高中数学人教A版选修2-3:课时跟踪检测(十一) 条件概率含解析

合集下载

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。

高中数学(人教版选修2-3)课时跟踪检测(十一) 独立重复试验与二项分布 Word版含答案

高中数学(人教版选修2-3)课时跟踪检测(十一) 独立重复试验与二项分布 Word版含答案

课时跟踪检测(十一)独立重复试验与二项分布一、选择题.某学生参加一次选拔考试,有道题,每题分.已知他解题的正确率为,若分为最低分数线,则该生被选中的概率是( ).×..×+.-×解析:选该生被选中包括“该生做对道题”和“该生做对道题”两种情形.故所求概率为=×+..一位国王的铸币大臣在每箱枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测:方法一,在箱中各任意抽查一枚;方法二,在箱中各任意抽查两枚.国王用方法一、方法二能发现至少一枚劣币的概率分别记为和,则( ).= <> .以上三种情况都有可能解析:选方法一:每箱选中劣币的概率为,则=-××=-;同理,方法二:所求事件的概率=-=-,∴<..在次独立重复试验中,随机事件恰好发生次的概率不大于其恰好发生两次的概率,则事件在一次试验中发生的概率的取值范围是( ).[] .(].(] .[)解析:选∵()≤(),∴·(-)≤(-),∴(-)≤,∴≤≤..甲、乙两队参加乒乓球团体比赛,甲队与乙队的实力之比为∶,比赛时均能正常发挥技术水平,则在局胜制中,甲打完局才胜的概率为( ).·.·.·.·解析:选甲打完局才胜,说明在前三局中甲胜两局,且在第局中获胜,其概率为=××=×..位于坐标原点的一个质点按下述规则移动:质点每次移动一个单位长度,移动的方向为向上或向右,并且向上、向右移动的概率是.质点移动五次后位于点()的概率是( )...解析:选由于质点每次移动一个单位长度,移动的方向为向上或向右,移动五次后位于点(),所以质点必须向右移动二次,向上移动三次,故其概率为·==.二、填空题.连续掷一枚硬币次,恰好有次正面向上的概率为.解析:正面向上的次数ξ~,所以(ξ=)=··=×=.答案:.设~(,),若(≥)=,则=.解析:∵~(,),∴(=)=(-)-,=.∴(≥)=-(<)=-(=)=-(-)=-(-),∴-(-)=.结合≤≤,解之得=.答案:.如果ξ~(,),=,则(ξ=)取得最大值时,=.解析:当=时,(ξ=)=··-=·,显然当=时,(ξ=)取得最大值.答案:三、解答题.某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁名参加保险人员所在地区有,,三家社区医院,并且他们的选择相互独立.设名参加保险人员选择社区医院的人数为,求的分布列.解:由已知每位参加保险人员选择社区医院的概率为,名人员选择社区医院即次独立重复试验,即~,所以(=)=··-=·(=),所以的分布列为.某单位个员工借助互联网开展工作,每个员工上网的概率都是(相对独立).()求至少人同时上网的概率.()至少几人同时上网的概率小于?解:()至少人同时上网的概率等于减去至多人同时上网的概率,即=---·=.()至少人同时上网的概率为++=>.。

2020学年高中数学课时分层作业11条件概率(含解析)新人教A版选修2-3(2021-2022学年)

2020学年高中数学课时分层作业11条件概率(含解析)新人教A版选修2-3(2021-2022学年)

课时分层作业(十一) 条件概率(建议用时:60分钟)[基础达标练]一、选择题1.下列说法正确的是( )A.P(B|A)<P(AB)B.P(B|A)=错误!未定义书签。

是可能的C.0<P(B|A)<1D.P(A|A)=0B[由条件概率公式P(B|A)=\f(P(AB),P(A))及0≤P(A)≤1知P(B|A)≥P(AB),故A 选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=错误!,故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B。

]2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0。

75,连续两天为优良的概率是0。

6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0。

8 ﻩ B.0.75C.0.6 D.0。

45A[已知连续两天为优良的概率是0。

6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=错误!未定义书签。

=0.8.] 3.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)等于( )A。

错误!未定义书签。

ﻩ B.错误!未定义书签。

C。

错误!ﻩD。

错误!B[P(A)=错误!未定义书签。

=\f(2,5),P(AB)=错误!=错误!,由条件概率的计算公式得P(B|A)=错误!=错误!=错误!未定义书签。

.故选B.]4.在10个形状大小均相同的球中有7个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A。

错误!未定义书签。

B.错误!未定义书签。

C.错误!ﻩD.错误!D[法一:(定义法)设第一次摸到的是红球为事件A,则P(A)=错误!未定义书签。

,设第二次摸得红球为事件B,则P(AB)=错误!未定义书签。

=错误!未定义书签。

故在第一次摸得红球的条件下第二次也摸得红球的概率为P(B|A)=错误!=错误!。

2020年高中数学人教A版选修2-3:课时跟踪检测 二项式定理(含答案解析)

2020年高中数学人教A版选修2-3:课时跟踪检测 二项式定理(含答案解析)

2.答案为:A; 解析:由通项公式得 T7=C610·(-i)6=-C610=-210.
3.答案为:B;
1
解析:T4=C37x4
- x
3=5,∴x=-1.74.答案为:C;2
解析:∵T5=C4n(
x)n-4·
- x
4=24·C4nx
n-12
n-12
是常数项,∴ =0,∴n=12.
2
2
5.答案为:A; 1 x
13. x(x 2 )7 的展开式中,x4 的系数是________.(用数字作答) x
14.在 (3 2x 1 )20 的展开式中,系数是有理数的项数为________. 2
三、解答题
15.若二项式 (x a )6 (a>0)的展开式中 x3 的系数为 A,常数项为 B,且 B=4A,求 a 的值. x

C310a3=15,故
1 a= .
2
13.答案为:84;
2
2
x-

解析:x4 的系数,即
x 7 展开式中 x3 的系数,Tr+1=Cr7·x7-r· x r=(-2)r·Cr7·x7-2r,
令 7-2r=3 得,r=2,∴所求系数为(-2)2C27=84.
14.答案为:4;
1
2
3


