何体中,是圆锥的为( )A.B.C.D.【答案】D【解答】解:A.属于长方体(四棱柱),不合题意;B.属于三棱锥,不合题意;C.属于圆柱,不合题意;D.属于圆锥,符合题意;故选:D.【变式1-2】(2022秋•揭西县期末)一个棱柱有8个面,这是一个( )A.四棱柱B.六棱柱C.七棱柱D.八棱柱【答案】B【解答】解:由n棱柱有n个侧面,2个底面,共有(n+2)个面可得,n+2=8,解得n=6,即这个几何体是六棱柱,故选:B.【变式1-3】(2022秋•新化县期末)下列几何体中,属于柱体的有( )A.1个B.2个C.3个D.4个【答案】B【解答】解:第一个图是圆锥;第二个图是三棱锥;第三个图是正方体,也是四棱柱;第四个图是球;第五个图是圆柱;其中柱体有2个,即第三个和第五个,故选:B.题型二点线面体【典例2-1】(2022秋•榕城区期末)下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A.B.C.D.【答案】A【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到.故选:A.【典例2-2】(2022秋•市南区期末)下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【答案】D【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【变式2-1】(2022秋•福鼎市期中)下列图形绕虚线旋转一周,能形成圆柱体的是( )A.B.C.D.【答案】B【解答】解:矩形绕着一条边所在的直线旋转一周,所得到的几何体是圆柱体,故选:B.【变式2-2】(2022秋•南海区期中)把一个半圆立起来旋转成一个球体,这种现象说明( )A.线动成面B.点动成线C.面动成体D.以上都不对【答案】C【解答】解:从运动的观点可知,这种现象说明面动成体.故选:C.题型三立体图形的展开【典例3】(2023•威远县校级一模)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.圆柱D.圆锥【答案】B【解答】解:从展开图可知,该几何体有五个面,两个三角形的底面,三个长方形的侧面,因此该几何体是三棱柱,故选:B.【变式3-1】(2023•长安区二模)如图,是一个几何体的表面展开图,则该几何体是( )A.正方体B.长方体C.四棱柱D.四棱锥【答案】D【解答】解:由图知,该几何体为四棱锥,故选:D.【变式3-2】(2023•新华区模拟)将如图所示的长方体包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形不可能是( )A.B.C.D.【答案】D【解答】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;C、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:D.【变式3-3】(2022秋•西城区期末)如图是某个几何体的展开图,则该几何体是( )A.五棱柱B.长方体C.五棱锥D.六棱柱【答案】A【解答】解:从展开图可知,该几何体有七个面,两个五边形的底面,五个长方形的侧面,因此该几何体是五棱柱,故选:A.题型四正方体的展开图【典例5】(2022秋•沈丘县期末)如图,是一个正方体的表面展开图,则“2”所对的面是( )A.0B.9C.快D.乐【答案】B【解答】解:“222”这种展开图的对应面的特征是:14,25,36,也就是2与9,0与快,1与乐相对.故选:B.【变式4-1】(2022秋•衡南县期末)将如图所示的正方体沿某些棱展开后,能得到的图形是( )A.B.C.D.【答案】C【解答】解:将如图所示的正方体沿某些棱展开后,能得到的图形是C.故选:C.【变式4-2】(2023•萍乡模拟)如图是一个正方体纸盒的外表面展开图,则这个正方体是( )A.B.C.D.【答案】D【解答】解:∵由图可知,有1个实心圆点与1个空心圆点相对,∴只有D符合题意.故选:D.【变式4-3】(2022秋•洛江区期末)如图,是一个正方体的六个面的展开图形,则“力”所对的面是 我 .【答案】我.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“力”相对的字是“我”;故答案为:我.题型五几何体的截面【典例5】(2023春•丹徒区期末)如图,将一块长方体的铁块沿虚线切割,则截面图是( )A.B.C.D.【答案】C【解答】解:其截面的形状是长方形,即故选:C.【变式5-1】(2022秋•蜀山区期末)用一个平面分别去截三棱柱、长方体、圆柱、圆锥,截面形状可能是三角形的几何体有( )A.1个B.2个C.3个D.4个【答案】C【解答】解:①三棱柱能截出三角形;②长方体沿体面对角线截几何体可以截出三角形;③圆柱不能截出三角形;④圆锥能截出三角形;故截面可能是三角形的有3个.故选:C.【变式5-2】(2022秋•南关区校级期末)用一平面去截下列几何体,其截面可能是长方形的有( )A.1个B.2个C.3个D.4个【答案】C【解答】解:圆锥用平面去截不可能得到长方形,圆柱、长方体、四棱柱用平面去截可能得到长方形,∴用一平面去截以上几何体,其截面可能是长方形的有3个,故选:C.【变式5-3】(2023•咸丰县一模)如图,在一个正方体纸盒上切一刀,切面与棱的交点分别为A,B,C,切掉角后,将纸盒剪开展成平面,则展开图不可能是( )A.B.C.D.【答案】B【解答】解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形不交于一个顶点,￿与正方体三个剪去三角形交于一个顶点不符.故选:B.题型六判断正方体的个数【典例6】(2023•崂山区三模)一个由若干个大小相同的小立方块搭成的几何体,从正面和从上面看到的形状图如图所示,则搭成这样的几何体最多、最少需要的小立方块的个数分别为( )A.10,7B.9,7C.11,7D.11,8【答案】B【解答】解:在俯视图的对应位置上标注,需要几何体最少和最多时该位置所摆放的正方体的个数,如图所示:因此最多需要:3+3+1+3=9(个),最少需要:3+2+1+1=7(个),故选:B.【变式6-1】(2023•黑龙江模拟)一个几何体由若干个大小相同的小立方块搭成,如图分别是它的主视图和俯视图,若该几何体所用小立方块的个数为n个,则n的最小值为( )A.9B.11C.12D.13【答案】A【解答】解:根据主视图、俯视图,可以得出最少时,在俯视图的相应位置上所摆放的个数,其中的一种情况如下:最少时需要9个,因此n的最小值为9.故选:A.【变式6-2】(2023•内蒙古)几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是( )A.B.C.D.【答案】D【解答】解:观察图形可知,该几何体的主视图有3列,从左到右正方形的个数分别为1、2、2,即.故选:D.【变式6-3】(2023•佳木斯三模)由几个大小相同的小正方体搭建而成的几何体的主视图和俯视图如图所示,则搭建这个几何体所需要的小正方体的个数可能为( )A.5个B.6个C.5个或6个D.6个或7个【答案】C【解答】解:由俯视图易得最底层有3个正方体,由主视图第二层最少有2个正方体,最多有3个,那么最少有3+2=5个立方体,最多有3+3=6个.故选:C.【变式6-4】(2023•郸城县一模)如图所示的是由几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A.B.C.D.【答案】B【解答】解:根据题意得:主视图有3列,每列小正方数形数目分别为3,2,2,主视图为,故选:B.题型七由三视图判断几何体【典例7】(2023•合肥三模)如图是某一几何体的俯视图与左视图,则这个几何体可能为( )A.B.C.D.【答案】C【解答】解:如图是某一几何体的俯视图与左视图,则这个几何体可能为:.故选:C.【变式7-1】(2023•天桥区三模)用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.【变式7-2】(2023•礼泉县一模)如图是某几何体的三视图,该几何体是( )A.圆柱B.五棱柱C.长方体D.五棱锥【答案】B【解答】解:由几何体的主视图和左视图都是长方形,故该几何体是柱体,又因为俯视图是五边形,故该几何体是五棱柱.故选:B.【变式7-3】(2023•海门市二模)如图,根据三视图,这个立体图形的名称是( )A.三棱锥B.三棱柱C.圆柱D.圆锥【答案】B【解答】解:根据三视图可以得出立体图形是三棱柱,故选:B.题型八由几何体判断三视图【典例8】(2022秋•西宁期末)如图所示的几何体,从正面看所得的平面图形是( )A.B.C.D.【答案】A【解答】解:这个组合体的主视图为:故选:A.【变式8-1】(2023•鼓楼区校级模拟)下列几何体的俯视图是矩形的是( )A.B.C.D.【答案】C【解答】解:A、其俯视图为圆形,不符合题意;B、其俯视图为三角形,不符合题意;C、其俯视图为矩形,符合题意;D、其俯视图为梯形,不符合题意;故选:C.【变式8-2】(2023•集美区模拟)图1所示的正五棱柱,其俯视图是( )A.B.C.D.【答案】A【解答】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A.【变式8-3】(2023•船营区一模)《九章算术》中将底面是直角三角形的直三棱柱称之为“堑堵”,如图所示.按图放置的“堑堵”,它的俯视图为( )A.B.C.D.【答案】B【解答】解:从上面看是一个矩形.故选:B.【变式8-4】(2023•潍坊)在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是( )A.B.C.D.【答案】C【解答】解:从上面看,可得俯视图:.故选:C.题型九画几何体的三个方向图【典例9】(2022秋•历下区期中)如图,若干个大小相同的小立方块搭成的几何体.(1)这个几何体由 8 个小立方块搭成;(2)从正面、左面、上面观察该几何体,分别画出你所看到的几何体的形状图.【答案】(1)8;(2)详见解答.【解答】解:由该组合体的“俯视图”相应位置上所摆放的小正方体的个数可得,1+3+1+1+2=8(个),故答案为:8;(2)这个组合体的三视图如下:【变式9-1】(2022秋•东明县校级期末)如图,分别画出从正面、左面和上面观察几何体看到的形状图.【答案】见解答.【解答】解:如图所示:【变式9-2】(2022秋•济南期末)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.【答案】见解答.【解答】解:如图所示:【变式9-3】(2022秋•济南期末)如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有 9 个小正方体.【答案】见试题解答内容【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.。

