盾构施工控制测量方案
盾构隧道测量方案
盾构施工地面监测方案1、概况1.1、工程概况深圳地铁5号线土建2标盾构施工共包括三个区间,分别是:翻身站~灵芝公园站、灵芝公园站~大浪站、大浪站~同乐站。
翻身站~灵芝公园站设计起止里程CK4+196.34~CK5+461.66。
其中左右线CK4+196.34~CK4+410各213.66m为矿山法施工暗挖隧道;左线盾构区间CK4+410~CK5+461.66,长1265.32m;右线盾构区间CK4+410~CK5+461.66,长1252.68m; 灵芝公园站~大浪站起点里程为CK5+686.661,左线隧道设计终点里程为CK6+265.602,长578.941m;右线设计终点里程为CK6+109.605,长422.944m; 大浪站~同乐站区间起点里程为CK6+588.140,左线隧道设计终点里程为CK7+201.660,长613.520m;右线设计终点里程为CK7+241.200,长653.060m。
1.2、施工总体方案投入两台海瑞克复合式土压平衡盾构机(配备保压泵碴装置),两台从同乐明挖区间盾构井站先左线、后右线下井始发,由北向南沿创业路掘进;至大浪站,过站;再从大浪站南端始发、掘进,进入灵芝公园站北端头井吊出转场。
两台分别再从翻身站北端始发,通过矿山法隧道,由南向北掘进,至灵芝公园站南端头井吊处,退场。
为了确保盾构机从同乐~大浪~灵芝站和翻身~灵芝站三个区间顺利准确的进行掘进施工,对翻身~同乐站三区间的地面导线点联测控制导线测量,地面高程测量为盾构机掘进前施工奠定基础。
2、编制依据《地下铁道、轻轨交通工程测量规范GB50308-1999》《广州地铁三号线工程施工测量管理细则》《工程测量规范》(GB500026-93)《城市测量规范》(CJJ8-99)《铁路测量规范》(TBJ101-85)3、仪器设备配置4、施工测量组织机构整个区间施工中,项目经理部设测量主管一名,负责具体的施工测量工作管理及安排;专职测量工程师二名,负责现场施工测量放样及内业资料的整理;专职测量工三名。
盾构工程施工测量和监控量测方案
盾构工程施工测量和监控量测方案1 施工测量1.1 控制测量为确保施工控制点的稳定可靠,测量与相邻标段测量点联测闭合,对地面首级和二级控制网点进行同等精度的复测工作。
(1)复测按照招标文件的要求及《城市轨道交通工程测量规范》GB50308的规定,施工前,测量队对业主在交接桩时提供工程范围测区精密控制网、精密水准点等进行复测。
复测时按照首级控制网点同等精度进行观测,并与邻近标段的平面和高程控制网点进行贯通联测,做好工程测量的相互衔接。
将复测成果书面上报监理单位。
在工程施工期间,每两个月对首级控制网复测一次,并将复测成果上报监理单位。
如监测发现施工场地周围的地面有变形时,及时对首级控制网进行复测,增加复测频率,确认控制点无误后才可以继续使用。
如发现首级控制网测量超出规范允许范围时,立即报告监理单位,重新交桩后才可以使用首级控制网。
(2)控制测量复测工作完成后,在首级控制网点的基础上,根据工程项目的施工需要并结合本标段工程特点城市道路交通建筑物等实际情况定平面和高程控制网方案,现场选点埋设控制网标石后组织施测。
(3)平面控制测量为满足施工需要,严格地按四等导线测量规范增设了导线点,在盾构竖井处适当位置增设了精密导线点和精密水准点。
将新增设的控制点与地面首级控制网进行了联测,确保竖井投点在多方控制中。
盾构始发井投点测量为指导盾构掘进施工,必需把导线数据导入始发井强制对中平台上,施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点(投点仪标称精度不低于1/30000),把井口上测设的为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图10-1-1-1。
然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图10-1-1-2所示。
为了检核投点精度,在井上作多次投点,投在投点板上的P1′、P2′、P1″、P2″…点。
盾构施工监测和施工测量
第1章施工监测和施工测量1.1 施工监测1.1.1 监测目的、要求及内容(1)监测目的1)了解和掌握盾构施工过程中地表隆陷情况及其规律性;2)了解盾构掘进过程因地表隆陷而引起的建筑物、地下管线下沉及倾斜情况,确保建筑物、地下管线的安全;3)了解施工过程中地层不同深度的垂直变位与水平变位情况;4)初步了解管片的变形情况;5)了解结构物的相互作用力以及管片衬砌的变形情况,实现信息化施工。