3
解析:Tr+1=Cr20( 2x)20-r
=3×
(n≥6),得 n=7.
6!
9.答案为:D;
1 - 解析:通项 Tr+1=Crn(x2)n-r x r=(-1)rCrnx2n-3r,常数项是 15,则 2n=3r, 且 Crn=15,验证 n=6 时,r=4 合题意,故选 D.
10.答案为:10;

人教A版选修2-32.2.1条件概率能力提升(含答案解析).docx

人教A版选修2-32.2.1条件概率能力提升(含答案解析).docx

高中数学学习材料马鸣风萧萧*整理制作1.(2013·芜湖调研)抛掷一枚质地均匀的骰子所出现的点数的所有可能结果为Ω={1,2,3,4,5,6},记事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )=( ) A.12 B.15C.25D.35解析:选C.P (B )=56,P (AB )=13, P (A |B )=P (AB )P (B )=1356=25. 2.(2013·海口高二检测)抛掷骰子2次,每次结果用(x 1,x 2)表示,其中x 1、x 2分别表示第一、二次骰子的点数.若设A ={(x 1,x 2)|x 1+x 2=10},B ={(x 1,x 2)|x 1>x 2},则P (B |A )=________.解析:P (A )=336=112,P (AB )=136, ∴P (B |A )=P (AB )P (A )=136112=13. 答案:133.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率. 解:设A ={从第一个盒子中取得标有字母A 的球}.B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},W ={第二次取出的球是白球},则容易求得P(A)=710,P(B)=310,P(R|A)=12,P(W|A)=1 2,P(R|B)=45,P(W|B)=15.事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,故由概率的加法公式,得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=12×710+45×310=0.59.。

2016-2017学年高中数学人教A版选修2-3课时跟踪检测(十三) 离散型随机变量的方差

2016-2017学年高中数学人教A版选修2-3课时跟踪检测(十三) 离散型随机变量的方差

课时跟踪检测(十三) 离散型随机变量的方差一、选择题1.如果ξ是离散型随机变量,η=3ξ+2,那么( ) A .E (η)=3E (ξ)+2,D (η)=9D (ξ) B .E (η)=3E (ξ),D (η)=3D (ξ)+2 C .E (η)=3E (ξ)+2,D (η)=9D (ξ)+4 D .E (η)=3E (ξ)+4,D (η)=3D (ξ)+2 解析:选A 直接代入均值与方差的公式中.2.同时抛两枚均匀硬币10次,设两枚硬币同时出现反面的次数为X ,则D (X )等于( ) A.158 B.154 C.52D .5解析:选A ∵X ~B ⎝⎛⎭⎫10,14,∴D (X )=10×14×34=158. 3.已知ξ的分布列如下表:若η=2ξ+2,则D (η)A .-13 B.59C.109D.209解析:选D E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=⎝⎛⎭⎫-1+132×12+⎝⎛⎭⎫0+132×13+⎝⎛⎭⎫1+132×16=59,所以D (η)=D (2ξ+2)=4D (ξ)=209. 4.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364D.5564解析:选D 由⎩⎨⎧1×12+2x +3y =158,12+x +y =1,得⎩⎨⎧x =18,y =38.所以D (X )=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 5.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6,2.4 B .2,2.4 C .2,5.6D .6,5.6解析:选B 由已知随机变量X +Y =8,有Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.二、填空题6.设投掷一枚骰子的点数为随机变量X ,则X 的方差为________. 解析:解析:依题意X 的分布列为故E (X )=(1+2+3+4+5+6)×16=72,D (X )=⎝⎛⎭⎫1-722×16+⎝⎛⎭⎫2-722×16+⎝⎛⎭⎫3-722×16+⎝⎛⎭⎫4-722×16+⎝⎛⎭⎫5-722×16+⎝⎛⎭⎫6-722×16=3512. 答案:35127.一次数学测验由25道选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每个答案选择正确得4分,不作出选择或选错不得分,满分100分,某学生选对任一题的概率为0.6,则此学生在这一次测验中的成绩的均值与方差分别为________.解析:设该学生在这次数学测验中选对答案的题目的个数为X ,所得的分数(成绩)为Y ,则Y =4X .由题知X ~B (25,0.6),所以E (X )=25×0.6=15,D (X )=25×0.6×0.4=6,E (Y )=E (4X )=4E (X )=60,D (Y )=D (4X )=42×D (X )=16×6=96,所以该学生在这次测验中的成绩的均值与方差分别是60与96.答案:60,968.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又知E (X )=49,D (X )=2,则x 1+x 2=________.解析:由题意可得E (X )=23x 1+13x 2,D (X )=⎝⎛⎭⎫x 1-492×23+⎝⎛⎭⎫x 2-492×13, ∴⎩⎨⎧23x 1+13x 2=49,⎝⎛⎭⎫x 1-492×23+⎝⎛⎭⎫x 2-492×13=2.解得x 1+x 2=179. 答案:179三、解答题9.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列如下:求:(1)a ,b 的值;(2)计算ξ,η的均值与方差,并以此分析甲、乙的技术状况.解:(1)由离散型随机变量的分布列的性质可知a +0.1+0.6=1,∴a =0.3. 同理0.3+b +0.3=1,b =0.4.(2)E (ξ)=1×0.3+2×0.1+3×0.6=2.3, E (η)=1×0.3+2×0.4+3×0.3=2,D (ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81, D (η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E (ξ)>E (η),说明在一次射击中,甲的平均得分比乙高,但D (ξ)>D (η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.10.某班从5名班干部(其中男生3人,女生2人)中选3人参加学校学生会的干部竞选.设所选3人中女生人数为X ,求随机变量X 的方差.解:X 的所有可能取值为0,1,2,所以依题意得 P (X =0)=C 33C 35=110,P (X =1)=C 23C 12C 35=35,P (X =2)=C 13C 22C 35=310,所以X 的分布列为所以E (X )=0×110+1×35+2×310=65. D (X )=⎝⎛⎭⎫0-652×110+⎝⎛⎭⎫1-652×35+⎝⎛⎭⎫2-652×310=925.11.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(1)在A ,B 12A 和B 所获得的利润,求方差D (Y 1),D (Y 2).(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.解:(1)由题设可知Y 1和Y 2的分布列分别为E (Y 1)=5×0.8+10×0.2=D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4; E (Y 2)=2×0.2+8×0.5+12×0.3=8,D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12. (2)f (x )=D ⎝⎛⎭⎫x 100·Y 1+D ⎝⎛⎭⎫100-x 100·Y 2 =⎝⎛⎭⎫x 1002D (Y 1)+⎝⎛⎫100-x 1002D (Y 2) =41002[x 2+3(100-x )2]=41002(4x2-600x+3×1002).所以当x=6002×4=75时,f(x)=3为最小值.。