专题01 丰富的图形世界(考点清单)(原卷版)-2024-2025学年七年级数学上学期期中考点大串讲

专题01 丰富的图形世界(考点清单)(原卷版)-2024-2025学年七年级数学上学期期中考点大串讲

专题01 丰富的图形世界(考点清单)思维导图考点一生活中的立体图形【考试题型1】几何体的识别【典例1】下面的四个几何图形中,表示平面图形的是()A.B.C.D.【专训1-1】下列图形中,与其他三个不同类的是()A.B.C.D.【专训1-2】(2023秋·七年级课时练习)下面两个立体图形的名称是:.【考试题型2】组合几何体的构成【典例2】(2023秋·七年级课时练习)图中的几何体由个面围成.【专训2-1】(2023秋·七年级课前预习)如图是由棱长为1厘米的小正方体木块搭成的几何体.至少还需要个这样的小正方体才能搭成一个正方体.【专训2-2】(2022秋·全国·七年级专题练习)把4个棱长为2分米的正方体拼成长方体,拼成的长方体的表面积可能是平方分米,也可能是平方分米.【考试题型3】几何体中的点、棱、面【典例3】(2023秋·七年级课时练习)七棱柱有个顶点,有条棱,有个面.【专训3-1】(2023秋·全国·七年级专题练习)几何知识.棱.【专训3-2】(2023秋·全国·七年级专题练习)如图所示,是我们熟悉的三棱柱、五棱柱和六棱柱.(2)设n棱柱(n为正整数,且3n≥)的顶点数为a、棱数为b、面数为c,根据表中数据猜+-=________.想a c b【考试题型4】点、线、面、体关系【典例4】(2022秋·六年级单元测试)直升机的螺旋桨转起来形成一个圆形的面,这说明了.【专训4-1】(2023秋·陕西宝鸡·七年级统考期末)数学老师可以用粉笔在黑板上画出图形,这个现象说明.【专训4-2】(2022秋·辽宁沈阳·七年级统考阶段练习)把一个直角三角形绕它的一条直角边旋转360°,得到一个圆锥体.用数学知识解释为.【考试题型5】平面图形的旋转得体【典例5】(2023春·福建福州·七年级统考开学考试)下列各选项中的图形绕虚线旋转一周后,得到的几何体是圆柱的是()A.B.C.D.a f中【专训5-1】(2023秋·七年级课时练习)如图所示的图形绕轴旋转一周,便能形成~的某个几何体,请你用线把它们连起来.【专训5-2】(2023春·河北石家庄·七年级行唐一中校考开学考试)小军和小红分别以直角梯形的上底和下底为轴,将梯形旋转一周,得到的两个立体图形.(1)你同意______的说法.(2)甲、乙两个立体图形的体积比是多少?考点二展开与折叠【考试题型1】几何体展开图的认识【典例1】(2023·四川达州·统考中考真题)下列图形中,是长方体表面展开图的是()A.B.C.D.【专训1-1】(2021秋·广东珠海·七年级统考开学考试)下列图形,()是正方体的展开图.A.B.C.D.【专训1-2】(2023秋·全国·七年级专题练习)如图所示的平面图形分别都是由哪种几何体展开形成的?(1)______________;(2)______________;(3)______________;(4)______________;(5)______________;(6)______________;【考试题型2】展开图的表面积和体积【典例2】(2023秋·黑龙江大庆·七年级校联考开学考试)一个长方体长20厘米,宽15厘米,高10厘米,把它切成两个完全相同的长方体,两个长方体表面积之和最大是( )平方厘米.【专训2-1】(2023秋·全国·七年级专题练习)一块长方形铁皮(如图),长25厘米,宽15厘米,从四个角分别剪去边长2厘米的小正方形,然后把四周折起来,做成没有盖子的铁盒,请你帮忙计算一下:做这样一个盒子至少需要多少铁皮?铁盒的容积是多少?【专训2-2】(2023秋·全国·七年级专题练习)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【考试题型3】正方体相对面的字【解题方法】【典例3】(2023春·山东泰安·六年级校考开学考试)如图,是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【专训3-1】(2023秋·江苏宿迁·七年级沭阳县怀文中学校考开学考试)如图一个正方形的平面展开图如图所示,将它折成正方体后,“保”字对面的字是().A.碳B.低C.绿D.色【专训3-2】(2022春·上海·九年级统考自主招生)如图是正方体的一种展开图,那么在原正方体中,与“上”字所在面相对的面上的汉字是.【考试题型4】含图案的正方体【解题方法】【典例4】2023·全国·七年级专题练习)如图所示,正方体的展开图为()A.B.C.D.【专训4-1】(2023秋·河南商丘·七年级统考期末)如图,下面的图是正方体的展开图的是()A.B.C.D.【专训4-2】(2023·全国·七年级假期作业)如图所示的正方体,它的展开图可能是下列四个选项中的()A.B.C.D.【考试题型5】展开后的折叠点距离【解题方法】【典例5】(2023秋·全国·七年级专题练习)图①是边长为1的六个正方形组成的图形,经过折叠能围成如图①的正方体,一只蜗牛从A点沿该正方体的棱......爬行到B点的最短距离为()A.0B.1C.2D.3【专训5-1】(2023秋·全国·七年级专题练习)如图①是边长为2的六个小正方形组成的,在围成的正方体上图形,它可以围成如图②所示的正方体,则图①中小正方形的顶点A B的距离是.【专训5-2】(2021秋·七年级单元测试)如图所示,图(1)为一个长方体,AD=AB=10,AE=6,图2为图1的表面展开图(字在外表面上),请根据要求回答问题:(1)面“句”的对面是面______;(2)如果面“居”是右面,面“宜”在后面,哪一面会在上面?(3)图(1)中,M、N为所在棱的中点,试在图(2)中画出点M、N的位置;并求出图(2)中三角形ABM的面积.【考试题型6】添加一个面成正方体【典例6】(2022秋·全国·七年级专题练习)如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.【专训6-1】(2023秋·七年级课时练习)如图所示的A、B、C、D四个位置的某个正方形与实线部分的五个正方形组成的图形,不能拼成正方体的是位置.【专训6-2】(2022秋·北京石景山·七年级期末)小景准备制作一个无盖的正方体盒子.请你在图中再画出一个正方形,并将添加的正方形用阴影表示,使得新图形经过折叠后能够成为一个无盖的正方体盒子.说明:至少画出2种符合上述条件的情况.考点三截一个几何体【考试题型1】截几何体所得的形状【典例1】(2023秋·七年级课时练习)小明用橡皮做了一个长方体,若用一个小刀去切该长方体,截面的形状不可能是()A.三角形B.长方形C.五边形D.圆【专训1-1】(2023·全国·七年级专题练习)妹妹把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.三角形B.长方形C.圆形D.椭圆【专训1-2】(2023秋·陕西咸阳·七年级统考期末)用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有个.【考试题型2】截几何体后的表面积和体积【典例2】(2023秋·全国·七年级专题练习)若将一根底面半径是5厘米的圆柱体木料锯成三段(每段都是圆柱体),则其表面积增加了()A.25π平方厘米B.50π平方厘米C.75π平方厘米D.100π平方厘米【专训2-1】(2023秋·全国·七年级专题练习)如图所示,圆柱体的高为8,底面半径为2,则截面面积最大为 .【专训2-2】(2022秋·江苏·七年级专题练习)已知图1为一个正方体,其棱长为12,图2为图1的表面展开图(数字和字母写在外面),请根据要求回答问题:(1)若正方体相对面上的数互为相反数,则xy =_________;(2)用一个平面去截这个正方体,下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;①可能是直角三角形;①可能是钝角三角形;①可能是平行四边形.其中所有正确结论的序号是( );A .①B .①①C .①①①D .①①①①(3)图1中,,M N 为所在棱的中点,请在图2标出点M 的位置,并求出ABM ∆的面积. 考点四 从三个方向看物体的形状【考试题型1】由三视图判断立体图形【典例1】(2022秋·江西九江·七年级统考期中)一个由小立方块搭成的几何体,从正面、左面、上面看到的形状如图所示,这个几何体是由( )个小立方块搭成的.A .4B .5C .6D .7【专训1-1】(2023秋·湖南岳阳·七年级校考开学考试)搭出同时符合下面要求的物体,需要( )个小正方体.A.10B.7C.8D.9【专训1-2】(2022秋·广东茂名·七年级校考期中)下图是由几个相同的小立方块所搭成的几何体从上面看到的形状图,请分别画出该几何体从正面、左面看到的形状图.【考试题型2】由立体图形画三视图【典例2】(2023秋·山东济南·六年级统考期末)如图,是由一些棱长都为1cm的小正方体组合成的简单几何体.该几何体从正面看到的平面图形如图所示,请在下面方格纸中分别画出从左面、上面看到的平面图形.【专训2-1】(2023秋·山东枣庄·七年级滕州育才中学校考开学考试)如图是由9个相同的小立方体组成的一个几何体,请利用下方网格画出从正面看、从左面看和从上面看的图形(一个网格为小立方体的一个面).【专训2-2】(2023秋·全国·七年级专题练习)由8个棱长都为1cm的小正方体搭成的几何体如左图.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是cm2.(3)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2。

