最短路径将军饮马造桥选址

合集下载

将军饮马强方法

将军饮马强方法

将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。

最短路径(将军饮马造桥选址).pptx

最短路径(将军饮马造桥选址).pptx
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
问题延伸一
如图,A和B两地之间
A
有两条河,现要在两
条河上各造一座桥MN
和PQ.桥分别建在何处
才能使从A到B的路径
最短?(假定河的两
岸是平行的直线,桥
要与河岸垂直)
B
思维分析
如图,问题中所走总路径是
A
M
N
P
Q
B2
B1
B
问题延伸二
A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线 ,桥要与河岸垂直)
B
思维分析
A
如图,问题中所走总路径是 AM+MN+NP+PQ+QG+GH+HB.
桥MN、PQ和GH在中间,且方 向不能改变,仍无法直接利用 “两点之间,线段最短”解决问 题,只有利用平移变换转移到 两侧或同一侧先走桥长.
M
P
N
P
Q Q
连接A1P交A1的对岸于N点,在N点处建桥MN.
问题解决
沿垂直于河岸方向依次把 A点A1、A2,使AA 1=MN,A1A2 =
A
A1 A2
PQ ;
M
连接A2B交于B点相邻
河岸于Q点,建桥PQ; 连接A1P交A1的对岸
N P
于N点,建桥MN;
Q
从A点到B点的最短路径
为AM+MN+NP+P
平移的方法有四种:三个桥长都平移 到A点处;都平移到B点处;MN、PQ 平移到A点处;PQ、GH平移到B点处

最值模型之垂线段最短、将军饮马及造桥选址模型—2024学年八年级数学上册(解析版)

最值模型之垂线段最短、将军饮马及造桥选址模型—2024学年八年级数学上册(解析版)