高中数学人教A版高二选修2-3:课时跟踪检测(十一)_条件概率

高中数学人教A版高二选修2-3:课时跟踪检测(十一)_条件概率

课时跟踪检测(十一) 条件概率层级一 学业水平达标1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56B .910C .215D .115解析:选C P (AB )=P (B |A )·P (A )=13×25=215.2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C 由题意可知,n (B )=C 1322=12,n (AB )=A 33=6.∴P (A |B )=n (AB )n (B )=612=12. 4.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )和P (B |A )分别等于( )A .13,25B . 23,25C .23,35D . 12,35解析:选C P (A |B )=P (AB )P (B )=0.120.18=23,P (B |A )=P (AB )P (A )=0.120.2=35.5.用“0”“1”“2”组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P (A |B )=( )A .12B .13C .14D .18解析:选B 法一:∵P (B )=3×33×3×3=13,P (AB )=33×3×3=19,∴P (A |B )=P (AB )P (B )=13,故选B .法二:在B 发生的条件下,问题转化为:用“0”“1”“2”组成三位数码,其中第二位数字为0,则P (A |B )为在上述条件下,第一位数字为0的概率,∴P (A |B )=33×3=13.6.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为________. 解析:设A =“投掷两颗骰子,其点数不同”,B =“ξ≤6”,则P (A )=3036=56,P (AB )=13,∴P (B |A )=P (AB )P (A )=25. 答案:257.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.解析:设A =“其中一个是女孩”,B =“其中一个是男孩”,则P (A )=34,P (AB )=12,∴P (B |A )=P (AB )P (A )=23. 答案:238.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是________.解析:令第二次取得一等品为事件A ,第一次取得二等品为事件B ,则P (AB )=C 12·C 14C 16·C 15=415,P (A )=C 14·C 13+C 12·C 14C 16·C 15=23. 所以P (B |A )=P (AB )P (A )=415×32=25.答案:259.五个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求: (1)第一次取到新球的概率; (2)第二次取到新球的概率;(3)在第一次取到新球的条件下,第二次取到新球的概率. 解:设第一次取到新球为事件A ,第二次取到新球为事件B . (1)P (A )=3×45×4=35. (2)P (B )=3×2+2×35×4=1220=35.(3)法一:P (AB )=3×25×4=310, P (B |A )=P (AB )P (A )=31035=12.法二:n (A )=3×4=12,n (AB )=3×2=6, P (B |A )=n (AB )n (A )=612=12.10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. 解:设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)法一:要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415. 法二:P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P (AB )P (B )=415. 层级二 应试能力达标1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .13解析:选C 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P =1015=23. 2.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12解析:选B ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110,3.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( ) A .911 B .811C .25D .89解析:选D 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而在吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217解析:选D 设事件A 表示“抽到2张都是假钞”,事件B 为“2张中至少有一张假钞”,所以为P (A |B ). 而P (AB )=C 25C 220=119,P (B )=C 25+C 15C 115C 220=1738.∴P (A |B )=P (AB )P (B )=217. 5.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.解析:设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100=120,P (AB )=C 15C 195A 2100=19396, 所以P (B |A )=P (AB )P (A )=9599.答案:95996.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.解析:法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.法二:设A =“取出的球不大于50”,B =“取出的数是2或3的倍数”,则P (A )=50100=12,P (AB )=33100,答案:33507.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率.解:设“第1次抽到舞蹈节目”为事件A ,“第2次抽到舞蹈节目”为事件B ,则“第1次和第2次都抽到舞蹈节目”为事件AB .(1)从6个节目中不放回地依次抽取2次的事件数为n (Ω)=A 26=30,根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23.(2)因为n (AB )=A 24=12,于是 P (AB )=n (AB )n (Ω)=1230=25. (3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35. 法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=n (AB )n (A )=1220=35.8.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.解:设A ={从第一个盒子中取得标有字母A 的球}, B ={从第一个盒子中取得标有字母B 的球}, R ={第二次取出的球是红球}, 则容易求得P (A )=710,P (B )=310,事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,故由概率的加法公式,得P(RA∪RB)=P(RA)+P(RB)=P(R|A)P(A)+P(R|B)P(B)=12×710+45×310=0.59.。

2019-2020学年数学人教A版选修2-3检测:2.2.1条件概率

2019-2020学年数学人教A版选修2-3检测:2.2.1条件概率

判一判
判断(正确的打“√”,错误的打“×”)
1.若事件 A 与 B 互斥,则 P(B|A)=0.(√)
2.若事件 A 等于事件 B,则 P(B|A)=1.(√)
3.P(B|A)与 P(A|B)相同.(×)
3
3
1
4.已知 P(AB)=10,P(A)=5,则 P(B|A)为2.(√) 5.由“0”“1”组成的三位数组中,若用事件 A 表示“第二位数字为 0”,用事件 B 表示
nAB 6 1
所以(1)P(B|A)= nA =12=2. nAB 6 3
(2)P(A|B)= nB =10=5.
知识点二
条件概率性质应用
3.在一个袋子中装有除颜色外完全相同的 10 个球,其中有 1 个红球,2 个黄球,3 个黑
球,4 个白球,从中依次不放回地摸 2 个球,求在第一个球是红球的事件下,第二个球是黄
PAB
提示:(1)在原样本空间中,先计算 P(AB),P(A),再利用公式 P(B|A)= PA 计算求得 P(B|A);
nAB
(2)若事件为古典概型,可利用公式 P(B|A)= nA ,即在缩小后的样本空间中计算事件 B 发生的概率.
3.一个盒子中有 6 只好晶体管,4 只坏晶体管,任取两次,每次取一只,每一次取后不 放回.若已知第一只是好的,求第二只也是好的概率.
=3,
PAB 2
∴P(B|A)= PA =5. 2
答案:5
4
1
4.某气象台统计,该地区下雨的概率为15,既刮四级以上的风又下雨的概率为10.设事 件 A 为该地区下雨,事件 B 为该地区刮四级以上的风,则 P(B|A)=________.
1
4
1
10 PAB 4 3