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点. 学习视图,不仅会画空间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数.例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有( )个.(A )4 (B )5 (C )6 (D )7析解:解决这类问题要做到,一看俯视图,从左至右共有三列,从上到下共三行;二看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图1所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故本题结果就选 (C). 相应的几何体如图2所示.图121111 图2例2. 如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 个.析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小主视图 左视图 俯视图正方体的个数如图3所示,搭成这个几何体的小正方体的个数是1+2+1=4,故本题结果就填4. 相应的几何体如图4所示.图4例3.一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个几何体最多可由多少个这样的正方体组成? ( )(A )12个 (B )13个 (C )14个 (D )18个图6111112222解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为33 的正方形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;又由左视图可知,在俯视图的1、3行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成. 故选(B ).点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个几何体组合的小正方体个数.名称: U3:由三视图判断几何体描述: (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.用三视图确定小正方体的块数的简便方法一、由三个视图确定小正方体的块数例 1 如图所示的是一个由相同的小正方体搭成的几何体的三视图,那么这个几何体是由多少个小正方体搭成的?图5主视图左视图俯视图解析:在三个视图中,俯视图最重要,它可以直接确定底层有几个正方体,再由主视图,左视图确定有几层,每层有几个.一般步骤:1.复制一张俯视图,在俯视图的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.21 2 12如在横竖方向对应的都是2,则填入2;若方格所对应的横竖方向上的数字不一样,如在横竖方向对应的分别是填入12211 2 1通过上面的两步,我们就能确定每一个方格中的数字(方格中的数字代表所在位置的正方体的块数),从而就能确定这个几何体所需要的小正方体的块数.答案: 2 1 ,这个几何体是由8块小正方体搭成的.1 2 11二、由两个视图确定小正方体的块数根据两个视图一般不能确定一个几何体,但可以确定搭成这样的几何体最多需要多少块?最少需要多少块?1.由主视图,俯视图来确定例2 如图所示的是由一些正方体小木块搭成的几何体的主视图,俯视图.它最多需要多主视图俯视图解析:(1)复制一张俯视图,在俯视图的下方标上主视图所看到的小正方体的最高层数,将这些数字填入所在竖上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.3 2 13 23 23 2 1(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每列上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:3 2 1 1 1 11 1 3 21 1 1 1所以这个几何体最多需要16块,最少需要10块.2.由左视图,俯视图来确定方法跟由主视图,俯视图来确定一样.例3 如图所示的是由一些正方体小木块搭成的几何体的左视图,俯视图,它最多需要多少块?最少需要多少块?左视图俯视图解析:(1)复制一张俯视图,在俯视图的左方标上左视图所看到的小正方体的最高层数,将这些数字填入所在横上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.3 31 1 12 2 2 2(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每横上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:3 3 3 31 1 1 1 1 12 2 1 1 2 1 2 1所以这个几何体最多需要11块,最少需要9块.3.由主视图,左视图来确定由这两个视图来确定小正方体的块数是最难的.例4 如图所示的是由一些正方体小木块搭成的几何体的主视图,左视图,它最多需要多少块?最少需要多少块?主视图左视图解析:(1)取一张3×4的方格纸,在方格纸的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.然后,在方格纸中填入方格所在横,竖上的较小的数字(如果相同取相同的数字),那么就可确定这个几何体所需最多的小正方体的块数.2 2 1 2 23 2 1 3 21 1 1 1 12 13 2(2)在方格纸中寻找所在横,竖方向上的数字一样的方格,取相同的数字填入方格,这样就可以确定最少需要的小正方体的块数.2 2 23 31 12 13 2所以这个几何体最多需要19块,最少需要8块.通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到.解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错.通过三视图确定组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,再按照上面介绍的方法,小正方体的个数就迎刃而解了.。

七上第五章丰富的图形世界典型例题及答案

七上第五章丰富的图形世界典型例题及答案

七上第五章《丰富的图形世界》例题解析 例1、画出下图中由几个正方体组成的几何体的三视图。

19解、1.解:三视图如下图:例2、一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字和相等,本图所能看到的三个面所写的数字分别是3,6,7,问:与它们相对的三个面的数字各是多少?为什么?2解、从3、6、7三个数字看出可能是2、3、4、5、6、7或3、4、5、6、7、8,因为相对面上的数字和相等,所以第一种情况必须3、6处于对面,所以这六个数字只能是3、4、5、6、7、8,所以3与8、6与5、7与4处于对面位置。

例3.如图绕虚线旋转得到的几何体是( ).(D ) (B ) (C ) (A ) 6 3 7 6 3 7第5题图 3解:D例4.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()4解:C例5.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π- (C )π、、235- (D)235-、、π5.解:A例6. 如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图。

(6分)2 3 4 2 1 16解、例7.(4分)7解、例8.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码。

(5分)A();B();C();D();E()。

8解、A(1、5、6);B(1、3、4);C(1、2、3、4);D(5);E(3、5、6)例9.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?它最少需要多少个小立方体?请你画出这两种情况下的左视图。