(2)监测要求1)建立监测专业小组,以项目总工程师为直接领导,由具备丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责及时收集、整理各项监测资料,并对资料进行计算分析对比;2)制定详细的监测计划,并报监理工程师和业主。
报告的内容包括施测程序、方法、使用仪器、监测精度、监测点布置、监测的频率和周期、检测人员的情况和安排,监测质量保证措施等;3)根据监测计划,在施工前,备齐所有的监测元件和仪器,并根据规范进行有关标定工作;4)妥善协调好施工和监测的关系,将观测设备的埋设计划列入工程施工进度控制计划中。
及时提供工作面,创造条件保证监测埋设工作的正常进行。
在施工过程中采取有效措施,防止一切观测设备、观测测点受到机械和人为的破坏,如有损失,按监理工程师的要求及时采取补救措施,并详细记录;5)保护和保存好本区间范围内全部三角网点、水准网点和自己布设的网点,使之容易进入和通视,防止移和破坏;6)根据现场的实测结果,对比实测数值与初始数值,绘制各种时态曲线,运用回归分析法进行分析,根据位移,应力变化趋势推算最终结果与控制值比较,确定土体及支护结构的安全稳定性,提出分析意见和采取必要的措施,并及时反馈,以调整施工参数,并提交成果报告;7)加强始发和到达的监控量测,做好日常巡查工作,并做好相应的记录。
(3)监测内容1)地面沉降监测①开挖时的土、水压力不均衡:由于盾构机推进量与排土量不等,使开挖面土压力、水压力与压力仓的压力产生不均衡,导致开挖面失去平衡状态,从而发生地基变形。
盾构法隧道施工测量指引
39
六、测量数据
处理
测量原始数据必须计算完全,结果和限差明确,记录、复核等履责并签字齐全。
+
40
联系测量平差计算必须先计算闭合差且符合限差再进行;地面近井点、地下控制点都要分段进行平差计算。
+
41
计算成果的取舍和使用必须经复核确认后使用。
+
42
移站测量完成后,导向系统数据的更改必须有复核并形成记录。
10.2.3+
25
平面控制测量应采用导线测量方法,导线测量应使用不低于II级全站仪施测,左右角各观测两测回,左右角平均值之和与360°较差应小于4";边长往返观测各两测回,往返平均值较差应小于4mm。测角中误差为±2.5",测距中误差为±3mm。测角中误差可按照下式计算,M平=
10.2.4+
26
每次延伸控制导线前,应对已有的控制导线点进行检测,并从稳定的控制点进行延伸测量。
3.3.6-1
3
利用精密导线加密测量计算应采用严密平差方法,提供导线点坐标及其精度评定成果表。
3.3.13-14+
4
高程控制测量
车站、竖井及车辆段附近水准点布设数量不应少于2个。
4.1.5
5
二、
联系
测量
一般
规定
地面近井进行导线点加密时,地面近井点与精密导线点应构成附合导线或闭合导线。近井导线总长不宜超过350m,导线边数不宜超过5条。
2.始发时利用盾构机配置的导向系统和人工测量法对盾构机姿态进行测量核对,始发后定期采用人工测量的对导向系统测定的盾构机姿态数据进行检核校正。
3.盾构机配置的导向系统宜具有实时测量功能,人工辅助测量时,测量频率应根据其导向系统精度确定;盾构机始发10环内、到达接收井前50环内应增加人工测量频率。
盾构施工专项测量施工方案
盾构施工专项测量施工方案
一、前言
盾构施工是一种现代化的地下工程施工方法,其施工需要精确的测量工作作为基础保障。
本文将介绍盾构施工中专项测量的施工方案,包括测量准备工作、实际施工过程中的测量方法和注意事项等内容。
二、测量准备工作
1. 确定测量任务
在进行盾构施工前,需要确定需要进行的测量任务,包括地表控制点的设置、隧道轴线控制等。
2. 准备测量设备
准备好合适的测量设备,包括测距仪、全站仪、水平仪等,确保设备的精度和准确性。
三、施工过程中的测量方法
1. 地表控制点设置
在盾构施工现场周围设置地表控制点,用于确定隧道的位置和方向。
2. 隧道轴线控制
通过测量隧道隧道轴线的位置和方向,确保隧道施工的准确性和质量。
3. 岩体位移监测
通过测量岩体的位移情况,监测盾构施工对周围岩体的影响,确保隧道施工的安全性。
四、注意事项
1. 测量精度
在进行施工测量时,要保证测量的精度,避免因测量不准确引起的施工质量问题。
2. 施工环境
考虑施工环境对测量的影响,采取相应的措施保证测量工作的顺利进行。
3. 实时监测
建立实时监测系统,及时掌握隧道施工过程中的测量数据,发现问题及时调整。
结语
盾构施工专项测量施工方案是保障盾构施工质量和安全的重要保障措施,通过
合理的测量工作可以确保施工的顺利进行。
希望本文所介绍的内容对盾构施工测量工作有所助益。
区间盾构施工监测方案
区间盾构施工监测方案一、监测内容在盾构施工过程中由于土体的缺失而导致不同程度的地面和隧道沉降,从而会影响到周围的地面建筑、地下管线等设施的正常使用。