2020年高中数学课时跟踪检测十一含解析新人教A版选修1_2

2020年高中数学课时跟踪检测十一含解析新人教A版选修1_2

课时跟踪检测(十一)流程图层级一学业水平达标1.下列框图中,属于流程图的是( )A.整数指数幂→有理数指数幂→实数指数幂B.随机事件→频率→概率C.平面向量→空间向量→几何向量D.插电源→放脏衣服→放水→洗衣→脱水解析:选D 根据流程图的定义分析知,只有D项中的框图为流程图,故选D.2.下面是求过两点P1(x1,y1),P2(x2,y2)的直线的斜率的流程图,则空白处应填( )A.x1=x2?B.x1≠x2?C.y1=y2?D.y1≠y2?解析:选A 根据过两点P1(x1,y1),P2(x2,y2)的直线的斜率的定义知,当x1=x2时,直线的斜率不存在.3.下列表示旅客搭乘火车的流程正确的是( )A.买票→候车→检票→上车B.候车→买票→检票→上车C.买票→候车→上车→检票D.候车→买票→上车→检票解析:选A 旅客搭乘火车的流程应为“买票→候车→检票→上车”.4.在如图所示的工序流程图中,设备采购的下一道工序是( )A.设备安装B.土建设计C.厂房土建D.工程设计解析:选A 由流程图可知,设备采购的下一道工序是设备安装.5.阅读如图所示的程序框图,运行相应的程序,输出的n的值为( )A.1 B.2C.3 D.4解析:选B 程序框图表示的是比较2n和n2的大小关系.当n=1时,2>1;当n=2时,4=4.所以输出n=2.6.如图,该程序框图的功能是判断正整数x是奇数还是偶数,则①处应填________.解析:若r=1,则x是奇数;若r≠1,则x是偶数,故填r=1.答案:r=17.阅读如图所示的程序框图.若输入n=5,则输出k的值为________.解析:执行程序框图可得n=5,k=0;n=16,k=1;n=49,k=2;n=148,k=3;n =148×3+1>150,循环结束,故输出的k值为3.答案:38.在华罗庚先生的《统筹方法平话》文中,有一个“喝茶问题”:假设洗水壶需要2 min,烧开水需要15 min,洗茶壶、茶杯需要3 min,取、放茶叶需要2 min,沏茶需要1 min.为了能最快沏好茶,需要的最短时间为________分钟.解析:“喝茶问题”中的这些工作,有些没有先后顺序,可以同时进行,有些有先后顺序,需要依次完成.最快能沏好茶的流程图如图所示.上述流程图需要时间18分钟.答案:189.某高校大一新生入学注册,分为以下几步:①交录取通知书;②交费;③班级注册;④领书及宿舍钥匙;⑤办理伙食卡;⑥参加年级迎新大会.请用流程图表示新生入学注册的步骤.解:流程图如图所示:10.如图是某工厂加工笔记本电脑屏幕的流程图,根据此流程图回答下列问题:(1)一件屏幕成品可能经过几次加工和检验程序?(2)哪些环节可能导致屏幕废品的产生,二次加工产品的来源是什么?(3)该流程图的终点是什么?解:(1)一件屏幕成品可能经过一次加工、二次加工两道加工程序和检验、最后检验两道检验程序,也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验、最后检验三道检验程序.(2)返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.(3)流程图的终点是“屏幕成品”和“屏幕废品”.层级二 应试能力达标1.淮南麻鸭资源的开发与利用的流程图如图所示,则羽绒加工的前一道工序是( )A .孵化鸭雏B .商品鸭饲养C .商品鸭收购、育肥、加工D .羽绒服加工生产体系解析:选C 由工序流程图可知,羽绒加工的前一道工序是商品鸭收购、育肥、加工. 2.执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( ) A .1 B . 2 C .3 D .4解析:选B 开始a =1,b =1,k =0;第一次循环a =-12,k =1;第二次循环a =-2,k =2;第三次循环 a =1,条件判断为“是”,跳出循环,此时k =2.3.下面是图书印刷成书的流程图,表示正确的是( ) A.装订→印刷→制版→编审 B.编审→制版→印刷→装订 C.制版→编审→装订→印刷 D.印刷→装订→编审→制版解析:选B 出版一本图书,应首先编审,然后制版,制版后方能印刷,印刷后才能装订,故选B.4.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )A.26 B.24C.20 D.19解析:选D 路线D→C→B的最大信息量是3;路线D→E→B的最大信息量为4;路线G→F→B的最大信息量为6;路线G→H→B的最大信息量为6.故从A到B的最大信息量为3+4+6+6=19.5.如图是一个程序框图,则输出的k的值是________.解析:解一元二次不等式k2-5k+4>0,得k<1或k>4,依据k的初始值和增量,可知当k=5时跳出循环.故输出的k值是5.答案:56.某环形道路上顺时针排列着4所中学:A1,A2,A3,A4,它们依次有彩电15台、8台、5台、12台,相邻中学间可借调彩电,为使各校的彩电台数相同,调配出彩电的总台数最少为________.解析:调配后每所学校彩电台数为10,最好的方案为总数为5+3+2=10.答案:107.某公司业务销售的工作流程是:与客户接洽,商讨单价及数量,签订销售合同、销售订单,之后,发货并装货,开票据付款,凭交款单送货.试画出它的流程图.解:流程图如图所示:8.某市环境保护局信访工作流程如下:(1)信访办受理来访,一般信访填单转办;重大信访报局长批示后转办.(2)及时转送有关部门办理、督办,如特殊情况未能按期办理完毕,批准后可延办,办理完毕后反馈.(3)信访办理情况反馈后,归档备查,定期通报.据上画出该局信访工作流程图.解:流程图如图所示.。