(6分)A B C D E1 2 3 4 5左视图俯视图主视图主视图主视图左视图9解、这样的几何体不只一种,最多需要14个,最少需要10个。

完整丰富的图形世界专题复习含答案推荐文档

完整丰富的图形世界专题复习含答案推荐文档

丰富的图形世界专题复习【课标要点】1•通过观察现实生活中的物体,认识基本几何体及点、线、面2•通过展开与折叠活动,认识棱柱的基本性质,能根据展开图想象和制作立体模型3•通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验4•能识别简单物体的三视图,会画立方体及其简单组合的三视图5•通过平面图形与空间几何体相互转换的活动过程中,建立空间观念•6•认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类【知识网络】第1讲 几何体的三视图及常见几何体的侧面展开图【知识要点】1、了解直棱柱•圆柱•圆锥的侧面展开图,能根据展开图判断和制作立体模型 .2、 会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或 实物原型•3、 重点:体会从不同方向看同一物体可能看到不同的结果,根据主视图、左视图、俯 视图相象出实物图形.4、难点:能画立方体及其简单组合的三视图.根据主视图、左视图、俯视图相象出实物图形•【典型例题】例1棱长是1cm 的小立方体组成如图 1-1-1所示的几何体,那么这 个几何体的表面积是()A. 36cm 2 B . 33cm 2 C. 30cm 2 D. 27cm 2分析:考查学生观察想象能力,从 6个方向观察都是6个边长为1cm 的正方形,所以表面积共计6X6 cm 2=36 cm 2解:A例2如图1-1-2是由相同的小正方体构成的几何体的三视图,这些相同的小正方体的 个数是(B . 5个C . 6个D . 7个分析:在画三视图时,主俯列相等,从左向右看,画图取大数;左俯行相等,从上向下 看,画图取大数. 解:B图 1-1-2王图 1-1-3图 1-1-1例3如图1-1-3平面图形中,是正方体的平面展开图形的是()分析:主要考查学生的想象能力和动手操作能力解:C例4如图1-1-4所示,直三棱柱的底面是等边三角形,在它的上底面上有一个半球形凹坑请你画出这个几何体的主视图•左视图和俯视图.分析:本题主要考查学生画简单组合体的三视图的能力,体,明确这种较复杂的几何体是由哪些几何体组合而成的•它们是怎样组合的,联系三种视图的绘制要求画图•可以先画出主视图,再画其他两种视图.解:如图1-1-5 :【知识运用】一、选择题(A) (B) (C) (D)2•如图1-1-6是正方体的一个表面展开图,展开前,2号面对面上的数字为()A.3B.4C.5D.63•小明从正面观察图1-1-7所示的两个物体,看到的是()解答的思路是审题并观察几何14'5|1TA. B. C. D.图1-1-4图1-1-51•下列图形中,不是正方体的展开图的是(图1-1-64•图1-1-8中几何体的主视图是图 1-1-9中的(、填空题5•根据下图1-1-10物体的三视图,填出几何体的名称并画出示意图是: __________ .6•水平放置的正方体的六个面分别用前面、后面、上面、下面、左面、右面”表示•如 1-1-11图所示,是一个正方体的平面展开图,若图中的似”表示正方体的前面,锦”表示右面,程” 表示下面,则 祝” •你” •前"分别表示正方体的 ____________________________________ .三、解答题7.如图1-1-12中图(1)和图(2)分别是两个正方体的展开图,这两个正方体中,对面数字之和为2的数各有几对?有哪几对?8.如图1-1-13,一钢球置于圆柱的上底面,它们之间的接触点恰好是圆柱上底面的中心, 请你画出图中所示几何体的主视图•左视图和俯视图.9•若要使得图1-1-14中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值图1-1-9B A辰 1-1^10祝前程3Iy>0、干视图左视图俯视图^1-1-3圉 1-1-11m(图 1-1-12E 1-1-14第2讲用平面截某几何体及生活中的平面图形【知识要点】1 •截面:用一个平面去截一个几何体,截出的面叫做截面.2•多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形叫做多边形.3•从n(n>3整数)边形一个顶点出发,能够引(n —3)条对角线,这些对角线把n边形分成了(n —2)个三角形,n边形对角线总条数为凹笙条.2重点:用一个平面去切、截一个正方体,所得截面的形状的特征以及圆柱•圆锥的截面形状特征,认识生活中各类物体所含有的平面图形并将基本图形抽象出来.难点:用平面切、截几何体,很多情况是靠想象的,归纳•猜想一些规律性的结论.【典型例题】例1 (2004•武汉)如图1—2—1,五棱柱的正确截面是图如图1—2—2中的()解:B例2用一个平面去截一个正方体,截面形状不能为图如图1—2—3中的()分析:截面可以是三角形•四边形•五边形.解:D状是___________ 三角形.分析:本题考查学生判断对立体图形的截面图形形状的能力;应先想到三角形的分类, 确定从哪个方面解答,再去分析它的边长或角的大小,确定答案..等腰三角形和不等边三角形等三类•这里,例3 如图1-2-4在正方体ABCD AB1CQ1中,连结AB i.AC.BQ,则△ AB1C 的形解:三角形按边分,有等边三角形图1-2-1 图1-2-2AB 1.AC.B i C 分别是全等的正方形的对角线,所以本题应填等边”.例4用一个平面去截几何体,若截面是三角形,这个几何体可能是 ____________________________ • 点拨:若截面是三角形,则需要几何体至少有三个平面且有共同的顶点,或几何体有个平面,其他的若是曲面,必须能截出直线•符合上述条件的是棱柱、圆锥、棱锥、棱台.解:正方体、长方体、棱柱、棱锥、棱台、圆锥.【知识运用】 -、选择题1•用一个平面去截一个正方体,截面图形不可能是(3•正方体的截面不可能是()4.n 边形所有对角线的条数是(二、填空题5•从多边形的一个顶点共引了 6条对角线,那么这个多边形的边数是 ______________________6•图1-2-5几何体的截面(图中阴影部分)依次是 _____________ • ________ • ________ • _______ .三、解答7•观察下列1-2-6由棱长为1的小立方体摆成的图形,寻找规律:A.长方形B •梯形 C.三角形 D.圆2•用一个平面去截一个几何体,如果截面的形状是圆, 则这个几何体不可能是(A.圆柱B.圆锥C.正方体D.球A.四边形B.五边形C.六边形D. 七边形D n(n-2)B 、 ----2n(n-3)C 、 ----2n(n-4) D.- 2图 1-2-6如图①中:共有1个小立体,其中1个看得见,0个看不见;如图②中:共有方体,其中7个看得见,1个看不见;如图③中:共有 27个小立方体,其中见,8个看不见;……,则第⑥个图中,看不见的小立方体有 ____________________________8•请写图1-2-7出对应的几何体中截面的形状8个小立 19个看得个。

专题01丰富的图形世界(考点串讲)六年级数学上学期期中考点(鲁教版2024五四制)

专题01丰富的图形世界(考点串讲)六年级数学上学期期中考点(鲁教版2024五四制)

A.
B.
C.
D.
注意:正方体展开图中,7字、田字、凹字不行.
针对练习1
B 下列图形中,正方体的表面展开图是( )
A.
B.
C.
D.
易错易混 易错2.分类讨论判断几何体形状
有10个面的是什么几何体?
八棱柱或九棱锥
注意:判断几何体形状要考虑是棱柱还是棱锥.
针对练习2
一个多面体有 7 个面,10 个顶点,则它的棱数只能是( C )
押题预测
B 3.下列图形中属于棱柱的有( )
A.3 个
B.4 个
C.5 个
D.6 个
C 4.一个棱柱有12个顶点,所有侧棱长的和是 48cm,则每条侧棱长是( )
A. 6cm
B.12cm
C. 8cm
D. 24cm
押题预测
D 5.如图中的平面展开图与标注的立体图形不相符的是( )
A.长方体
B.正方体
小芳要用硬纸片制作一个几何体,如图是该几何体的展开图.
(1)解:由几何体的展开图可知,该几何体为长方体;
故答案为:长方体
(2)解:由图形可得 x 4cm , y 7cm ,
(1)该几何体为 ; (2)图中 x cm , y cm ; (3)求几何体的体积.
故答案为:4,7;
(3)几何体的体积为 207 4 560 cm3 .
(答案不唯一).
题型剖析 典例十、找展开图的相对面
有 3 块积木,每一块的各面都涂上不同的颜色, 3 块的涂法完全相同.现把它们摆放成不同
的位置(如图),请你根据图形判断涂成黄色一面的对面涂的颜色是(C )
A.白
B.蓝
C.绿
D.黑
举一反三. 将一个正方体的表面沿___C___条棱剪开,得到其展开图如图,则该正方体中与“我”字相对