针对该区间隧道沿线的建(构)筑物及地下管线设施,结合盾构推进施工中引起地面沉降的机理,进行如下监测内容:1)道路与管线沉降监测2)一般建(构)筑物沉降3)隧道轴线上方地表沉降监测4)地面裂缝的观察二、监测的意义和目的1)监测的意义在软土地层的盾构法隧道施工中,由于盾构穿越地层的地质条件千变万化,岩土介质的物理力学性质也异常复杂,而工程地质勘察总是局部的和有限的,因而对地质条件和土体的物理力学性质的认识总存在诸多不确定性和不完善性。
由于软土盾构隧道是在这样的前提条件下设计和施工的,为保证盾构掘进隧道工程的施工安全和周围环境安全,并在施工过程中积极改进施工工艺和参数,需对盾构推进的全过程进行监测。
在设计阶段要根据周围环境、地质条件、施工工艺特点,编制施工监测方案,在施工阶段要按监测结果及时反馈,合理调整施工参数和采取技术措施,最大限度地减少地层移动,确保工程安全并保护周围环境。
2)监测的目的(1)认识各种因素对地表和土体变形等的影响,以便有针对性地改进施工工艺和修改施工参数,减小地表和土体的变形。
(2)预测下一步的地表和土体变形,根据变形发展趋势和周围建筑物情况,决定是否需要采取保护措施,并为确定经济合理的保护措施提供依据。
(3)检查施工引起的地面沉降和隧道沉降是否控制在允许的范围内。
(4)控制地面沉降和水平位移及其对周围建筑物的影响,以减少工程保护费用。
(5)建立预警机制,保证工程安全,避免因结构和环境安全事故引起的工程总造价增加。
(6)为研究土体性质、地下水条件、施工方法与地表沉降和土体变形的关系积累数据,为改进设计提供依据。
(7)为研究地表沉降和土体变形的分析计算方法等积累资料。
三、监测实施的重点1)各区间沿线建(构)筑物2)隧道影响范围内的管线四、监测内容的实施1)变形监测控制网的布设(1)变形监测控制网的起算点或终点要有稳定的点位,应布设在牢靠的非变形区。
盾构施工测量方案
目录一、VMT导向系统 (1)1、盾构施工的坐标系统 (1)2、定向系统的基本组成与功能 (2)3、定向基本原理 (3)二、盾构机始发掘进阶段测量 (4)1、始发定向测量 (4)2、观测要求及精度 (5)3、盾构机始发托架及反力架安装测量 (7)1)始发托架的高程控制 (7)2)始发托架的平面位置控制 (8)3)始发托架、基准环及反力架的检查 (9)4、始发掘进阶段测量 (9)1)、盾构机姿态人工复测 (10)2)、环片测量 (11)3)、盾构机姿态测量的误差分析 (12)三、隧道洞内施工测量 (12)1、激光站的移站 (12)1)、移站距离的确定 (13)2)、激光站的移站 (14)2、激光站的人工检查 (15)3、洞内精密导线网和水准网的测设 (16)4、盾构机姿态人工复测 (18)5、隧道环片测量 (18)四、贯通误差预计 (19)1.平面贯通误差分析 (19)⑴平面贯通误差的主要来源 (19)⑵各项误差源的分析 (19)⑶平面贯通测量误差预计 (23)2.高程贯通误差分析 (23)(1)高程贯通误差来源 (23)(2)各种误差源的分析 (24)(3)高程贯通误差的预计 (25)五、竣工测量 (25)1、贯通测量: (25)2、竣工验收测量: (26)六、测量技术保证措施 (26)一、VMT导向系统在掘进隧道的过程中,为了避免隧道掘进机(TBM)发生意外的运动及方向的突然改变, 必须对TBM的位置和DTA(隧道设计轴线)的相对位置关系进行持续地监控测量。
TBM能够按照设计路线精确地掘进,则对掘进各个方面都有好处(计划更精确,施工质量更高)。
这就是TBM采用“导向系统”(SLS)的原因。
德国VMT公司的SLS-T系统就是为此而开发,该系统为使TBM沿设计轴线(理论轴线)掘进提供所有重要的数据信息。
1、盾构施工的坐标系统(1)D TA坐标系DTA坐标系是盾构施工坐标系统,它是以线路设计中线为参照的一种三维坐标。
盾构施工测量
在盾构机掘进过程中此界面可以清晰的看到油缸、 千斤顶的行程和推力,在这个管理行程时的姿态。
在盾构机的掘进过程中,站点和后视点是静态,前 视是动态的。当掘进到一定的距离时,就要移机全站仪 靠近前视棱镜的位置。在移站时,首先要在隧道的顶部 预装固定全站仪的架子,装上配套棱镜并整平。使用隧 道内的控制点,复测现在全站仪架子的平面坐标和高程, 并把平面坐标和高程引到新装的架子上。
同时应注意采用的坐标系统(国家或地方)。
盾构施工平面控制网一般分两级布设,首级为GPS控制网、 二级为精密导线网,在满足精度要求的情况下可采用其它方法 布网。施工路线长度较短时,可一次布网。盾构施工平面首级 GPS控制网应在已有的国家二等三角网或B级GPS控制网下布设。 精密导线网应在C级GPS控制网或国家三等三角网下扩展。
2.盾构测量包括的内容
(1)盾构姿态测量