2016-2017学年高中数学人教A版选修2-3课时跟踪检测(十一) 独立重复试验与二项分布

2016-2017学年高中数学人教A版选修2-3课时跟踪检测(十一) 独立重复试验与二项分布

课时跟踪检测(十一) 独立重复试验与二项分布一、选择题1.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该生被选中的概率是( )A .C 45⎝⎛⎭⎫354×25B .C 55⎝⎛⎭⎫355C .C 45⎝⎛⎭⎫354×25+C 55⎝⎛⎭⎫355D .1-C 35⎝⎛⎭⎫353×⎝⎛⎭⎫252 解析:选C 该生被选中包括“该生做对4道题”和“该生做对5道题”两种情形.故所求概率为P =C 45⎝⎛⎭⎫354×25+C 55⎝⎛⎭⎫355. 2.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测:方法一,在10箱中各任意抽查一枚;方法二,在5箱中各任意抽查两枚.国王用方法一、方法二能发现至少一枚劣币的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能解析:选B 方法一:每箱选中劣币的概率为1100,则p 1=1-C 010×0.010×0.9910=1-⎝⎛⎭⎫9910010;同理,方法二:所求事件的概率p 2=1-⎝⎛⎭⎫C 299C 21005=1-⎝⎛⎭⎫981005,∴p 1<p 2. 3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1]B .(0,0.4]C .(0,0.6]D .[0.6,1)解析:选A ∵P 4(1)≤P 4(2),∴C 14·p (1-p )3≤C 24p 2(1-p )2,∴4(1-p )≤6p ,∴0.4≤p ≤1. 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队的实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A .C 23⎝⎛⎭⎫353·25B .C 23⎝⎛⎭⎫352·25C .C 34⎝⎛⎭⎫353·25D .C 34⎝⎛⎭⎫233·13解析:选A 甲打完4局才胜,说明在前三局中甲胜两局,且在第4局中获胜,其概率为P =C 23⎝⎛⎭⎫352×25×35=C 23⎝⎛⎭⎫353×25. 5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位长度,移动的方向为向上或向右,并且向上、向右移动的概率是12.质点P 移动五次后位于点(2,3)的概率是( )A.⎝⎛⎭⎫125B .C 25⎝⎛⎭⎫125C .C 35⎝⎛⎭⎫123D .C 25C 35⎝⎛⎫125解析:选B 由于质点每次移动一个单位长度,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动二次,向上移动三次,故其概率为C 35⎝⎛⎭⎫123·⎝⎛⎭⎫122=C 35⎝⎛⎭⎫125=C 25⎝⎛⎭⎫125.二、填空题6.连续掷一枚硬币5次,恰好有3次正面向上的概率为________. 解析:正面向上的次数ξ~B ⎝⎛⎭⎫5,12,所以P (ξ=3)=C 35·⎝⎛⎭⎫123·⎝⎛⎭⎫122=10×132=516. 答案:5167.设X ~B (2,p ),若P (X ≥1)=59,则p =________.解析:∵X ~B (2,p ),∴P (X =k )=C k 2p k(1-p )2-k ,k =0,1,2.∴P (X ≥1)=1-P (X <1)=1-P (X =0)=1-C 02p 0(1-p )2=1-(1-p )2,∴1-(1-p )2=59.结合0≤p ≤1,解之得p =13.答案:138.如果ξ~B (20,p ),p =12,则P (ξ=k )取得最大值时,k =________.解析:当p =12时,P (ξ=k )=C k 20·⎝⎛⎭⎫12k ·⎝⎛⎭⎫1220-k =C k 20·⎝⎛⎭⎫1220,显然当k =10时,P (ξ=k )取得最大值.答案:10 三、解答题9.某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A ,B ,C 三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A 社区医院的人数为X ,求X 的分布列.解:由已知每位参加保险人员选择A 社区医院的概率为13,4名人员选择A 社区医院即4次独立重复试验,即X ~B ⎝⎛⎭⎫4,13,所以P (X =k )=C k 4·⎝⎛⎭⎫13k ·⎝⎛⎭⎫234-k =C k 4·24-k 81(k =0,1,2,3,4),所以X 的分布列为10.某单位6个员工借助互联网开展工作,每个员工上网的概率都是12(相对独立).(1)求至少3人同时上网的概率. (2)至少几人同时上网的概率小于310? 解:(1)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即 P =1-C 06⎝⎛⎭⎫126-C 16⎝⎛⎭⎫121⎝⎛⎭⎫125-C 26⎝⎛⎭⎫122·⎝⎛⎭⎫124=2132. (2)至少4人同时上网的概率为 C 46⎝⎛⎭⎫126+C 56⎝⎛⎭⎫126+C 66⎝⎛⎭⎫126=1132>310. 至少5人同时上网的概率为 C 56⎝⎛⎭⎫126+C 66⎝⎛⎭⎫126=764<310. ∴至少5人同时上网的概率小于310.11.“蛟龙号”从海底中带回某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为13,乙组能使生物成活的概率为12,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验是失败的.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)若甲乙两小组各进行2次试验,求两个小组试验成功至少3次的概率.解:(1)设“甲小组做了三次实验,至少两次试验成功”为事件A ,则其概率为P (A )=C 23×⎝⎛⎭⎫132×⎝⎛⎭⎫1-13+C 33⎝⎛⎭⎫133=727. (2)设“甲乙两小组试验成功3次”为事件B ,则 P (B )=C 22⎝⎛⎭⎫132⎝⎛⎭⎫230·C 12⎝⎛⎭⎫122+C 12⎝⎛⎭⎫131⎝⎛⎭⎫231·C 22⎝⎛⎭⎫122=16,设“甲乙两小组试验成功4次”为事件C ,则P (C )=C 22⎝⎛⎭⎫132⎝⎛⎭⎫230·C 22⎝⎛⎭⎫122=136, 故两个小组试验成功至少3次的概率为P (B )+P (C )=16+136=736.。