【压轴专练】专题01_丰富的图形世界(解析版)-2021-2022学年七上压轴题

【压轴专练】专题01_丰富的图形世界(解析版)-2021-2022学年七上压轴题

2021-2022学年北师大版数学七年级上册压轴题专题精选汇编专题01 丰富的图形世界一.选择题1.(2021•深圳模拟)如图的几何体的左视图是()A.B.C.D.【思路引导】根据视图的意义,从左面看该几何体,利用能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,再依据各条棱的位置可得答案.【完整解答】解:从左面看该几何体,所看到的图形如下,故选:C.2.(2021•顺义区二模)如图是某个几何体的展开图,该几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥【思路引导】通过展开图的面数,展开图的各个面的形状进行判断即可.【完整解答】解:从展开图可知,该几何体有五个面,两个三角形的底面,三个长方形的侧面,因此该几何体是三棱柱,故选:A.3.(2021•南关区校级二模)将一个小正方体按图中所示方式展开.则在展开图中表示棱a 的线段是()A.AB B.CD C.DE D.CF【思路引导】将原图复原找出对应边.【完整解答】解:三角形对应的面为DCFE,a对应的边为DE.故选:C.4.(2020秋•常州期末)图1是一个小正方体的展开图,小正方体从图2的所示位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是()A.常B.州C.越D.来【思路引导】利用正方体的表面展开图的特征判断对面,利用翻转得出答案.【完整解答】解:由正方体的表面展开图的“相间、Z端是对面”可知,“常”与“来”是对面,“州”与“好”是对面,“越”与“越”是对面,翻动第1次,第2次时,“好”在前面,“州”在后面,翻动第3次时,“好”在下面,“州”在上面,故选:B.5.(2020秋•成都期末)用一平面截一个正方体,不能得到的截面形状是()A.等边三角形B.长方形C.六边形D.七边形【思路引导】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.【完整解答】解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,∴不可能截得七边形.故选:D.6.(2019秋•无为县期末)若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶【思路引导】利用三视图,在俯视图相应的位置上标上摆放的小立方体的个数,进而得出答案.【完整解答】解:根据三视图的形状,可得到,俯视图上每个位置上放置的个数,进而得出总数量,俯视图中的数,表示该位置放的数量,因此2+2+1=5,故选:A.7.(2017•双流区校级自主招生)如图所示的正方体,如果把它展开,可以是下列图形中的()A.B.C.D.【思路引导】根据正方体的展开图的特征,“对面”“邻面”之间的关系进行判断即可.【完整解答】解:由“相间Z端是对面”可知A、D不符合题意,而C折叠后,圆形在前面,正方形在上面,则三角形的面在右面,与原图不符,只有B折叠后符合,故选:B.8.一个棱长为6厘米的立方体,把它切成49个小立方体.小立方体的大小不必都相同,而小立方体的棱长以厘米作单位必须是整数,则校长为1厘米的小立方体的个数为()A.25B.33C.36D.44【思路引导】由小立方体的棱长以厘米作单位必须是整数,从最长棱长5cm,开始分析,得出符合要求的答案.【完整解答】解:若最大的立方体是一个棱长为5cm的立方体,则5cm的立方体只有1个,那么有91个棱长为1cm的立方体,不可能;若最大的立方体是一个棱长为4cm的立方体,则4cm的立方体只有1个,y个棱长为2cm的立方体,z个棱长为1cm,可得:1+y+z=49,64+8y+z=216,(解不为整数),若最大的立方体是一个棱长为3cm的立方体,设有x个棱长为3cm的立方体,y个棱长为2cm的立方体,z个棱长为1cm的立方体,则x+y+z=49,(33)x+(23)y+(13)z=(63),由x,y,z为整数,x=4,y=9,z=36,故选:C.二.填空题9.(2021•青岛二模)一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个正方体,把大正方体中相对的两面打通,结果如图,则图中剩下的小正方有73 个.【思路引导】根据题,我们把相对面打通需要去掉的小正方体分三种情况按一定的顺序数去掉的小正方体数量,如先前后面,两上下面,后左右面分别去数数,然后用总数125减掉数出来的三部分即可,注意:前面数过的后面的一定去掉,否则会重复的.【完整解答】解:前后面少(3+2)×5=25(个),上下面少的(去掉与前后面重复的)(5﹣3)+2×3+1×5=13(个),左右面少的(去掉与前后,上下复的)(5﹣3)+(5﹣1)+(5﹣2)+(5﹣2﹣1)+(5﹣2)=14(个),125﹣(25+13+14)=73(个),答:图中剩下的小正方体有73个.故答案为:73.10.(2021•盐都区二模)将一个内部直径为20cm、高为10cm的圆柱形水桶内装满水,然后倒入一个长方形鱼缸中,水只占鱼缸容积的一半,则鱼缸容积为2000π cm3.【思路引导】利用圆柱体体积求法得出水的体积,进而得出鱼缸容积.【完整解答】解:∵一个内径为20cm、高为10cm的圆柱形水桶内装满水,∴水的体积为:π×102×10=1000π(cm3),∵倒入一个长方形鱼缸中,水只占鱼缸的一半,∴鱼缸容积为:2000πcm3.故答案为:2000π.11.(2021•南通模拟)已知几何体三视图如图所示,则这个几何体的侧面积为20π .【思路引导】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【完整解答】解:此几何体为圆锥;∵直径为8,母线长为,∴侧面积=8π×5÷2=20π.故答案为20π.12.(2021•深圳模拟)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为26 .【思路引导】根据主视图、俯视图,求出摆放最多时和最少时的正方体的个数,进而求出答案.【完整解答】解:根据主视图、俯视图,可以得出最少时、最多时,在俯视图的相应位置上所摆放的个数如下:最少时需要10个,最多时需要16个,因此n=10+16=26,故答案为:26.13.(2020秋•九龙县期末)流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线..【思路引导】根据点动成线进行回答.【完整解答】解:流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线.故答案为:点动成线.14.(2019秋•丹东期末)如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是 4 个.【思路引导】在符合主视图、左视图的基础上,在俯视图上标出该位置摆放的小立方体的个数,进而得出答案.【完整解答】解:在俯视图上标出该位置摆放的小立方体的个数,如图所示:因此,组成这个几何体的小正方体的个数是4个.故答案为:4.15.(2017秋•青羊区校级期中)如图所示,小王用几个棱长2cm的正方体积木塔了一个几何体(没有视线看不见的正方体),则这个几何体的体积是72 cm3,表面积是128 cm2.【思路引导】(1)求出一个小正方体的体积为8立方厘米,再得出共用9个小正方体,因此求出总体积,(2)可以画出该几何体的三视图,求出三视图的面积的2倍即可.【完整解答】解:搭建这个几何体共用9个棱长为2cm的小正方体,因此体积为:2×2×2×9=72 cm3,搭建这个几何体的三视图如图所示,因此表面积为:(2×2)[(5+5+6)×2]=128 cm2,故答案为:72,128.16.(2016秋•简阳市期末)桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由8 个这样的正方体组成.【思路引导】由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,可得最底层几何体最多正方体的个数;由主视图和左视图可得第二层2个角各有一个正方体,相加可得所求.【完整解答】解:∵由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,∴最底层几何体最多正方体的个数为:3×2=6,∵由主视图和左视图可得第二层2个角各有一个正方体,∴第二层共有2个正方体,∴该组合几何体最多共有6+2=8个正方体.故答案为:8.17.(2017秋•简阳市期中)如图,正方体的六个面上标着六个连续的整数,若相对的两个面上所标之数的和相等,则这6个数的和为81 .【思路引导】由平面图形的折叠及立体图形的表面展开图的特点解题,根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为11,12,13,14,15,16或10,11,12,13,14,15,然后分析符合题意的一组数即可.【完整解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为11,12,13,14,15,16或10,11,12,13,14,15;且每个相对面上的两个数之和相等,11+16=27,10+15=25,故可能为11,12,13,14,15,16或10,11,12,13,14,15,其和为81和75(11和14必须为对面,在本体图片中,11和14为邻面,故不合题意,应舍去)故答案为:81.三.解答题18.(2021春•南岗区校级月考)如图,两个体积相同的图柱形铁块A和B,圆柱A的底面半径为2厘米,高为20厘米且比圆柱B高.(π取3)(1)求圆柱B的底面积是多少平方厘米?(2)如图,一个底面长8匣米,宽6厘米的长方体水箱里有一些水,将圆柱A和B立放于水箱里,水面恰好与圆柱A高度相同,求将圆柱A、B放入之前水面的高度是多少厘米?(3)若要使水面下降至与圆柱B高度相同,需将圆柱A提起多少厘米?【思路引导】(1)考查了圆柱体积公式,突破口是A与B体积相等.(2)水面与A平,所以能求出加入A和B后总的体积,减去A和B圆柱的体积可得长方体中水的体积,由长方体体积公式可求出高度.(3)水面与B平,可求出这时水箱的体积,再与(2)中与A相平时作差,可求出相差的体积,从而求出A提出的高度.【完整解答】解:(1)设B的底面半径为rcm,B的高为20÷(1+)=16cm,∵A与B体积相同,∴π×22×20=π×r2×16,解得r2=5,∵π=3,∴B的底面积=πr2=15(cm2);答:B的底面积是15平方厘米.(2)V总=8×6×20=960(cm3),∵V A=V B,∴V A+V B=2V B=15×16×2=480(cm3),∴V之前=V总﹣2V B=480(cm3),∴之前高度==10(cm).答:放入A、B之前的高度为10cm.(3)当水面与B等高时V水箱=8×6×16=768(cm3),∴相较于等A时体积相差V=960﹣768=192(cm3),∴需将A提起高度为==16(cm).答:需要将A圆柱提起16厘米.19.(2021•抚顺县模拟)某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图1.(1)由三视图可知,密封纸盒的形状是正六棱柱;(2)根据该几何体的三视图,在图2中补全它的表面展开图;(3)请你根据图1中数据,计算这个密封纸盒的表面积.(结果保留根号)【思路引导】(1)根据该几何体的三视图知道其是一个正六棱柱;(2)根据正六棱柱的特征在图2中补全它的表面展开图;(3)根据其表面积是六个面的面积加上两个底的面积,从而得出答案.【完整解答】解:(1)根据该几何体的三视图知道它是一个正六棱柱.故答案为:正六棱柱;(2)六棱柱的表面展开图如图2:(本题只给出一种图形,其它图形请参考给分);(3)由图中数据可知:六棱柱的高为12cm,底面边长为5cm,∴六棱柱的侧面积为6×5×12=360(cm2).又∵密封纸盒的底面面积为:2×6××5×=75(cm2),∴六棱柱的表面积为(75+360)cm2.20.(2020秋•南岗区期末)修建一些圆柱形的沼气池,底面直径是3m,深2m.在池的侧面与下底面抹上厚度为0.02m的水泥.(π取3.14)(1)修建一个圆柱形的沼气池,抹水泥部分的面积是多少?(2)如图是一个水泥罐尺寸的示意图,这个水泥罐的内部都装满水泥(水泡罐壁的厚度忽略不计).在使用水泥过程中没有损耗的情况下.这个水泥罐中的水泥最多可以满足修建多少个圆柱形的沼气池的水泥用量?【思路引导】(1)求出圆柱体的侧面积和一个底面积的和即可;(2)求出水泥罐中的水泥体积和一个圆柱体的沼气池的水泥用量,即可求出答案.【完整解答】解:(1)3.14×()2+3.14×3×2=25.905(m2),答:修建一个圆柱形的沼气池,抹水泥部分的面积是25.905m2;(2)[3.14×()2×12+×3.14×()2×6]÷(25.905×0.02)=98.91÷0.5181≈190(个),答:这个水泥罐中的水泥最多可以满足修建190个圆柱形的沼气池的水泥用量.21.(2021春•浦东新区期末)(1)补全如图的图形,使之成为长方体ABCD﹣A1B1C1D1的直观图;(2)与棱AB平行的平面是平面A1B1C1D1和平面DCC1D1.(3)若这个长方体框架的长、宽、高分别是4分米、3分米和5分米,则需要多少分米的铁丝才能搭成这样的框架?(接缝处忽略不计)【思路引导】(1)根据长方体的特征画出图形即可求解;(2)根据长方体的特征即可求解;(3)根据长方体棱长总和公式可求需要多少分米的铁丝才能搭成这样的框架.【完整解答】解:(1)如图所示:(2)与棱AB平行的平面是平面A1B1C1D1和平面DCC1D1.(3)(4+3+5)×4=12×4=48(分米).答:需要48分米的铁丝才能搭成这样的框架.22.(2021春•肇源县期末)一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.【思路引导】根据三视图图形得出AC=BC=3,EC=4,然后求出这个长方体的表面积.【完整解答】解:如图所示:AB=3,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.23.(2020秋•义马市期末)如图是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按折成正方体后,相对面上的两数互为相反数.【思路引导】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【完整解答】解:如图所示:24.(2020秋•叶县期中)如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.【思路引导】(1)根据三视图,即可解决问题;(2)画出正三棱柱的侧面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可;【完整解答】解:(1)几何体的名称是三棱柱;(2)表面展开图为:(3)3×6=18cm2,∴这个几何体的侧面积为18cm225.(2019秋•新都区期末)一个几何体是由若干个棱长为1的小正方体堆积而成的,从不同方向看到的几何体的形状图如下.(1)在从上面看得到的形状图中标出相应位置小正方体的个数;(2)这个几何体的表面积是30 .【思路引导】(1)由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,据此解答即可.(2)将几何体的暴露面(包括底面)的面积相加即可得到其表面积.【完整解答】解:(1)如图所示:(2)这个几何体的表面积为2×(6+4+5)=30,故答案为:3026.(2019秋•叶集区期末)如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有 6 个面,12 条棱,8 个顶点;(2)六棱柱有8 个面,18 条棱,12 个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.【思路引导】结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知n棱柱一定有(n+2)个面,3n条棱和2n个顶点.【完整解答】解:(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.故答案为:(1)6,12,8;(2)8,18,12;(3)(n+2),3n,2n.27.(2019秋•赣州期末)如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积:12 cm3.【思路引导】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【完整解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的体积为:3×2×2=12(cm3).故答案为:12.。