盾构姿态测量内容包括平面偏差、高程偏差、俯 仰角、方位角、回转角及切口里程。目前盾构多有自 动测量系统完成,但要、定期进行人工测量复核,测 量频率应根据其导向系统精度确定。盾构始发10环内, 到达接收井前50环内应增加人工测量频率。 以地下控 制导线点和水准点测定盾构测量标志点,测量误差应 在±3mm以内。
是对导向系统显示姿态的一个复核,内容主要包括管 片的横向和高程变化。监测间隔为每掘进5环一次。当 管片的姿态与导向系统显示的姿态有较大出入时,应 人工复测全站仪和后视棱镜的坐标,人工复测盾构机 姿态,找出偏差的原因,避免隧道轴线与设计轴线产 生大的偏差。管片的总位移量大于20mm时,应提高 监测频率,每掘进2环监测一次。管片的监测到每天的 变形量不大于1mm时为止。
盾构施工高程控制网应在已有的国家二等水准网下一次布 设全面网。盾构施工高程控制网可采用精密水准等测量方法一 次布设全面网。当水准路线跨越江、河、湖塘视线长度小于 100m时可采用一般方法进行观测,大于100m时,应进行跨河 水准测量。跨河水准测量可采用光学测微法、倾斜螺旋法、经 纬仪倾角法和测距三角高程法等,其技术要求应执行国家一、 二等水准测量规范。
盾构法隧道施工测量精度控制措施
盾构法隧道施工测量精度控制措施摘要:本文介绍了从地铁盾构施工全过程中从施工测量技术方面提高贯通精度的控制措施。
关键词:零位测量法、联系测量、陀螺定向、交叉导线;盾构法隧道是指使用盾构机,一边控制开挖面及围岩不发生坍塌失稳,一边进行隧道掘进、出渣,并在机内拼装管片形成衬砌、实施壁后注浆,不扰动围岩而修筑隧道的方法。
盾构施工的主要原理就是尽可能在不扰动围岩的前提下完成施工,从而最大限度地减少对地面建筑物及地基内埋设物的影响。
盾构法隧道施工测量按施工工艺分为始发测量、地下导线测量、掘进轴线测量、接收到达测量。
1.盾构始发测量控制措施1.1 盾构机零位测量盾构始发测量,在盾构始发前,需要进行盾构机零位测量,确定盾构机姿态与盾构内布设的特征点之间几何关系,为后期掘进过程通过特征点位置调整盾构机姿态提供可靠的依据。
盾构机零位姿态测量常用的方法为分中法、侧边法进行测量。
侧边法的测量方法是在靠近盾首、盾尾处分别悬挂一根钢丝,钢丝下端悬挂重锤并置于油桶中,通过测量钢丝上的反射片坐标来计算盾构机首、尾的平面坐标。
盾首的钢丝悬挂在靠近刀盘和盾体的接缝处,盾尾的钢丝悬挂至靠近盾构(或铰接油缸)中盾与尾盾接缝处,钢丝至盾首、盾尾的距离用钢尺量出,取多次量取距离的平均值作为最终的计算依据。
当现场受到条件限制无法悬挂两根钢丝时,也可以悬挂一根钢丝,偏移计算出盾构中心线坐标。
高程测量:根据盾首、盾尾测量计算的平面坐标,将盾首、盾尾平面坐标测放至盾体顶面,利用全站仪三角高程直接测得盾首、盾尾处高程,通过反算得到盾首、盾尾的中心高程。
分中法测量:在盾首、盾中、盾尾按图1.1-4的方法找到盾体中心,使用全站仪分别测量盾首、盾中、盾尾中心C点的坐标,通过反算得到盾首和盾尾的坐标。
本次结合实际项目分别采用分中法、侧边法悬挂2根钢丝测量结果如下:虽然测量结果相近,但侧边法与设计值对比相差较小,如果现场有条件尽量采用侧边法悬挂2根钢丝进行施测。
盾构施工测量专项方案
一、方案概述本专项方案旨在为盾构施工提供精确的测量服务,确保施工过程符合设计要求,保障工程质量和施工安全。
本方案将详细阐述盾构施工测量的目的、内容、方法、精度要求以及实施步骤。
二、测量目的1. 确保盾构掘进方向、姿态和速度符合设计要求。
2. 监测盾构隧道结构的变形和受力情况,及时发现并处理异常情况。
3. 为施工管理和质量验收提供数据支持。
三、测量内容1. 地面控制测量:包括平面控制测量和高程控制测量。
2. 竖井联系测量:将地面控制网传递至竖井,建立竖井内的控制网。
3. 地下控制测量:包括平面控制测量和高程控制测量,用于指导盾构掘进。
4. 掘进施工测量:监测盾构姿态、掘进速度和隧道结构变形。
5. 竣工测量:对隧道结构进行测量,为质量验收提供依据。
四、测量方法1. 平面控制测量:采用GPS、全站仪等仪器进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。
2. 高程控制测量:采用水准仪进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。
3. 竖井联系测量:采用GPS、全站仪等仪器进行测量,将地面控制网传递至竖井。
4. 地下控制测量:采用全站仪进行测量,按照《地下铁道、轻轨交通工程测量规范》执行。
5. 掘进施工测量:采用全站仪进行测量,监测盾构姿态、掘进速度和隧道结构变形。
6. 竣工测量:采用全站仪进行测量,按照《地铁隧道工程盾构施工技术规范》DG/TJ08-2041-2008执行。