2019_2020学年高中数学第二章2.2.1条件概率练习(含解析)新人教A版选修2_3

2019_2020学年高中数学第二章2.2.1条件概率练习(含解析)新人教A版选修2_3

2.2.1 条件概率[A 基础达标]1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56 B .910 C .215D .115解析:选C .P (AB )=P (B |A )·P (A )=13×25=215,故选C .2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1解析:选B .记“第一位同学没有抽到中奖券”为事件A ,P (A )=34,“最后一位同学抽到中奖券”为事件B ,P (AB )=34×13=14,P (B |A )=P (AB )P (A )=1434=14×43=13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C .由题意可知.n (B )=C 1322=12,n (AB )=A 33=6.所以P (A |B )=n (AB )n (B )=612=12.4.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A ={x |0<x <12},B ={x |14<x <34},则P (B |A )等于( )A .12 B .14 C .13D .34解析:选A .P (A )=121=12.因为A ∩B ={x |14<x <12},所以P (AB )=141=14,所以P (B |A )=P (AB )P (A )=1412=12.5.甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( )A .12B .715C .815D .914 解析:选D .设事件A =“甲取到的数是5的倍数”,B =“甲所取的数大于乙所取的数”,又因为本题为古典概型概率问题,所以根据条件概率可知,P (B |A )=n (A ∩B )n (A )=4+9+143×14=914.故选D . 6.如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________.解析:因为圆的半径为1,所以圆的面积S =πr 2=π,正方形EFGH 的面积为⎝ ⎛⎭⎪⎫2r 22=2,所以P (A )=2π.P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率,所以P (B |A )=14.答案:2π 147.从一副不含大、小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A ,则第2次也抽到A 的概率是________.解析:设“第1次抽到A ”为事件A ,“第2次也抽到A ”为事件B ,则AB 表示两次都抽到A ,P (A )=452=113,P (AB )=4×352×51=113×17,所以P (B |A )=P (AB )P (A )=117.答案:1178.(2019·长春高二检测)分别用集合M ={2,4,5,6,7,8,11,12}中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另外一个元素与之构成可约分数的概率是________.解析:设“取出的两个元素中有一个是12”为事件A ,“取出的两个元素构成可约分数”为事件B ,则n (A )=7,n (AB )=4,所以P (B |A )=n (AB )n (A )=47.答案:479.某考生在一次考试中,共有10题供选择,已知该考生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该考生在第一题不会答的情况下及格的概率.解:设事件A 为从10题中抽5题,第一题不会答;设事件B 为从10题中依次抽5题,第一题不会答,其余4题中有3题或4题会答.n (A )=C 14C 49,n (B )=C 14(C 36C 13+C 46C 03).则P =C 14(C 36C 13+C 46C 03)C 14C 49=2542. 所以该考生在第一题不会答的情况下及格的概率为2542.10.某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动. (1)设所选3人中女生人数为X ,求X 的分布列. (2)求男生甲或女生乙被选中的概率.(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (A |B ). 解:(1)X 的所有可能取值为0,1,2,依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35,P (X=2)=C 14C 22C 36=15.所以X 的分布列为(2)则P (C )=C 34C 36=420=15;所以所求概率为P (C —)=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (AB )=C 14C 36=15.所以P (A |B )=P (AB )P (B )=25.[B 能力提升]11.(2019·唐山高二检测)将三颗骰子各掷一次,设事件A 表示“三个点数都不相同”,B 表示“至少出现一个6点”,则概率P (A |B )等于( )A .6091B .12C .518D .91216解析:选A .因为P (A |B )=P (AB )P (B ),P (AB )=C 13C 15C 1463=6063=60216,P (B )=1-P (B —)=1-5363=1-125216=91216.所以P (A |B )=P (AB )P (B )=6021691216=6091.12.从1~100共100个正整数中,任取一数,已知取出的一个数不大于50,则此数是2或3的倍数的概率为________.解析:设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 为“取出的数是3的倍数”.则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2×(25100+16100-8100)=3350. 答案:335013.一个口袋内装有2个白球和2个黑球,那么:(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?解:(1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.14.(选做题)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若能答对其中的5道题就能获得优秀.已知某考生能答对其中的10道题,并且已知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设“该考生6道题全答对”为事件A ,“该考生恰好答对了5道题”为事件B ,“该考生恰好答对了4道题”为事件C ,“该考生在这次考试中通过”为事件D ,“该考生在这次考试中获得优秀”为事件E ,则D =A ∪B ∪C ,E =A ∪B ,且A ,B ,C 两两互斥,由古典概型的概率公式知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620,又AD =A ,BD =B ,所以P (E |D )=P (A ∪B |D )=P (A |D )+P (B |D ) =P (AD )P (D )+P (BD )P (D )=P (A )P (D )+P (B )P (D )=C 610C 62012 180C 620+C 510C 110C 62012 180C 620=1358.。

高中数学人教A版选修2-3检测及作业:课时作业 11条件概率 Word版含解析

高中数学人教A版选修2-3检测及作业:课时作业 11条件概率 Word版含解析

|
一、选择题(每小题5分,共25分)
1.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是()
A.0.4B.0.5
C.0.6 D.0.8
解析:设动物活到20岁的事件为A,活到25岁的事件为B,则P(A)=0.8,P(B)=0.4,由于AB=B,所以P(AB)=P(B),所以活到20岁的动物活到25岁的概率是P(B|A)= = = =0.5.
P(A)= = ,P(AB)= = ,
∴P(B|A)= = .
答案:
三、解答题(每小题10分,共20分)
9.任意向x轴上(0,1)这一区间内投掷一个点,问:
(1)该点落在区间 内的概率是多少?
(2)在(1)的条件下,求该点落在 内的概率.
解析:由题意可知,任意向(0,1)这一区间内投掷一个点,该点落在(0,1)内各个位置是等可能的,
A={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4)},
AB={(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)},
P(B|A)= = = .
|
11.下列说法正确的是()
A.P(B|A)<P(AB)
B.P(B|A)= 是可能的
解析:P(A)= = ,P(AB)= ,∴P(B|A)= = = .
答案:
13.如图所示,一个正方形被平均分成9个相同的小正方形,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个正方形区域的事件记为B,求P(AB),P(A|B).
解析:令事件A={选出的4个球中含4号球},

2020-2021学年数学人教A版选修2-3课件:课时作业 2-2-1 条件概率

2020-2021学年数学人教A版选修2-3课件:课时作业 2-2-1 条件概率

个黑球,则 P(B|A)=151.
二、填空题(每小题 6 分,共计 18 分) 9.高二某班共有 60 名学生,其中女生有 20 名,三好学生 占全班人数的16,而且三好学生中,女生占一半.现在从该班同 学中任选一名参加某一座谈会.则在已知没有选上女生的条件
1 下,选上的是三好学生的概率为___8____.
3 次拿出绿皮咸鸭蛋的概率为 P(B|A)=PPAAB=130=12.
5
解析:设事件 A 表示“任选一名同学是男生”;事件 B 为 “任选一名同学为三好学生”,则所求概率为 P(B|A).依题意
1 得 P(A)=4600=23,P(A∩B)=650=112.故 P(B|A)=PPA∩AB=122=18.
3
10.一种耐高温材料,能承受 200 度高温不熔化的概率为 0.9; 能承受 300 度高温不熔化的概率为 0.45.现有一些这样的材料,在 能承受 200 度高温不熔化的情况下,还能承受 300 度高温不熔化
=16.
5.某种元件用满 6 000 小时未坏的概率是34,用满 10 000 小
时未坏的概率是12.现有一个此种元件,已经用过 6 000 小时未坏,
则它能用到 10 000 小时的概率( A )
2
3
A.3
B.4
1
1
C.2
D.4
解析:设 A={用满 10 000 小时未坏},B={用满 6 000 小
1 时未坏},显然 P(AB)=P(A),所以 P(A|B)=PPABB=PPAB=23=23.
4
6.甲、乙两班共有 70 名同学,其中女同学 40 名,设甲班
有 30 名同学,而女同学有 15 名.则在碰到甲班同学时正好碰到