七年级数学 第一章 丰富的图形世界 4 从三个方向看物体的形状

七年级数学 第一章 丰富的图形世界 4 从三个方向看物体的形状
12/11/2021
初中(chūzhōng)数学(北师大版)
七年级 上册
第一章 丰富的图形(túxíng)世界
第一页,共四十一页。
知识点 从不同方向看物体
注:从正面看到的物体的形状图叫主视图,从左面看到的物体的形状图 叫左视图,从上面看到的物体的形状图叫俯视图.
12/11/2021
第二页,共四十一页。
12/11/2021
第十三页,共四十一页。
答案 B 从正面看,可以看到4个正方形,面积(miàn jī)为4,故A选项错误;从左 面看,可以看到3个正方形,面积为3,故B选项正确;从上面看,可以看到4 个正方形,面积为4,故C选项错误;从三个方向看到的图形的面积不全相
同,故D选项错误.故选B.
12/11/2021
例1 (2016广西百色中考)某几何体的三视图如图1-4-2所示,则组成该
几何体的小正方体的个数是
.
12/11/2021
图1-4-2
第四页,共四十一页。
解析 由题图可知这个几何体的底层(dǐ cénɡ)应该有4个小正方体,第二层应该 有1个小正方体,因此组成这个几何体的小正方体的个数为4+1=5.
12/11/2021
第三十五页,共四十一页。
1.用若干个相同的小正方体搭成一个几何体,使它从正面和左面看到的 图形如图1-4-11所示. (1)搭成这样的一个几何体,需要多少个小正方体? (2)试画出几种从上面看到的图形,并在相应的图形中标出各个小正方 形所在位置的小正方体的个数.
12/11/2021
例 图1-4-1是用6个相同的小正方体搭成的几何体,那么从上面看这个 几何体得到的平面图形是 ( )
图1-4-1
解析 由几何体的特征可知,从上面看这个几何体得到(dédào)的平面图形应是

北师大新版七年级上册《第1章 丰富的图形世界》2021年单元测试卷(2)

北师大新版七年级上册《第1章 丰富的图形世界》2021年单元测试卷(2)