五、精度要求1. 地面控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
2. 竖井联系测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
3. 地下控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
4. 掘进施工测量:盾构姿态精度应达到±0.5cm,掘进速度精度应达到±1cm/min,隧道结构变形精度应达到±0.5cm。
盾构施工测量技术要求
盾构施工测量技术要求为了进一步加强盾构施工测量的管理,更好的在掘进过程中监控盾构姿态,确保盾构掘进方向正确,并且使各相关单位、部门及时掌握盾构掘进姿态情况,现对盾构施工测量要求如下:一、控制测量1、地面控制测量与联系测量应同步进行,在隧道贯通前,测量次数不能少于四次。
宜在盾构始发前、隧道掘进至100m、300m以及距贯通面100~200m时分别进行一次。
当地下起始边方位角较差小于12″时,可取各次测量成果的平均值作为后续测量的起算数据指导隧道贯通。
2、地下平面控制点布设应采用强制对中装置,隧道内控制点间平均边长宜为150m,曲线隧道控制点间距不应小于60m。
地下控制点应避开强光源、热源、淋水等地方,控制点间视线距隧道壁应大于0.5m。
每次向前延伸地下控制导线前,应从地下起始边开始进行延伸测量。
3、地下控制点布设完毕,在隧道贯通前应至少测量三次,地下控制导线的起始边应取第1条规定的平均值。
重合点重复测量坐标值的较差应小于30×d/D(mm),其中d为控制导线长度,D为贯通距离,单位为米。
满足要求时,应取逐次平均值作为控制点的最终成果指导隧道贯通。
4、地下控制点延伸测设,施工单位每次向前延伸新的控制点时,新控制点的测量成果必须经过监理单位检验复核,第三方复测审批。
施工导线延伸布设新点时,测量成果需报送监理检验。
5、对于控制测量、联系测量必须遵循“施工单位先测,监理单位检验复核,第三方复测审批”的原则,施工单位的测量成果必须经过监理单位、第三方审批合格后,方能用于指导施工。
二、盾构姿态及管片姿态测量1、盾构机姿态测量的内容包括平面偏差、高程偏差、俯仰角、方位角、滚转角及切口里程;管片姿态测量内容至少包括平面偏差、高程偏差。
2、盾构机姿态测量标志不少于3个,且标志点间距离应尽量大。
3、对于配备导向系统的盾构机,在始发前,必须利用人工测量的方法测定盾构机的初始姿态,成果应与导向系统测得的成果一致;在始发10环内,每一环都应对盾构机姿态进行人工测量;在盾构机正常掘进过程中,盾构人工姿态测量应在导向系统换站后进行;在到达接收井前50环内应增加人工测量频率。
盾构(TBM)施工测量要求
关于盾构(TBM)施工测量的若干技术要求各盾构(TBM)项目部(工区):近年来,随着盾构(TBM)法施工的工地不断增多,与其相配套的施工测量技术也逐渐成熟,但因测量人员经验及素质原因和导向系统设备原因、加上洞内施工和环境的影响、盾构(TBM)和导向系统之间设计配套、以及隧道平纵线形设计因素、地质因素等客观原因,部分工地出现了导向系统故障多、误差大、影响掘进时间长、一些工地甚至多次出现了较大的掘进偏差等现象。
为使施工测量工作更好地服务于现场,高可靠性、高精度地实时提供盾构(TBM)姿态数据,使盾构(TBM)按照设计轴线精确掘进,各项建筑能够满足设计、限界要求,现根据相关测量规范、导向系统工作特点及各工地施工测量经验总结,列出以下盾构(TBM)施工测量若干要求,请各项目部根据本工地实际情况参照执行:一、盾构(TBM)初始姿态测量与人工导向1、机器初始位置测量盾构(TBM)组装完成/始发前,必须用人工测量方法测定机器盾壳或内部精密结构件特征点,计算机器姿态数据:包括刀盘切口里程、切口处平面、高程偏差、盾尾处平面、高程偏差、偏航角、俯仰角、滚动角等。
对于新机器,需要自行安装或要求导向系统技术服务人员安装若干个人工测量点,然后测量、计算人工测量点在盾构独立坐标系中的坐标并妥善保存,建立掘进过程中的人工导向系统。
对于旧机器,也需恢复、测量并计算复核人工检查点既有数据。
人工测量点位布置原则:(1)人工测量点位应布置在与TBM掘进轴线相对位置不会发生变动的地方,能够真实反应机器姿态;(2)点位之间尽可能拉大距离,提高推算刀盘切口姿态数据的精度. (3)在掘进过程中,置镜同一地方应至少能够观测到三个以上符合以上两条要求的点位,可多设几个检查点以备选择;同时根据掘进时通视条件,在机器上合适位置焊接仪器强制对中钢板(保证在人工测量过程中不发生移动即可)。
2、导向系统导向系统测量结果与人工测量结果进行对比,较差不大于导向系统中误差的2倍(导向系统中误差由项目部测量组根据不同的机器和导向系统,以及设计文件和相关规范规定的掘进偏差中误差确定),如超出限差时应查找原因。