2017-2018学年高中数学北师大版选修2-3:课时跟踪训练(十一) 条件概率与独立事件 Word版含解析

2017-2018学年高中数学北师大版选修2-3:课时跟踪训练(十一) 条件概率与独立事件 Word版含解析

课时跟踪训练(十一) 条件概率与独立事件1.抛掷一颗骰子一次,A 表示事件:“出现偶数点”,B 表示事件:“出现3点或6点”,则事件A 与B 的关系是( )A .相互互斥事件B .相互独立事件C .既相互互斥又相互独立事件D .既不互斥又不独立事件2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为,在事件A 发生的条件310下,事件B 发生的概率为,则事件A 发生的概率为( )12A. B.2535C.D.453103.某农业科技站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地取出一粒,则这粒水稻种子发芽能成长为幼苗的概率为( )A .0.02B .0.08C .0.18D .0.724.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合15格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构14造合格与否相互之间没有影响)( )A. B.132015C.D.14255.有一个数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试1213图独立地在半小时内解决它,则两人都未解决的概率为________,问题得到解决的概率为________.6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.7.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?8.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对密码的概率;(2)如果他记得密码的最后一位数字是偶数,不超过2次就按对密码的概率.答案1.选B A ={2,4,6},B ={3,6},A ∩B ={6},所以P (A )=,P (B )=,P (AB )1213==×,所以A 与B 是相互独立事件.1612132.选B 由题意知:P (AB )=,P (B |A )=,31012∴P (A )===.P (AB )P (B |A )31012353.选D 设“这粒水稻种子发芽”为事件A ,“这粒水稻种子发芽又成长为幼苗”为事件AB ,“这粒种子能成长为幼苗”为事件B |A ,则P (A )=0.8,P (B |A )=0.9,由条件概率公式,得P (AB )=P (B |A )·P (A )=0.9×0.8=0.72.4.选D 设“儿童体型合格”为事件A ,“身体关节构造合格”为事件B ,则P (A )=,P (B )=.又A ,B 相互独立,则,也相互独立,则P ( )=P ()P ()=×=,故1514A B A B A B 453435至少有一项合格的概率为P =1-P ( )=.A B 255.解析:甲、乙两人都未能解决为=×=,(1-12)(1-13)122313问题得到解决就是至少有1 人能解决问题.∴P =1-=.1323答案: 13236.解析:令事件A ={选出的4个球中含4号球},B ={选出的4个球中最大号码为6},依题意可知n (A )=C =84,n (AB )=C =6,3924∴P (B |A )===.n (AB )n (A )684114答案:1147.解:“最后从2号箱中取出的是红球”为事件A ,“从1号箱中取出的是红球”为事件B .P (B )==,42+423P ()=1-P (B )=,B 13(1)P (A |B )==,3+18+149(2)∵P (A |)==,B 38+113∴P (A )=P (A ∩B )+P (A ∩)=P (A |B )P (B )+P (A |)P ()=×+×=.B B B 4923131311278.解:(1)设“第i 次按对密码”为事件A i (i =1,2),则事件A =A 1+(1A 2)表示不超过A2次就按对密码.因为事件A 1与1A 2互斥,由概率加法公式,得A P (A )=P (A 1)+P (1A 2)=+=.A 1109×110×915(2)用B 表示“最后一位数字是偶数”这个事件,则A |B =A 1|B +(1A 2)|B .A ∴P (A |B )=P (A 1|B )+P ((1A 2)|B )A =+=.154×15×425。