北师大新版七年级上册《第1章丰富的图形世界》2021年单元测试卷(2)1.从正面、左面、上面观察一个由小正方体构成的几何体依次得到以下的形状图,那么构成这个几何体的小正方体有( )A. 4个B. 5个C. 6个D. 7个2.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是( )A. 文B. 明C. 诚D. 信3.如图所示的几何体的从左面看到的图形为( )A.B.C.D.4.下面立体图形中,从正面、侧面、上面看,都不能看到长方形的是( )A. B. C. D.5.如图是一个空心圆柱体,其主视图是( )A. B. C. D.6.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为( )A. 7个B. 8个C. 9个D. 10个7.求圆柱形水桶能装多少升水,是求它的ㅤㅤ;制作一节圆柱形通风管要多少铁皮,是求它的ㅤㅤ.( )A. 容积、侧面积B. 容积、表面积C. 体积、表面积8.如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是( )A. B. C. D.9.一个几何体的三视图如图所示,若其俯视图为正方形,则这个几何体的体积是( )A. 6B. 12C. 12√2D. 12√2+410.把图中三棱柱沿表面展开,所得到的平面图形可以是( )A. B.C. D.11.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是______.12.七棱柱有______ 个面,______ 个顶点.13.一个长方体主视图和俯视图如图所示,则这个长方体左视图的面积为______cm2.14.如图是一个无底帐篷的三视图,该帐篷的表面积是______(结果保留π).15.由几个小正方体组成的几何组合体的主视图、左视图如图所示,那么这几何组合体至少由______个小正方体组成.16.已知几何体三视图如图所示,则这个几何体的侧面积为______.17.如图,将一个正方体截去一个角变成一个多面体,则这个多面体有______ 个顶点.18.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,那么搭成该几何体至少需用小立方块______个.19.如图是一个长为3cm,宽为2cm的长方形纸片,若将长方形纸片绕长边所在直线旋转一周,得到的几何体的体积为______cm3.(结果保留π)20.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和都相等,则x−y=______ .21.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.22.如图,计算这个立体图形的体积.23.如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):______;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.24.在奇妙的几何之旅中,我们惊奇的发现图形构成的秘密:点动成线,线动成面,面动成体这样就构造出各种美妙的图案,我们将直角边长分别为3、4,斜边为5的直角三角形绕三角形其中一边旋转一周就可以得到一个几何体,请你计算一下所有几何体的体积(提示:25.如图为一直三棱柱,试画出它的侧面展开图,并求侧面展开图的面积.26.已知下图为从正面、左面、上面看到的一个几何体的形状图.(1)写出这个几何体的名称;(2)若从正面看到的长方形的宽为3cm,从上面看到的正方形的边长为8cm,求这个几何体的表面积.答案和解析1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】D6.【答案】A7.【答案】A8.【答案】B9.【答案】A 10.【答案】B11.【答案】5 12.【答案】9.14【解析】解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.根据七棱柱的特征可以得出答案.本题考查棱柱的特征,掌握七棱柱的形体特征是正确判断的前提.13.【答案】6【解析】解:根据题意得:左视图的长为3cm,宽为2cm,则左视图的面积为2×3=6(cm2).故答案为:6.根据主视图与俯视图的长度,得到左视图的长与宽,即可求出面积.此题考查了由三视图判断几何体,根据题意得出左视图的长与宽是解本题的关键.14.【答案】100π【解析】解:根据三视图得圆锥的母线长为8,底面圆的半径为10÷2=5,×2π×5×8=40π,圆柱的侧面积=2π×5×6=60π,所以圆锥的侧面积=12所以每顶帐篷的表面积=40π+60π=100π.故答案为:100π.根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为8,底面圆的半径为10÷2=5,圆锥的高为6,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形的面积公式和矩形的面积公式分别进行计算,然后求它们的和积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.15.【答案】4【解析】解:∵由主视图可得组合几何体有2列,由左视图可得组合几何体有3行,∴最底层几何体最少正方体的个数为:3,∵由主视图和左视图可得第二层有一个正方体,∴该组合几何体最少共有1+3=4个正方体.故答案为:4由主视图可得组合几何体有2列,由左视图可得组合几何体有3行,可得最底层几何体最少正方体的个数;由主视图和左视图解答即可.考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.16.【答案】20π【解析】解:此几何体为圆锥;∵直径为8,母线长为√32+42=5,∴侧面积=8π×5÷2=20π.故答案为20π.俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.本题考查了由三视图判断几何体,圆锥的有关计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键;本题体现了数形结合的数学思想,熟记圆锥的侧面积公式是解题的关键.17.【答案】10【解析】解:正方体有8个顶点,将这个正方体按照如图所示的方式截去一个角后,所得到的多面体的顶点数为8−1+3=10,故答案为:10.将一个正方体截去一个角后所得到的多面体的顶点个数的变化得出答案.本题考查认识立体图形,理解和掌握截一个几何体时顶点、面、棱的变化关系是正确解答的关键.18.【答案】6【解析】解:根据主视图可得,俯视图中第一列中至少一处有2层;所以该几何体至少是用6个小立方块搭成的.故答案为:6.根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题.本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.19.【答案】12π【解析】解:将长方形纸片绕长边所在直线旋转一周,得到的几何体是底面半径为2cm,高为3cm的圆柱体,所以:体积为:π×22×3=12πcm3,故答案为:12π.将长方形纸片绕长边所在直线旋转一周,得到的几何体是底面半径为2cm,高为3cm 的圆柱体,根据体积计算公式进行计算即可.考查点、线、面、体之间的关系,关键是旋转后的几何体的各个部分与长方形的长宽之间的关系.20.【答案】−2【解析】解:根据正方体表面展开图的“相间、Z端是对面”可得,“x”与“3x”的面是相对的,“2”与“6”的面是相对的,“y−1”与“5”的面是相对的,又因为相对两面的数字之和都相等,所以x+3x=2+6=y−1+5,解得x=2,y=4,所以x−y=2−4=−2,故答案为:−2.根据正方体表面展开图的特征判断相对的面,再相对两面的数字之和都相等,列方程求解即可.本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是解决问题的关键.21.【答案】解:主视图,左视图如图所示:【解析】根据主视图,左视图的定义画出图形即可.本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.22.【答案】解:(x+x+x)⋅x⋅(5x+2)+2x⋅x⋅(5x+2)=3x2⋅(5x+2)+2x2⋅(5x+2)=15x3+6x2+10x3+4x2=25x3+10x2.【解析】根据长方体体积的计算方法进行计算即可.本题考查认识立体图形,掌握长方体体积的计算方法是得出正确答案的前提.23.【答案】26cm2【解析】解:(1)(5+4+4)×2=26(cm2),故答案为:26cm2;(2)根据三视图的画法,画出相应的图形如下:(1)三视图面积和的2倍即可;(2)利用三视图的画法画出图形即可.本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键.24.【答案】解:(1)以直角边3为轴旋转一周得到一个底面半径为4,高为3的圆锥,因此体积为:V=13πr2ℎ≈13×3×16×3=48;(2)以直角边4为轴旋转一周得到一个底面半径为3,高为4的圆锥,因此体积为:V=13πr2ℎ≈13×3×9×4=36;(3)以斜边5为轴旋转一周得到两个底面半径为125,高的和为5的圆锥,因此体积为:V=13πr2ℎ≈13×3×14425×5=1445;答:所得到的几何体的体积为36或48或1445.【解析】按照不同的边为轴旋转,可以得出三个几何体,因此分三种情况进行解答,特别注意以斜边5为轴旋转时得到的是两个圆锥的组合体.本题考查“面动成体”,圆锥体积的计算方法,理解“面动成体”以及旋转后所形成的几何体的底面半径和高是正确计算的前提.25.【答案】解:直三棱柱的侧面展开图如图所示:【解析】直三棱柱的三个侧面分别为长为3,宽为1.5的矩形;长为3,宽为2的矩形;长为3,宽为2.5的矩形;求出这三个矩形的面积和即为侧面积.考查棱柱的展开与折叠,明确展开图的形状特征是正确计算的前提.26.【答案】解:(1)这个几何体的名称是长方体(四棱柱);(2)S=8×8×2+8×3×4=64×2+24×4=224(cm2).故这个几何体的表面积是224cm2.【解析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长得出长方体的表面积即可.此题主要考查了由三视图判断几何体的形状以及几何体的展开图等知识,正确得出物体的形状是解题关键.第11页,共11页。

北师大数学七年级上册第一单元《丰富的图形世界》1.4 从三个方向看物体的形状--教案学案

北师大数学七年级上册第一单元《丰富的图形世界》1.4  从三个方向看物体的形状--教案学案

1.4 从三个方向看物体的形状【学习目标】1、学会从不同的方向观察一个物体的方法2、能识别简单物体的三视图3、会画立方体及其简单组合体的三视图.【学习重点】三视图的画法【学习难点】根据三视图求立方体的数量及表面积导学过程:一、温故知新1正方体可以看成由什么元素组成?2你能画出3个不同的正方体的展开图?3用一个平面截正方体,能截出什么平面图形?二、创设问题情境在上面的学习中,我们从组成、展开、切截三个不同方向研究了立体图形。

那么,还有其他方向吗?当然,我们还可以从视觉方向研究立体图形。

当我们从不同的方向看同一个物体时,通常可以看到不同的图形。

如图,请回答问题。

三、探索物体的三视图在小学数学中,我们曾辨认过如图从三个不同的方向观察物体;那么,你能画出这三个方向的物体形状图吗?解:如图,它们是此物体的三个方向的形状图;像这样,从物体的这三个方向观察获得的形状图,我们称为此物体的三视图。

你画对了吗?【初中数学flssh动画素材】视图.swf请欣赏不同物体的三视图:11 由三视图到物体.swf四、画简单物体的三视图从上面看从左面看从正面看五、探究由视图到物体分析:(1)从俯视图可以判断物体底层应照图放正方体;(2)从左视图可以判断物体只有两层,且是左1两层,左2只有1层。

(3)据此,可以想象出物体的形状。

你想到了吗?解:有三种情况,如图:2111,共5个;1211,共5个,2211,共6个.六、练习巩固分析:由图1与3可以判断:A相连的面是:,则相对的面是其他同理可得;解:分析:从俯视图及其中的数量,想象出物体;再根据物体画其他视图。

解:分析:(1)根据俯视图摆出(想象出)底层正方体;(2)根据主视图发现:正1有2层,正2正3只有1层(3)据此,可以摆出(想象出)物体。

解:七、你在本课学习中,有什么收获?。

丰富的图形世界(易错题归纳)(解析版)—2024-2025学年七年级数学上册单元速记巧练(北师大版)

丰富的图形世界(易错题归纳)(解析版)—2024-2025学年七年级数学上册单元速记巧练(北师大版)