最值模型之垂线段最短、将军饮马及造桥选址模型模型一垂线段最短模型典例1(2023春•莲湖区期中)如图,OC平分∠AOB,P是OC上一点,PH⊥OB于点H,Q是射线OA上的一个动点,若PH=3,则PQ长的最小值为()A.1B.2C.3D.4【思路引领】当PQ⊥OA时,PQ有最小值,利用角平分线的性质可得PH=PQ=5,即可解答.【解答】解:如图:当PQ⊥OA时,PQ有最小值,∵OC平分∠AOB,PH⊥OB,PQ⊥OA,∴PH=PQ=3,∴PQ长的最小值为3,故选:C.【总结提升】本题考查了角平分线的性质,垂线段最短,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.针对练习1.(2023秋•通州区期末)如图,在△ABC中,∠ABC=60°,BC=6,CD是△ABC的一条高线.若E,F 分别是CD和BC上的动点,则BE+EF的最小值是()A.6B.3√2C.3√3D.3【思路引领】作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,则B′F的长度即为BE+EF的最小值,根据直角三角形的性质得到BD=12CD,根据已知条件得到BB′=BC,推出△CDB≌△BB′F,于是得到B′F=CD=√32BC=3√3.【解答】解:作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,则B′F的长度即为BE+EF的最小值,∵∠ABC=60°,CD⊥AB,∴∠BCD=30°,∴BD=12CD,∵BD=12BB′,∴BB′=BC,在△CDB与△B′FB中,{∠CDB=∠B′FB ∠B′BF=∠CBD CD=BB′,∴△CDB≌△BB′F,∴B′F=CD=√32BC=3√3.故选:C.【总结提升】本题考查了轴对称﹣最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明BE+EF的最小值为B′F的长度.2.(2022春•临湘市期末)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD =3,Q为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.√5【思路引领】作DH⊥AB于H,根据角平分线的性质得到DH=DC=2,然后根据垂线段最短求解.【解答】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.【总结提升】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.3.(2023•龙岩模拟)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于D,点E,F分别在AD,AB 上,则BE+EF的最小值是()A.4B.4.8C.5D.5.4【思路引领】作F关于AD的对称点M,连接BM交AD于E,连接EF,过B作BN⊥AC于N,根据三线合一定理求出BD的长和AD平分∠BAC,根据勾股定理求出AD,根据三角形面积公式求出BN,根据对称性质求出BE+EF=BM,根据垂线段最短得出BE+EF≥4.8,即可得出答案.【解答】解:作F关于AD的对称点M,连接BM交AD于E,连接EF,过B作BN⊥AC于N,∵AB=AC=5,BC=6,AD⊥BC于D,∴BD=DC=3,AD平分∠BAC,∴M在AC上,在Rt△ABD中,由勾股定理得:AD=√52−32=4,∴S△ABC=12×BC×AD=12×AC×BN,∴BN=BC×ADAC =6×45=4.8,∵F关于AD的对称点M,∴EF=EM,∴BE+EF=BE+EM=BM,根据垂线段最短得出:BM≥BN,即BE+EF≥4.8,即BF+EF的最小值是4.8,故选:B.【总结提升】此题主要考了等腰三角形的性质,勾股定理,轴对称﹣最短路线问题等知识点的理解和掌握,能求出BE+EF=BM的长是解此题的关键.题目具有一定的代表性,是一道比较好的题目.4.(2023春•鄄城县期中)已知∠ABC=60°,点P为平面内一点,且BP为定长,∠ABP=20°,Q为射线BC上一动点,连接PQ,当BP+PQ的值最小时,∠BPQ=.【思路引领】分两种情况讨论,当BP+PQ的值最小时,PQ最小,此时PQ⊥BC,据此解答即可.【解答】解:当点P 在∠ABC 内部时,∵BP 为定长,∴当BP +PQ 的值最小时,PQ 最小,此时PQ ⊥BC ,∴∠PQB =90°,∵∠ABC =60°,∠ABP =20°,∴∠PBQ =40°,∴∠BPQ =90°﹣40°=50°,当点P 在∠ABC 外部时,同理可求∠BPQ =10°,故答案为:50°或10°.【总结提升】本题考查了直角三角形的性质,正确理解点到直线上所有连线中垂线段最短是解题的关键.5.(2022秋•东港区校级期末)在Rt △ABC 中,∠C =90°,∠BAC =15°,点P 为AC 边上的动点,点D 为AB 边上的动点,若AB =6cm ,则PB +PD 的最小值为 cm .【思路引领】如图所示,延长BC 到E 使得CE =BC ,连接EP ,AE ,证明△ACB ≌△ACE ,得到AE =AB =6cm ,∠CAE =∠BAC =15°,则∠BAE =30°,再证明△BCP ≌△ECP ,得BP =EP ,推出当D 、P 、E 三点共线且ED ⊥AD 时PD+PE 有最小值即PB+PD 有最小值(PB +PD)最小值=DE 最小值=12AE =3cm . 