盾构隧道施工测量
盾构隧道施工测量施工测量内容主要有:盾构机始发反力架定位测量、盾构机始发定位测量、盾构机自动导向系统的检查检验、盾构掘进时盾构姿态测量(自动导向系统的日常操作及护理和人工测量盾构机姿态)、隧道环片姿态测量。
盾构隧道洞内温度高、湿度大、不良地质及盾构机掘进时振动的影响,盾构机的实际位置与设计位置之间会有一定的偏差。
为了保证设计线路的准确复现,每隔一定的时间必须对盾构机的姿态和管片姿态进行测定,以便使盾构机和管片能正确归位。
一、始发托架的定位测量图11.2.1为某盾构机始发托架图,此构件是根据盾构机的外径尺寸预制而成的,并且整体吊装下井,几何尺寸在安装过程中可不考虑变形。
某盾构机始发台座的设计高度是590 mm,但是此尺寸最后是多少应根据洞门环实际中心而定。
洞门环的实际中心应在托架定位前进行重新测量,求得的实际中心若不大于设计限差,则可按照设计隧道中心线放样台座高程。
高程可用先定4个周边点(必要时也可增加中间2个点),再定其他各点的方法。
以轨面高程为准,高程中误差为±2 mm(见图11.2.2)。
台座平面设计值是 1 574 mm,此值应和高程一样一并考虑设计限差,中线中误差为±2 mm。
考虑到盾构始发后,盾构机有可能下沉,故在始发托架放样过程中整体抬高30 mm。
待台座完成后,放样出隧道中心线点3~4个,并且测量出混凝土浇筑后台座实际高程,根据此高程数据决定是否需要增设垫片,然后吊装托架放置台座上,依据设计测量托架的位置关系,做好调整工作,使托架实际位置与设计相符,托架定位后必须连接牢固且可以抬高2~3 cm。
由于始发托架的定位,存在定位后盾体(质量约300 t)放置其上且不能再移动的特点,盾构始发定位是否准确关系到盾构机开始掘进时,盾构机的实际中线和设计中线的偏差大小以及盾构机的掘进姿态是否理想等问题,所以应该给予足够的重视,就整个放样过程包括内业资料计算,都必须有相应的检查和复核,确保定位准确,一次成功,为顺利始发打好基础。
盾构施工测量控制
程序启动 方位检测
新站点坐标测定
全站仪及后视棱镜的移站
程序的启动及后续测量工作在主控室进行。此时SLS-T 软件处于“管片拼装”状态,按功能键F3,关闭测量后, 通过功能键“激光站移站—F6”来启动程序。在初始窗口 中,按下按钮“测量开始—F2”,启动方位检测程序。方 位检测被成功的执行后,显示检测结果,在得到理想的结 果后,按下F2确认后方位检测的结果。在测定新激光站点 坐标前,事先在信息输入窗口中输入如下信息:水平与垂 直方向上偏移的近似值及新激光站点的大致里程;当前棱 镜的高度及仪器的高度;新站点的点位编码。在信息输入 窗口下,按下F2键启动程序。全站仪自动搜索到前视棱镜 (即新激光站点)后,自动瞄准棱镜进行测量。屏幕显示 计算出来的新激光站点坐标。在测定新激光站坐标时,为 避免获得错误的数据,须遮盖住其他的反射棱镜。新激光 站点的坐标测定后,将全站仪和后视棱镜转移到新的位置。
内运输。强制对中托架尺寸形状要控制好,以便可以 直接安装在管片的螺栓上面,不需要电钻打孔安装。 由于盾构施工一般都是双线隧道错开50环左右掘进, 如果错开环数很多步距较大,后面掘进的盾构机由于 推力很大,会对前面另一个洞的导线点产生影出现较大误差。如果在曲线隧道里,管片 上的导线点间的边角关系经常会受到盾构机的掘进推 力和地质条件的影响,所以要经常复测。
终的始发控制点坐标。
图2一井定向联系测量示意图
图3两井定向联系测量示意图
1.3.2 高程传递测量 向洞内传递高程一般采用悬挂钢尺的方法,一定 要注意温度和尺长改正,才能保证导入井下的水准点的 精度。如果有斜井或通道,也可以用水准测量的方法向 井下传递高程。如果全站仪的仰俯角不大的话还可以直 接用全站仪三角高程测高差的办法传递高程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中线法确定盾构掘进方向,其方法是首先用经纬仪根据导线点设置中线点。
-5-
杭州地铁 2 号线一期工程 SG2-3 标
盾构施工控制测量方案
如图 6-1 所示,图中 P3,P4 为导线点,A 为隧道中线点,已知 P3,P4 的实测坐 标及 A 的设计坐标和隧道中线的设计方位角。根据上述已知数据,即可推算出 放样中线点 A 所需的有关数据β4,L 与βA。
பைடு நூலகம்
