金属间化合物
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1几何密排相特点
以密排六方结构为基的长程 有序结构 Mg3Cd型(D019型) 化学式为A3B。由4个 密排六方单胞组成1个大单 胞,Cd原子占据大单胞8个 顶点以及1个小单胞的位置, 其余点阵位置全部由Mg原 子占据。典型例子有 Mg3Cd,Ni3Sn,Ni3In等。
Mg3Cd型(D019型)
2.3.2 拓扑密排相的稳定性 下面以Laves相进行说明
化学式为AB2 三种结构MgCu2相,MgZn2相,MgNi2相。 原子尺寸因素的影响 理论上Laves相的A原子和B原子的半径之 比为: r / r 3/ 2 1.225 A B 实际上这比值约在1.05~1.68范围内,不同原 子之间电子的转移造成A原子和B原子的膨胀 和压缩,使得实际原子半径比接近理论值。
2.3晶体结构的稳定性
门捷列夫序数(the Mendeleev number),因素μ
2.3晶体结构的稳定性
第二、将所有已知二元化合物写成A1-xBx的形式,x值相同的 所有二元化合物编为一组,建立直角坐标系,其中横坐标为 A元素对应的门捷列夫序数(μA值),纵坐标为B元素对应的 门捷列夫序数(μB值),坐标系内的点对应A1-xBx的相结构
W f ( P, T , , )
其中:W为相结构参数,P为压强,T为温度,ω为原子百分比,α表示原子之间 相互作用能,与原子的结构有关,受原子尺寸、负电性和电子浓度等因素的影 响。
2.3.1几何密排相的稳定性
几何密排相是由密排面堆垛而成的,根据密排 面上原子排列方式和堆垛方式的不同,又分为多种 结构形式。下面以CuAu,CuPd,CuPt和CuRh为 例进行说明。 原子百分比均为50%; CuAu的晶体结构为L10型,CuPt的晶体结构为L11 型,CuPt的晶体结构为B2型,CuRh化合物不存在 (室温下它自动分解为Cu和Rh)。
例如: Ti3Al:Ti1-0.75Al0.25, TiAl:Ti1-1Al1
A1-xBx
Pettifor Structure Maps
2.3晶体结构的稳定性
Pettifor Structure Maps只是一种将已知二元化合物的
相结构的事实积累,并非一种科学规律的提炼,尽管它为揭 示内在规律、预测未知化合物的相结构提供了有益的参考。 Pettifor也只用了两个独立因素就确定了相结构。考虑外在因 素(温度和压强),相结构是温度,压强,原子百分比和表 示原子之间相互作用能的参数的函数,即:
化合物 (A1-xBx) x=1/2 △α/α (%) △H (mev/atom) es(A)- es(B) Hartree-Fock (eV) ed(A)- ed(B) Hartree-Fock (eV) cA-cB Pauling
CuRh
CuPt CuPd CuAu
分解
L11 B2 L10
5.1
MgZn2结构 原子半径小的Zn原子 形成四面体,原子半径大 的Mg原子占据四面体间隙 之中,本身构成一个四面 体骨架。每个Zn原子与6 个Mg原子和6个Zn原子相 邻,Zn原子的配位数为12; 每个Mg原子与4个Zn原子 和12个Mg原子相邻,Mg 原子的配位数为16。
MgZn2结构
2.3晶体结构的稳定性
2.2.1几何密排相特点
以面心立方结构为基 的长程有序结构 Cu3Au型(L12型) 化学式为A3B。面 心立方晶胞的面心位 置由Cu原子占有,而 其顶角位置由Au原子 占据。典型的例子有 Ni3Al,Ni3Mn,Ni3Fe 等。
wk.baidu.com
Cu3Au型(L12型)
2.2.1几何密排相特点
以面心立方结构为基 的长程有序结构 CuPt型(L11型) 化学式为AB。面 心立方的(111)面被 仅由Cu原子组成的原 子面及仅由Pt原子组 成的原子面交替重叠 堆垛而成。
A ssessed T i - A l p h ase d i ag r am .