【解答】解:如图所示,延长BC 到E 使得CE =BC ,连接EP ,AE ,∵∠ACB=90°,∴∠ACE=∠ACB=90°,又∵AC=AC,BC=EC,∴△ACB≌△ACE(SAS),∴AE=AB=6cm,∠CAE=∠BAC=15°,∴∠BAE=30°,同理可证△BCP≌△ECP(SAS),∴BP=EP,∴PB+PD=PD+PE,∴当D、P、E三点共线且ED⊥AD时,PD+PE有最小值,即PB+PD有最小值,∴(PB+PD)最小值=DE最小值=12AE=3cm,故答案为:3.【总结提升】本本题主要考查轴对称﹣最短路线问题,全等三角形的性质与判定,含30度角的直角三角形的性质,正确作出辅助线构造全等三角形是解题的关键.模型二将军饮马模型类型一一直线同侧两定点典例2 (2022秋•和平区校级期末)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,CE=5,AD=7,P是AD上一个动点,则BP+EP的最小值是()A .7B .3.5C .5D .2.5【思路引领】利用将军饮马模型找出使BP+EP 取得最小值时的点P 的位置即可求得结论.【解答】解:∵AB =AC ,AD ⊥BC ,∴BD =CD ,∴AD 为BC 的垂直平分线,∴B ,C 关于AD 对称,∴连接EC 与AD 的交点即为使BP+EP 取得最小值时的点P ,∴BP+EP 的最小值=EC =5,故选:C .【总结提升】本题主要考查了轴对称的性质,最短线路问题,等腰三角形的性质,利用等腰三角形的三线合一的性质和将军饮马模型找出使BP+EP 取得最小值时的点P 的位置是解题的关键.类型二 两射线一顶点两动点典例3(2021秋•颍东区期末)如图,∠AOB =30°,点P 是∠AOB 内的定点且OP =3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .3B .23C .43D .6【思路引领】作点P 关于OB 的对称点P',点P 关于OA 的对称点P'',连接P'P''与OA ,OB 分别交于点M 与N ,则P'P''的长即为△PMN 周长的最小值;连接OP',OP'',利用已知条件可以证明∠P ′OP ″=60°即可求出P'P'';【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N,则P'P''的长即为△PMN周长的最小值,连接OP',OP'',∵OP=3,∠AOB=30°,由对称性可知OP=OP'=OP'',∠P′OP″=60°,∴∠OP'P″=∠OP''P′=60°,∴OP′=OP''=P'P'',∴P'P''=3;故选:A.【总结提升】本题考查利用轴对称求最短距离问题;通过轴对称将△PMN周长转化为P'P''的长是解题的关键.针对练习1.(2021秋•天津期末)如图,在△ABC中,AB的垂直平分线DE交BC于点D,垂足为E,M为DE上任意一点,BA=3,AC=4,BC=6,则△AMC周长的最小值为()A.7B.6C.9D.10【思路引领】连接BM,依据DE是AB的垂直平分线,可得AM=BM,进而得到当B,M,C在同一直线上时,AM+CM的最小值为BC的长,依据AC=4,BC=6,即可得到△AMC周长的最小值.【解答】解:如图所示,连接BM,∵DE是AB的垂直平分线,∴AM=BM,∴AM+CM=BM+CM,当B,M,C在同一直线上时,AM+CM的最小值为BC的长,又∵AC=4,BC=6,∴△AMC周长的最小值=6+4=10,故选:D.【总结提升】本题考查了轴对称—最短路线问题以及线段垂直平分线的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.2.(2021秋•丛台区校级期末)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【思路引领】作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD于N,交BC于M,连接AM、AN,此时△AMN的周长有最小值,由对称性求出∠BAM+∠FAN=50°,则有∠MAN=80°,即可求∠ANM+∠AMN=180°﹣∠MAN=100°.【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD于N,交BC于M,连接AM、AN,∵∠B=∠D=90°,∴AN=NF,AM=EM,∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,∵∠FAN=∠F,∠E=∠EAM,∴∠E+∠F=180°﹣∠BAD,∵∠BAD=130°,∴∠E+∠F=50°,∴∠BAM+∠FAN=50°,∴∠MAN=130°﹣50°=80°,∴∠ANM+∠AMN=180°﹣∠MAN=100°,故选:C.【总结提升】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,三角形内角和定理是解题的关键.3.(2020秋•西城区校级期中)在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE P点的位置在()A.△ABC三条中线的交点处B.AD的中点处C.A点处D.D点处【思路引领】由点D是等边三角形ABC的中点得到AD所在的直线是△ABC的中垂线,在AB上作点E关于AD的对称点F,连接CF,即可得到△PCE的最小周长.【解答】解:∵点D、E分别是等边三角形ABC的边BC、AC的中点,∴CE长度不变,AD所在的直线是△ABC的对称轴,∴当△PCE的周长最小时,PE+PC最小,如图,在AB上作点E关于AD的对称点F,连接CF,∴点F是AB的中点,∴CF⊥AB,此时,CF即为PE+PC的最小值,点P是△ABC的三条中线交点,∴当△PCE的周长最小时,P点是△ABC的三条中线的交点.故选:A.