图 6-1 盾构姿态测量 求得有关数据后,即可将经纬仪置于导线点 P4,后视 P3 点,拨角度β4, 并在视线方向上丈量距离 L,即得中线点 A。在 A 点安置仪器对中盘,再实测 A 点坐标,无误后,即旋紧对中盘固定螺丝。将仪器安置于 A 点,后视导线点 P4, 拨角度βA,即得中线方向指使盾构掘进开挖。随着开挖面向前推进(盾构推进), A 点距离开挖面(盾构)越来越远,这时,仪器置于 D 点,后视 A 点,用正倒镜或 转 180o 的方法继续标定出中线方向,指使盾构掘进开挖,AD 之间的距离在隧 道直线段不宜超过 100m,在曲线段不宜超过 50m。 6.5、洞门圈及盾构基座放样 利用在井口的控制点用导线直传的方法,在井底设临时点位,以此点设站测 洞门圈的横径和平面坐标,并求出洞门圈的平面中心坐标,计算洞门圈的平面偏 差值。 利用高程传递至井底的临时水准点,测量洞门圈的圈底高程,圈顶高程,求 出洞门圈直径和高程偏差值。 盾构基座的放样是很重要的,这关系到盾构出洞后轴线的控制,因此,在放 样前应根据轴线的要求,与项目工程师商讨放样的具体要求并征得其认可。在放 样过程中,采用将洞门圈的中心和盾构基座的前后中心三点在同一竖直面上的方 法安放基座,同时根据设计坡度和出洞后的盾构坡度,适当对盾构基座放坡。安 放时,基座平面位置根据事先计算的洞门圈中心,盾构基座前中心和盾构基座后 中心的这三点的坐标,用仪器实测它们的值,计算这三点实测坐标值与理论值的
(5)、检查频率与要求 高程点与平面控制点的检查频率一致。 (6)、所有高程控制网精度要求按规范执行。 六、各分部、分项工程的施工测量控制 6.1、建立地面控制网 地面控制点的布设,必须因地制宜,既从当前工程建设需要出发,又适当考 虑竣工需要。 地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终 点横向点位误差(终点的横向位移)。 终点的横向点误差是测角误差和边长误差共同影响的结果,建立地面控制网 应要求按照规范规定进行布设,完成地面控制网后及时请监理及业主测量队进行 复测,待复测确定各控制点无误后方可投入使用。 6.2、端头井联系测量 隧道工程盾构掘进机通过端头井出洞后进行地下掘进工作,为了保证盾构掘 进机沿设计轴线正确掘进,必须将地面控制网中的坐标、方向及高程经端头井传 递到地下去,使地下平面控制网与地面上有同一的坐标系统。 端头井定向的误差对隧道贯通有一定的影响,其中坐标传递的误差将使地下 导线的各点产生同一数值的位移,其对贯通的影响是一个常熟;方向角传递的误 差,将使地下导线各边方向角转动一个误差值,它对贯通的影响将随着导线长度 的增大而增大。 端头井联系测量对于隧道能否顺利贯通有着相当大的影响,进行连续测量过 程中应严格按照规范要求进行仪器操作,确保地下控制点的精度。 6.3、地下控制测量 6.3.1. 地下导线测量 地下导线测量的目的是以必要的精度按照地面与控制测量统一的坐标系统, 建立地下的控制系统,根据地下导线的坐标,即可放样出隧道轴线,指导盾构掘 进方向,确保盾构沿理论轴线跟踪,地下导线点的起始点通常设在隧道衬砌的上
-2-
杭州地铁 2 号线一期工程 SG2-3 标
盾构施工控制测量方案
4.2、平面控制网建立 (1)、利用杭州市地铁 2 号线人民广场站控制点复测成果引测二级精密控制
网,此控制点宜布置在工作井的周围屋顶或距工作井较远且无沉降的区域,所有 二级精密导线控制点应形成一个闭合,且满足规范精度要求。
(2)、平面加密控制网的完善,在监理确认二级平面控制网的情况在拟建工 作井四周布设加密控制点.
-4-
杭州地铁 2 号线一期工程 SG2-3 标
盾构施工控制测量方案
弦位置。 布设地下导线时,为确保盾构在土层中掘进姿态的正确性,导线点应满足必
要的精度与一定的密度,为了减少两者在敷设时的矛盾,通常采用分级布设的方 法,即施工导线,基本导线和主要导线。
施工导线:盾构出洞后向前掘进时,用以进行放样而指引盾构掘进的导线测 量,施工导线边长 25~50m;
图 1.1 工程平面位置
-1-
杭州地铁 2 号线一期工程 SG2-3 标
盾构施工控制测量方案
2.2、设计情况 【杭~人】区间起讫里程为上行线 SDK5+665.328~SDK6+350.666(下行线
XDK5+665.328~XDK6+350.666),区间上行线长 685.338m(下行线长 685.863m)。 区间上行线及下行线由直线段和二组缓和曲线组成,曲线半径均为 1000m、 1500m、。区间上行线及下行线隧道均以 0 坡出站后以 22‰的下坡到达区间最低 点后,上行线以 21.6‰的上坡(下行线线以 21.56‰的上坡),最后以 2‰的上坡 进站。线路呈节能 V 型。本区间竖曲线半径最大为 5000m,最小为 3000m。隧道 拱顶埋深为 10.2~15.6m。 2.3、技术标准
基本导线:当掘进 100~200m 时,为了检查隧道轴线与设计轴线是否相符合, 必须选择部分施工导线点敷设边长较长(50~100m)、精度要求较高的基本导线;