外因:温度,压强 内因:
原子百分比, 结合能因素, 原子尺寸因素, 原子序数因素, 负电性,
电子浓度。
L10 D019
D022
内在因素相互关联并非 独立参量。
2.3晶体结构的稳定性
晶体结构的形成条件是什么? 采用吉布斯自由能函数 通过一些容易计算的参量来判断相结构,如原子 半径,负电性,电子浓度。这一做法并不全面。
2.3.2 拓扑密排相的稳定性
电子浓度的影响 电子浓度约为1.33~1.75范围为MgCu2结构, 在1.8~1.9范围为MgNi2结构,在1.8~2.0范围为 MgZn2结构。
2.3.2 拓扑密排相的稳定性
原子尺寸因素和电子浓度因素在只能定性预测晶 体结构,无法定量预测。 表征晶体结构的参数应是能量单位(ev/atom), 表征不同原子结合的参数也应为能量单位 (ev/atom)。 计算公式:
3.1金属间化合物的结合键形式
金属键含有部分定向共价键 例如:Ni3Al中的结合键由Ni原子3d电子部 分公有化形成的金属键和Ni原子3d电子和Al 原子3p电子形成的定向共价键组成。可作 为结构材料的金属间化合物大多具有这类 电子结构。
3.1金属间化合物的结合键形式
离子键和(或)共价键
正负离子间通过电子的转移(离子键)和 (或)电子的公用(共价键)而形成稳定的8电子 组态ns2np6的电子结构。这类化合物又称价化合 物,主要呈现非金属性质或半导体性质。典型例 子有MgSe,Mg2Si。
几何密排相 拓扑密排相
几何密排相
Cu2MnAl型(L21型)等
Mg3Cd型(D019型)等 CuAuⅡ型等 MgCu2相 MgZn2相 MgNi2相
以密排六方结构为
金 属 间 化 合物 拓扑密排相 基的长程有序结构 长周期超点阵 laves相 σ相 χ相 Cr3Si(β-W)相 μ 相等
2.1晶体结构分类 几何密排相 定义:由密排面按不同方式堆垛而成的。 类型:面心立方、体心立方、密排六方结 构为基的长程有序结构和长周期超点阵。 特点:较高的对称性,位错运动滑移面较 多,是有利于得到塑性。
8.2 7.3 12.0
>0
-174.3 -142.3 -90.7
-0.89
-0.78 -0.71 -0.63
-3.51
-3.38 -2.25 -2.16
-0.3
-0.3 -0.3 -0.5
注:原子尺寸相对差△α/α=2(aA- aB)/(aA- aB);结合能为△H;s轨道能量差为 es(A)- es(B);d轨道能量差为ed(A)- ed(B);负电性差为cA-cB。
CuPt型(L11型)
2.2.1几何密排相特点
以面心立方结构为基 的长程有序结构 CuAuⅠ型(L10型) 化学式为AB。原 面心立方(001)面 被仅由Cu原子组成的 原子面及仅由Au原子 组成的原子面交替重 叠堆垛而成。典型的 例子有CuAu,TiAl等。
CuAuⅠ型(L10) CuAuⅠ型(L10型)
2.2.1几何密排相特点
以体心立方结构为基 的长程有序结构 CuZn型(B2型) 化学式为AB。Cu 原子占据体心位置, Zn原子占据各顶角, 典型例子有AlNi, AuCd等。
CuZn型(B2型)
2.2.1几何密排相特点
以体心立方结构为基的长 程有序结构 Fe3Al型(D03型)
化学式为A3B。Al占据X位 置,其余位置为Fe原子所占据; 如果增加Al含量,Al原子将占 据Y位置,直到Al原子占满X和 Y点阵位置。当Al原子占满X和 Y位置时,就成为了B2结构, 化学式为FeAl。典型例子有 Cu3Al,Li3Be,Fe3Si等。
3.1金属间化合物的结合键形式 前两类金属间化合物在化学式规定成 分两侧通常具有一定的成分范围,后一类 金属间化合物在化学式规定成分两侧没有 成分范围。主要研究方向是第二类金属间 化合物。
2.3.1几何密排相的稳定性
Cu-Au,Cu-Pd,Cu-Pt和Cu-Rh二元平衡相图
2.3.1几何密排相的稳定性