【总结提升】本题考查了等边三角形的性质、轴对称的性质,解题的关键是利用轴对称的性质与垂线段最短找到△PCE周长最小的点P位置.模型三造桥选址模型类型一异侧两定点一定长典例1(2021春•奉化区校级期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.【思路引领】虽然P,Q两点在河两侧,但连接P,Q的线段不垂直于河岸.关键在于使PM+NQ最短,但PM与QN未连起来,要用线段公理就要想办法使M与N重合起来,利用平行四边形的特征可以实现这一目的.【解答】解:如图,作PP'垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于N,作NM⊥L,则MN∥PP′且MN=PP′,于是四边形PMNP′为平行四边形,故PM=NP′.根据“两点之间线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.故选:C.【总结提升】考查了轴对称﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.类型二同侧两定点一定长典例2(2019•安徽模拟)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AD、BC的中点,点P、Q在EF上.且满足PQ=2,则四边形APQB周长的最小值为()A.10B.12C.14D.16【思路引领】因为PQ和AB是定长,所以要使四边形APQB周长的周长最小,只要AP+BQ最小即可;在AB【解答】解:四边形APQB周长=AP+PQ+QB+AB,∴AB=5,BC=4,PQ=2,∴四边形APQB周长=AP+PQ+QB+AB=7+AP+BQ,要使四边形APQB周长的周长最小,只要AP+BQ最小即可;在AB上截取AM=PQ,F是BC的中点,所以点B关于EF的对称点是C点,连接CM与EF交于点Q,则CM即为AP+BQ的最小值;∴BQ=CQ,∴MB=3,BC=4,∴MC=5,∴四边形APQB周长=AP+PQ+QB+AB=7+AP+BQ=12;故选:B.【总结提升】本题考查矩形的性质,直角三角形的性质,轴对称求最短距离;能够将四边形的周长转化为AP+BQ的最小值是解题的关键;针对练习1.有一以互相平行的直线a、b为岸的河流,其两侧有村庄A和村庄B,现在要在河上建一座桥梁MN(桥与河岸垂直),使两村庄之间的距离最短,从作图痕迹上来看,正确的是()A.B.C.D.【思路引领】根据轴对称确定最短路线问题,过村庄B作河岸的垂线并且等于河的宽度,然后与村庄A连接与河岸a相交于一点M,过点M作MN⊥a与b相交于点N,连接AM、BN,则AM+MN+BN即为最短距离.【总结提升】本题考查了轴对称确定最短路线问题,是此类题目的第二种类型,难度较大,利用的原理为平行四边形的对边相等.2.(2023•浠水县二模)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上的两个动点,且PQ=2,当BP=()时,四边形APQE的周长最小.A.3B.4C.5D.2√2【思路引领】要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG 与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度.【解答】解:如图,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,设BP=x,则CQ=BC﹣BP﹣PQ=8﹣x﹣2=6﹣x,在△CQE中,∠QCE=90°,∠CEQ=45°,∴CQ=EC,故选:B.【总结提升】本题考查了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.3.(2022秋•离石区期末)为贯彻国家城乡建设一体化和要致富先修路的理念,某市决定修建道路和一座桥,方便张庄A和李庄B的群众出行到河岸a.张庄A和李庄B位于一条河流的同一侧,河的两岸是平行的直线,经测量,张庄A和李庄B到河岸b的距离分别为AC=p(m),BD=q(m),且CD=(p+q)m,如图所示.现要求:建造的桥长要最短,然后考虑两村庄到河流另一侧桥头的路程之和最短,则这座桥应建造在C,D间距离C m处.(河岸边上的点到河对岸的距离都相等)【思路引领】作B点关于直线b的对称点B',连接AB'交b于点P,此时P点到A与B的距离和最短.【解答】解:作B点关于直线b的对称点B',连接AB'交直线b于点P,∴BP=B'P,∴AP+BP=AP+B'P≥AB',此时P点到A与B的距离和最小,过B'作B'M∥CD,延长AC与B'M交于点M,∴B'M=CD,∵AC=p(m)、BD=q(m),CD=(p+q)m,∴AM=(p+q)m,∴∠CAP=45°,【总结提升】此题主要考查了最短路线问题,正确作出辅助线,构造出最短路线为斜边的直角三角形是解决本题的解题关键.4.如图,某条护城河在CC'处直角转弯,河宽不变,从A处到达B处,须经两座桥,如何恰当地架桥才能使从A地到B地的路程最短?【思路引领】由于含有固定线段“桥”,导致不能将ADD′E′EB通过轴对称直接转化为线段,需要构造平行四边形将AD、BE平移至D′F、E′B',即可得到桥所在位置.【解答】解:如图,作AF⊥CM,作BB'⊥CN,截取AF=BB',连接B'F交两河岸为D',E',作D'D⊥CM于D,作E'E⊥CN于E,连接AD,BE,则折线ADD′E′EB的长度等于折线AFD′E′B′B的长度,等于折线FD′E′B′的长度+AF+BB′.而折线FD′E′B′以线段FB′最短,∴确定两座桥的位置是线段DD'和BB'.【总结提升】此题考查了轴对称﹣最短路径问题,由于有固定长度的线段,常用的方法是构造平行四边形,。