丰富的图形世界(易错题归纳)易错点一认识立体图形(共1小题)1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A,B,C,D中的( )位置接正方形.A.A B.B C.C D.D【答案】A【解答】解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.易错点二点、线、面、体(共1小题)2.如图,阴影图形是由直角三角形和长方形拼成的,绕虚线旋转一周可以得到一个立体图形,求得到立体图形的体积.(结果保留π的形式)【答案】立体图形的体积是42π.【解答】解:阴影图形旋转一周得到的立体图形是圆锥和圆柱.圆锥的体积=×π×32×2=6π,圆柱的体积=π×32×4=36π,故立体图形的体积是42π.易错点三何体的展开图(共6小题)3.下列图形中是圆锥展开图的是( )A.B.C.D.【答案】A【解答】解:A.圆锥的展开图为一个扇形和一个圆形,故本选项符合题意;B.该图形是三棱柱的展开图,故本选项不符合题意;C.该图形是圆柱的展开图,故本选项不符合题意;D.该图形是正方体的展开图,故本选项不符合题意.故选:A.4.下列平面图形中,是棱柱的展开图的是( )A.B.C.D.【答案】B【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C .该平面图形不能围成棱柱,故本选项错误;D .该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B .5.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )A .圆锥,正方体,三棱锥,圆柱B .正方体,圆锥,四棱锥,圆柱C .正方体,圆锥,四棱柱,圆柱D .正方体,圆锥,圆柱,三棱柱【答案】D【解答】解:由图可得,从左到右,其对应的几何体名称分别为正方体,圆锥,圆柱,三棱柱,故选:D .6.如图正方体纸盒,展开后可以得到( )A .B .C.D.【答案】D【解答】解:A.两个蓝色圆所在的面折叠后是对面,不合题意;B.白色圆与一个蓝色圆所在的面折叠后是对面,不合题意;C.白色圆与一个蓝色圆所在的面折叠后是对面,不合题意;D.白色圆与两个蓝色圆所在的面折叠后是相邻的面,符合题意;故选:D.7.有一种正方体如图所示,下列图形是该正方体的展开图的是( )A.B.C.D.【答案】C【解答】解:A选项中,折叠后所得到正方体中,三个面的对角线交于一个顶点,不合题意;B选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;C选项中,折叠后所得到正方体中,三个面的对角线组成一个三角形,符合题意;D选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;故选:C.8.如图,把这个圆柱的侧面沿高剪开后,可以得到一个长是 dm,宽是 dm的长方形.(若涉及π不取近似值,用π表示即可)【答案】6π,10.【解答】解:由题意得:把这个圆柱的侧面沿高剪开后,可以得到一个长方形,长方形的长等于底面圆的周长=6π(分米),长方形的宽等于圆柱的高=10(分米),∴把这个圆柱的侧面沿高剪开后,可以得到一个长是6πdm,宽是10dm的长方形,故答案为:6π,10.易错点四展开图折叠成几何体(共4小题)9.小欣同学用纸(如图)折成了个正方体的盒子,里面放了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中( )A.B.C.D.【答案】B【解答】解:根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选:B.10.如图,乐乐利用网格纸做一个正方体盒子,裁剪后发现缺少一个面,请你帮他在图中再线拼接一个正方形,使拼接后的图形能折叠成一个封闭的正方体,则可拼接的方法有( )A.2种B.4种C.5种D.11种【答案】B【解答】解:如图所示:在标有1、2、3、4的网格接一个正方形能折叠成一个封闭的正方体,所以可拼接的方法有4种.故选:B.11.如图,在下面的四个图形中,折叠后不能围成正方体的是( )A.B.C.D.【答案】D【解答】解:正方体共有11种表面展开图,A、B、C能围成正方体;D不能,折叠后有两个面重合,不能折成正方体,故选:D.12.如图所示,纸板上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形一起折一个正方体的包装盒,不同的选法有( )A.4种B.3种C.2种D.1种【答案】C【解答】解:如图所示,不同的选法有2处,故选:C.易错点五正方体相对两个面上的文字(共5小题)13.如图,是一个正方体的表面展开图,原正方体中与“建”字所在的面相对的面上标的字是( )A.设B.丽C.中D.国【答案】D【解答】解:由题意得:“设”与“丽”是相对面,“美”与“中”是相对面,∴“建”与“国”是相对面,故选:D.14.为加强城市建设,我县某街道设计了一款正方体形状的灯笼准备春节悬挂,如图是灯笼的展开图,把展开图折叠成正方体灯笼后,在“建”字相对面上的汉字是( )A.生B.态C.家D.园【答案】C【解答】解:由题意得:“设”与“态”是相对面,“生”与“园”是相对面,∴在“建”字相对面上的汉字是“家”,故选:C.15.如图是一个正方体的平面展开图,已知该正方体任意两个相对面的数字之和为6,则x﹣y= .【答案】2.【解答】解:由题意得:2与4是相对面,x与1是相对面,3与y是相对面,∵该正方体任意两个相对面的数字之和为6,∴x+1=3+y=2+4,解得:x=5,y=3,∴x﹣y=5﹣3=2,故答案为:2.16.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90°算一次,请问滚动2022次后,正方体贴在桌面一面的数字是 .【答案】7.【解答】解:由图可知:10和9相对,7和12相对,8和11相对,将正方体沿如图所示的顺时针方向滚动,每滚动90°算一次,正方体朝下一面的点数依次为10,7,9,12,且依次循环,∵2022÷4=505……2,∴滚动第2022次后,骰子朝下一面的点数是:7,故答案为:7.17.一个正方体,它的各个面上分别标有数字1、2、3、4、5、6.甲、乙、丙三同学从不同角度观察这个正方体,看到的情况如图所示(不考虑数字的正、倒等),则这个正方体上标有数字1、2、3的三个面所对的面上标记的数字分别为 .【答案】5,4,6.【解答】解:由图甲和图乙可得:1和2,3,4,6相邻,∴1和5相对,由图丙和图乙可得:3和1,2,4,5相邻,∴3和6相对,∴2和4相对,∴这个正方体上标有数字1、2、3的三个面所对的面上标记的数字分别为5,4,6,故答案为:5,4,6.易错点六截一个几何体(共1小题)18.截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.如图,下列几何体的截面是 .【答案】圆,长方形.【解答】解:用一个平面去截圆柱,截面形状是圆;用一个平面去截四棱柱,截面形状是长方形.故答案为:圆,长方形.易错点七.简单几何体的三视图(共1小题)19.如图所示的几何体的左视图是( )A.B.C.D.【答案】B【解答】解:从左边看,可得如图所示几何体的左视图是:.故选:B.易错点八简单组合体的三视图(共11小题)20.如图是一个空心圆柱体,其主视图是( )A.B.C.D.【答案】D【解答】解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:D.21.如图所示的几何体是由5个大小相同的小正方体搭成的.则从上面看到的该几何体的形状图是( )A.B.C.D.【答案】C【解答】解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,第二列的小正方形在中层,第三列的小正方形在最上层,故选:C.22.榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A.B.C.D.【答案】B【解答】解:如图所示,俯视图为:.故选:B.23.如图所示的钢块零件的主视图为( )A.B.C.D.【答案】A【解答】解:从正面看是一个“凹”字形,故选:A.24.下面几何体的左视图为( )A.B.C.D.【答案】D【解答】解:左视图是一个矩形,矩形的内部有一条横向的虚线.故选:D.25.如图所示的几何体的主视图是( )A.B.C.D.【答案】C【解答】解:从正面看,是一列两个相邻的矩形.故选:C.26.由一个长方体和一个圆柱组成的几何体如图所示,则这个几何体的俯视图是( )A.B.C.D.【答案】D【解答】解:从上面看下边是一个矩形,矩形的内部是一个圆.故选:D.27.如图几何体是由五个小立方体搭成的,现从左面看它得到的平面图形是( )A.B.C.D.【答案】D【解答】解:从左面看,底层是两个相邻的小正方形,上层的右边是一个小正方形.故选:D.28.如图所示的几何体,从上面看到的形状图是( )A.B.C.D.【答案】B【解答】解:从上面看,可得选项B的图形.故选:B.29.如图几何体的主视图为( )A.B.C.D.【答案】C【解答】解:从正面看,是一个正方形,且正方形的右上角有一条实线把正方形分成一个三角形和一个直角梯形.故选:C.30.如图所示的几何体从左边看的视图是( )A.B.C.D.【答案】C【解答】解:从左面看,是一个正方形,且正方形内部的右上角是一个较小的正方形.故选:C.易错点九由三视图判断几何体(共2小题)31.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,该几何体至少是( )个小立方块搭成的A.8B.7C.6D.5【答案】C【解答】解:根据主视图可得,俯视图中第一列中至少一处有2层;所以该几何体至少是用6个小立方块搭成的.故选:C.32.用若干块小正方体搭成一个几何体,其主视图和俯视图如图所示,若俯视图中的数字和字母表示该位置上小正方体的个数,则a、b的值是( )A.a=2,b=3B.a=2,b=2C.a=1,b=3D.a=3,b=2【答案】A【解答】解:由俯视图可知,该组合体有三行三列,结合主视图可知左边一列叠有2个正方体,故a=2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故b=3.故选:A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左视图 主视图 俯视图
左视图 主视图 俯视图 根据判断几何体的数量专题
姓名:
一、直接判断
1、如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个 B .8个 C .9个 D .
10个
2、由大小相同的正方体木块堆成的几何体的三视图如右所示,则该几何体中正方体木块的个数是
A. 6个
B. 5个
C. 4个
D. 3个
3、在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有( )A .9箱 B .10箱 C .11箱 D .12箱
4、由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )A .8 B .7 C .6 D .5
5、一个物体是由棱长为1的正方体模型堆砌而成,其三视图如下:(1)该物体共有几层? (2)该物体的体积是多少? (3)该物体的表面积是多少?
6、由几个相同小正方体搭成的几何体的视图如图所示,则搭成这样的小正方体的个数是( )
主视图
左视图
俯视图
主视图 俯视图 左视图
7、如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是.( )
二、最多、最少 1、一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何
体的小正方块最多..
有( )A .4个 B .5个 C .6个 D .7
2、如右上图,用小立方块搭一个几何体,使得它的主视图和俯视图如图所示。

这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?
3、用小立方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最多需要 个小立方体,它最少需要
个小立方体
4、如图是由几个小立方块所搭几何体的俯视图和左视图,则所搭几何体的小正方块最多 块,最少

5、用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块
俯视图 主视图 (第1题)
俯视图
左视图主视图图3
3主视图3题 俯视图 左视图
俯视图 主视图 俯视图
正方体相对面专题
1、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6,根据图中三种状态所显示的数字,“?”表示的数字是( )
2、如图所示的正方体表面分别标上字母A ~F ,•问这个正方体各个面上的字母对面各是什么字母?
3、左图中的立方体展开后,应是右图中的( ).
5 4 1 3
? 5 1 2 3
(A )
(B )
(C )
(D )。

相关文档
最新文档