主要导线:当隧道长度大于 1km 时,基本导线将不能保证应有贯通精度, 这时就要选择一部分基本导线点来敷设主要导线,主要导线的边长为 150~350m。
杭州市地铁 2 号线一期工程 SG2-3 标
杭发厂站—人民广场站 盾构施工控制测量方案
编 制: 审 核: 批 准:
中铁隧道集团有限公司 杭州市地铁 2 号线一期工程 SG2-3 标项目经理部
二○一一年七月
·
杭州地铁 2 号线一期工程 SG2-3 标
盾构施工控制测量方案
一、编制依据 1、杭州市地铁 2 号线工程杭发厂站~人民广场站区间施工设计图及有关说
仪器检测→交桩及控制点复测→测量方案及审批→机载仪器测量→人工复测 →监理、建设方复测→施工过程中复测→竣工测量。 四、施工平面控制测量 4.1、施工平面控制网的布置原则
(1)、工程测量放样的程序,遵守由总体达到局部的原则; (2)、控制点应满足整体控制要求; (3)、控制点应埋设在牢固不易破坏的位置; (4)、控制点相互之间必须通视,不能满足通视要求应合理设置工作点; (5)、控制点数据采集后需进行闭合,并进行平差计算; (6)、严格控制限界要求,满足设备安装要求,放样时需掌握“宁大勿小” 的原则,利用后续工程加以适当调整; (7)、放样后,对所放点妥善保护,定期检验。
-6-
杭州地铁 2 号线一期工程 SG2-3 标
盾构施工控制测量方案
偏差,逐步调整偏离值直至满足设计轴线要求。高程位置,根据事先计算好的基
座各主要点的高程,利用水准仪对其进行高程放样。
6.6、盾构标志制作及程序编制
盾构上的测量标志,根据工程的实际情况将盾构测量标志安装在盾构轴线上。
首先对盾构进行多次测量,求出盾构的轴线,然后在盾构轴线上选择合适的位置
最后一个导线点离开贯通工作面的距离不应过大,一般为 60~80m,导线点 的编号应按照有关技术规范,尽量做到号码简单又能按次序排列,使用方便,利 于寻找,便于分析。因为地下导线是布设成支导线的形式,而且每测一个新点中 间要隔一段时间,这样就需要在每次测定新点时,将以前的点位进行检核测量, 不论是直线或曲线,都必须对角度、边长进行检核测量,根据检核测量的结果, 证明标志没有发生变动,就将各次观测的结果取平均值,如果证明标志有变动, 则应根据最后一次观测的结果进行计算。 6.3.2. 地下水准测量
(3)、平面控制网的计算根据需要采用严密或简化方法平差,当采用简化方 法平差时,应以平差后坐标反算的角度和边长作为成果。
(4)、检查频率与要求 二级精度控制网的点位,原则上应与交桩点一样,每二个月复核一次;地 面加密控制点布置后进行复核;基线及始发前的圆心定位及地下高程点完成后进 行复核;地下导线点及水准点在隧道掘进至 50m 处、200 —300m 处和距离贯通 面 150 —200m 处分别进行一次包括联系测量在内的检测(若开挖长度超过 1km 时,掘进至 500m 处要增加一次检测);隧道开挖接近贯通面时,应对隧道内的 控制点进行一次全面检测。 五、施工高程控制测量 5.1、施工高程控制网布置原则 (1)、工程测量放样的程序,遵守由总体到局部的原则; (2)、控制点应满足整体控制要求; (3)、控制点应埋设在不易破坏的位置; (4)、控制点相互之间必须通视,不能满足通视要求应合理设置工作点。 5.2、高程控制网的建立 (1)、临时水准点布设 根据本工程的的特征,地面水准点沿工作井长度方向均匀设置,与交桩点 形成附合路线,地下水准点设定在隧道内衬上弦右侧螺丝孔位上,精度采用精密
二、工程概况 2.1、工程位置
本工程位于杭州市萧山区,其中杭发厂站-人民广场站区间为 2 号线全地下 盾构区间,盾构从人民广场南端头井始发沿市心中路下掘进,先后旁穿北河上的 泰安桥和长廊顶河上的华荣桥,抵达杭发厂站北端头后调头,再次始发掘进至人 民广场南端头。盾构区间平面位置详见图 1.1《工程平面位置图》。
安装前后标志,前标、后标应有足够距离,(一般应超出 1m),且前标距盾构
切口距离越近越好,同时应保证与观测台有良好的通视条件,后标志通常为两个
红色三角垂直对交的标志,前标志在大多数情况下为一有刻度的类似刻度尺的装
置。坡度板安装在盾构方便观测及不容易破坏的位置,垂球线长度≥1m。
8482
后标
前标
764
明; 2、《地下铁道、轻轨交通工程测量规范》GB50308—2002; 3、《城市测量规范》CJJ8—99; 4、《新建铁路工程测量技术规范》TB10101—99; 5、《城市轨道交通工程测量规范》GB50308-2008; 6、《建筑变形测量规范》JGJ8-2007; 7、《工程测量规范》GB50026-93; 8、《市政地下工程施工及验收规程》DGJ08-236-1999; 9、《盾构法隧道施工及验收规范》GB50446-2008; 10、杭州地铁公司发布的地铁工程施工测量管理细则。