高中数学 第二章 概率 课时跟踪检测(十)概率的基本性

高中数学 第二章 概率 课时跟踪检测(十)概率的基本性

课时跟踪检测(十)概率的基本性质层级一学业水平达标1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B ={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是( )A.A与C互斥B.B与C互斥C.任何两个都互斥 D.任何两个都不互斥解析:选D 由题意知事件A、B、C两两不可能同时发生,因此两两互斥.2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为( )A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.3.已知盒中有5个红球,3个白球,从盒中任取2个球,下列说法中正确的是( ) A.全是白球与全是红球是对立事件B.没有白球与至少有一个白球是对立事件C.只有一个白球与只有一个红球是互斥关系D.全是红球与有一个红球是包含关系解析:选B 从盒中任取2球,出现球的颜色情况是,全是红球,有一个红球且有一个白球,全是白球,至少有一个的对立面是没有一个,所以选B.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球解析:选D 对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B.0.56C.0.24 D.0.285解析:选A ∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665,故选A.6.掷一枚骰子,记A为事件“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C 为事件“落地时向上的数是3的倍数”.其中是互斥事件的是________,是对立事件的是________.解析:A ,B 既是互斥事件,也是对立事件.答案:A ,B A ,B7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.解析:摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率是1-0.42-0.28=0.3. 答案:0.38.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________. 解析:因为事件A 与事件B 是互斥事件,所以P (A ∪B )=P (A )+P (B )=12+16=23. 答案:239.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求: (1)甲获胜的概率;(2)甲不输的概率.解:(1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率P =1-12-13=16. 即甲获胜的概率是16. (2)法一:设事件A 为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P (A )=16+12=23. 法二:设事件A 为“甲不输”,可看成是“乙获胜”的对立事件,所以P (A )=1-13=23. 即甲不输的概率是23. 10.在数学考试中,小明的成绩在90分以上的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:(1)小明在数学考试中取得80分以上成绩的概率;(2)小明考试及格的概率.解:记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件A,B,C,D,这四个事件彼此互斥.(1)小明成绩在80分以上的概率是P(A∪B)=P(A)+P(B)=0.18+0.51=0.69.(2)法一:小明及格的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.18+0.51+0.15+0.09=0.93.法二:小明不及格的概率为0.07,则小明及格的概率为1-0.07=0.93.层级二应试能力达标1.如果事件A,B互斥,记A,B分别为事件A,B的对立事件,那么( )A.A∪B是必然事件B.A∪B是必然事件C.A与B一定互斥 D.A与B一定不互斥解析:选B 用Venn图解决此类问题较为直观.如图所示,∪是必然事件,故选B.2.根据湖北某医疗所的调查,某地区居民血型的分布为:O型52%,A型15%,AB型5%,B型28%.现有一血型为A型的病人需要输血,若在该地区任选一人,则此人能为病人输血的概率为( )A.67% B.85%C.48% D.15%解析:选A O型血与A型血的人能为A型血的人输血,故所求的概率为52%+15%=67%.故选A.3.下列各组事件中,不是互斥事件的是( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%解析:选B 对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件.4.把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是( )A.对立事件 B.不可能事件C.互斥但不对立事件 D.以上答案都不对解析:选C “甲分得4排1号”与“乙分得4排1号”是互斥事件但不对立.5.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.解析:设A ={摸出红球},B ={摸出白球},C ={摸出黑球},则A ,B ,C 两两互斥,A 与A 为对立事件,因为P (A +B )=P (A )+P (B )=0.58,P (A +C )=P (A )+P (C )=0.62,P (A +B +C )=P (A )+P (B )+P (C )=1,所以P (C )=0.42,P (B )=0.38,P (A )=0.20,所以P (A )=1-P (A )=1-0.20=0.80.答案:0.806.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________. 解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928. 答案:19287.在大小相同的5个球中,只有红色和白色两种球,若从中任取2个,全是白球的概率为0.3,求所取出的2个球中至少有1个红球的概率.解:记事件A 表示“取出的2个球中至少有1个红球”,事件B 表示“取出的2个球全是白球”,则事件A 与事件B 互为对立事件,而事件B 发生的概率为P (B )=0.3,所以事件A 发生的概率为P (A )=1-P (B )=1-0.3=0.7.8.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,∴P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120.(2)设“抽取1张奖券中奖”为事件D,则P(D)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则P(E)=1-P(A)-P(B)=1-11 000-1100=9891 000.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十一) 条件概率层级一 学业水平达标1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56B .910C .215D .115解析:选C P (AB )=P (B |A )·P (A )=13×25=215.2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C 由题意可知,n (B )=C 1322=12,n (AB )=A 33=6.∴P (A |B )=n (AB )n (B )=612=12. 4.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )和P (B |A )分别等于( )A .13,25B . 23,25C .23,35D . 12,35解析:选C P (A |B )=P (AB )P (B )=0.120.18=23,P (B |A )=P (AB )P (A )=0.120.2=35.5.用“0”“1”“2”组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P (A |B )=( )A .12B .13C .14D .18解析:选B 法一:∵P (B )=3×33×3×3=13,P (AB )=33×3×3=19,∴P (A |B )=P (AB )P (B )=13,故选B .法二:在B 发生的条件下,问题转化为:用“0”“1”“2”组成三位数码,其中第二位数字为0,则P (A |B )为在上述条件下,第一位数字为0的概率,∴P (A |B )=33×3=13.6.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为________.解析:设A =“投掷两颗骰子,其点数不同”,B =“ξ≤6”,则P (A )=3036=56,P (AB )=13,∴P (B |A )=P (AB )P (A )=25. 答案:257.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.解析:设A =“其中一个是女孩”,B =“其中一个是男孩”,则P (A )=34,P (AB )=12,∴P (B |A )=P (AB )P (A )=23. 答案:238.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是________.解析:令第二次取得一等品为事件A ,第一次取得二等品为事件B ,则P (AB )=C 12·C 14C 16·C 15=415,P (A )=C 14·C 13+C 12·C 14C 16·C 15=23. 所以P (B |A )=P (AB )P (A )=415×32=25. 答案:259.五个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求: (1)第一次取到新球的概率; (2)第二次取到新球的概率;(3)在第一次取到新球的条件下,第二次取到新球的概率.解:设第一次取到新球为事件A ,第二次取到新球为事件B . (1)P (A )=3×45×4=35.(2)P (B )=3×2+2×35×4=1220=35.(3)法一:P (AB )=3×25×4=310, P (B |A )=P (AB )P (A )=31035=12.法二:n (A )=3×4=12,n (AB )=3×2=6, P (B |A )=n (AB )n (A )=612=12.10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. 解:设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)法一:要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415.法二:P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P (AB )P (B )=415. 层级二 应试能力达标1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .13解析:选C 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P =1015=23.2.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12解析:选B ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=14. 3.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A .911B .811C .25D .89解析:选D 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而在吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89. 4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217解析:选D 设事件A 表示“抽到2张都是假钞”,事件B 为“2张中至少有一张假钞”,所以为P (A |B ). 而P (AB )=C 25C 220=119,P (B )=C 25+C 15C 115C 220=1738.∴P (A |B )=P (AB )P (B )=217. 5.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.解析:设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100=120,P (AB )=C 15C 195A 2100=19396, 所以P (B |A )=P (AB )P (A )=9599.答案:95996.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.解析:法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.法二:设A =“取出的球不大于50”,B =“取出的数是2或3的倍数”,则P (A )=50100=12,P (AB )=33100, ∴P (B |A )=P (AB )P (A )=3350. 答案:33507.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率.解:设“第1次抽到舞蹈节目”为事件A ,“第2次抽到舞蹈节目”为事件B ,则“第1次和第2次都抽到舞蹈节目”为事件AB .(1)从6个节目中不放回地依次抽取2次的事件数为n (Ω)=A 26=30,根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23.(2)因为n (AB )=A 24=12,于是 P (AB )=n (AB )n (Ω)=1230=25. (3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35.法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=n (AB )n (A )=1220=35.8.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.解:设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},则容易求得P(A)=710,P(B)=310,P(R|A)=12,P(R|B)=45.事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,故由概率的加法公式,得P(RA∪RB)=P(RA)+P(RB)=P(R|A)P(A)+P(R|B)P(B)=12×710+45×310=0.59.。

相关文档
最新文档