下表为CuAu,CuPd,CuPt和CuRh原子结构有关的 一些参量,包括原子尺寸相对差、形成能、外层电子s、d 轨道能量差和负电性差。这些参数并不能直接给出晶体结 构,例如比较CuRh和CuPt的一些参数,负电性和s,d轨道 的能量差并没有多大区别,但最终的晶体结构却明显不同。
金属间化合物
晶体结构、结构稳定性 及电子理论
1定义
金属间化合物是指由两个或更多的金属组元或 类金属组元按比例组成的具有金属基本特性和不同 于其组元的长程有序晶体结构的化合物。
TiAl(L10)
2晶体结构分类
以面心立方结构为 基的长程有序结构 以体心立方结构为 基的长程有序结构
Cu3Au型(L12型) CuPt型(L11型) CuAuⅠ型(L10型)等 CuZn型(B2型) Fe3Al型(D03型)
2.1晶体结构分类
堆垛密排相
定义:由不规则的四面体填充空间的密堆结构 。 类型:laves相,σ相,χ相,β-W相等。 特点:晶体中的间隙完全由不规则的四面体间隙 组成,没有八面体间隙,配位数>12,致密度> 0.74;原子间距极短 ,原子间电子交互作用强烈, 对称性低,滑移系少,塑性差。
2.2.1几何密排相特点
长周期超点阵
有些长程有序结构以一定大小的区域改变其位向交替地 在一维或二维周期排列,这称为长周期超结构。典型的一维 长周期超结构的例子是CuAuⅡ型结构。这种超结构单胞中 原子排列和CuAuⅠ型相同,但沿着[010]方向经过5个晶胞后 的5个晶胞的取向是(010)面作(a+c)/2位移;然后按此 方法不断重复。
Fe3Al型(D03型)
2.2.1几何密排相特点
以体心立方结构为基的 长程有序结构 Cu2MnAl型(L21型) 化学式为A2BC。Al 原子占据B位置,Mn原 子占据C位置,Cu原子 占据A位置。典型例子有 Cu2MnAl,Cu2MnSn, Ni2TiAl等。
B A
C
Cu2MnAl型(L21型)
2.3.1几何密排相的稳定性
Cu-Au,Cu-Pd和Cu-Pt二元合金形成的化合物在基态时的结合能
采用第一性原理计算晶体结构的电子结构和基态性能, 为解释晶体结构的选择倾向上取得一定的成果。根据结合能 最低,结构最稳定的原则,由图可知,当两种原子的原子百 分比均为50%时,稳定的晶体结构分别为L10,B2和L11。
2.2.2拓扑密排相特点
Laves相 以面心立方、体心立 方和密排六方为基础的结 构,并且广泛存在的典型 结构,化学式为AB2。其 典型代表分别为MgCu2, MgZn2和MgNi2,分别称 为C14型、C15型和C36型 结构,其中最简单的是六 方晶系MgZn2结构
MgZn2结构
2.2.2拓扑密排相特点
2.3晶体结构的稳定性
根据相平衡时系统总的吉布斯自由能最低,由 原子百分比和各相的吉布斯自由能曲线这两个因素, 则可确定金属间化合物的相结构。
2.3晶体结构的稳定性
牛津大学的D. G. Pettifor引入了另一个独立因 素μ(Chemical Scale),并利用这个因素将所有已 知二元化合物的相结构进行排序,设计思路如下: 第一、利用门捷列夫的元素周期表,略加修改后将 每个元素排序,序号即为独立因素μ,也称为门捷列 夫序数(the Mendeleev number)。因素μ为纯粹 的由实验得到的,但它基本符合元素周期表的排列 顺序,因此它包含了原子大小及原子外层电子的排 布规律。
W f ( P, T , , )
3 金属间化合物的电子理论 3.1金属间化合物的结合键形式 金属间化合物介于金属和陶瓷之间的一 种化合物,结合键介于金属键和共价键(或 离子键)之间,主要可分为三类: 金属键 公有化结合电子与核的相互作用,点阵 中异类原子间的电子密度要高些,但不形成 定向键。典型例子有电子化合物和密排相 KNa2。
2.3.2 拓扑密排相的稳定性
拓扑密排相只有四面体间隙,没有八面体间隙。 为了得到这种只有纯四面体间隙的长程规则排列, 必须要有两种大小不同的原子,所以原子尺寸因素 是拓扑密排相的主要形成条件。此外拓扑密排相的 原子间距极短,原子的外层电子之间相互作用强烈, 可以产生电子迁移,电子浓度因素往往也起着重要 作用。