将军饮马模型(终稿)(完整资料).doc

将军饮马模型(终稿)(完整资料).doc

【最新整理,下载后即可编辑】将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ 重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l 的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ 重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON 上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A 关于OM 的对称点A’,作点B 关于ON 的对称点B’ ,连接A’ B’,与OM 交于点C ,与ON 交于点D ,连接AC ,BD ,AB ,四边形ABCD 即为所求.原理:两点之间,线段最短3. 两定两动型最值例5:已知A 、B 是两个定点,在定直线l 上找两个动点M 与N ,且MN 长度等于定长d (动点M 位于动点N 左侧),使AM+MN+NB 的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A 向右平移长度d 得到点A’, 作A’关于直线l 的对称点A’’,连接A’’B ,交直线l 于点N ,将点N 向左平移长度d ,得到点M 。

13.4课题学习 最短路径问题

13.4课题学习 最短路径问题

如下图,在连接A′,B两点的线中,线段A′B最短. 因此,线段A′B与直线b的交点N的位置即为所求,即在 点N处造桥MN,所得路径AMNB是最短的.
为了证明点N的位置即为所求,我们不妨在直线b 上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′, 连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+ M′N′+N′B.你能完成这个证明吗?
如果把河边 l 近似地看成一条直线,C为直线 l上 的一个动点,那么,上面的问题可以转化为:当点C 在 l 的什么位置时,AC与CB的和最小.由这个问题, 我们可以联想到下面的问题:
如图,点A,B分别是直线 l 异侧的两个点,如何 在 l 上找到一个点,使得这个点到点A、点B的距离的 和短?
利用已经学过的知识,可以很容易地解决上面的 问题,即:连接AB,与直线 l 相交于一点,根据“两 点之间,线段最短”,可知这个交点即为所求. 现在,要解决的问题是:点A,B分别是直线l 同 侧的两个点,如何在 l 上找到一个点,使得这个点到 点A、点B的距离的和最短?
我们可以把河的两岸看成两条平行线a和b(下图), N为直线b上的一个动点,MN垂直于直线b ,交直线a 于点M,这样,上面的问题可以转化为下面的问题: 当点N在直线b的什么位置时,AM+MN+NB最小?
由于河岸宽度是固定的,因此当AM+NB最小时, AM+MN+NB最小.这样,问题就进一步转化为:当 点N在直线b的什么位置时,AM+NB最小? 如下图,将AM沿与河岸垂直的方向平移,点M移 动到点N,点A移动到点A′,则AA′=MN,AM+NB= A′N+NB.这样,问题就转化为:当点N在直线b的什 么位置时,A′N+NB最小?
如下图,在连接A,B′两点的线中,线段AB′最短. 因此,线段AB′与直线l 的交点C的位置即为所求.

最短路径(将军饮马+造桥选址)

最短路径(将军饮马+造桥选址)

为AM+MN+NP+P
B
Q+QB.
11/24/2019
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
11/24/2019
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
A A1
B
11/24/2019
最短路径 问题
将军饮马 造桥选址
问题
问题
郧西县河夹中学
段廉洁
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马
人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
a
A
M
b
N
B
解决问题 2
① 作图
A A′
M N
a b
B
② 证明
A A′
a
M′
b
M
N′
N
B

将军饮马问题总结

将军饮马问题总结

最短路径——“将军饮马”问题基本类型总结【问题1】作法图形原理在直线l 上求一点P ,使PA +PB 值最小.连AB ,与l 交点即为P .两点之间线段最短.PA +PB 最小值为AB .【问题2】“将军饮马”作法图形原理在直线l 上求一点P ,使PA +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短.PA +PB 最小值为A B '.【问题3】作法图形原理在直线l 1、l 2上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短.PM +MN +PN 的最小值为线段P 'P ''的长.在直线1l 、2l 上分别求点N ,使四边形PQMN 的周长最小.【问题5】“造桥选址”图形直线m ∥n ,在m 、上分别求点M 、N ,使m ,且AM +MN +BN 的值最小.【问题6】图形在直线l 上求两点M 、在左),使a MN ,并使MN +NB 的值最小.【问题7】图形1上求点A ,在2l ,使PA +AB 值最小.m n BA【问题8】作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短.AM +MN +NB 的最小值为线段A 'B '的长.【问题9】作法图形原理在直线l 上求一点P ,使PB PA -的值最小.连AB ,作AB 的中垂线与直线l 的交点即为P .垂直平分上的点到线段两端点的距离相等.PB PA -=0.【问题10】作法图形原理在直线l上求一点P,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】作法图形原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '.PB PA -最大值=AB '.【问题12】“费马点”作法图形原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使PA +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P即为所求.两点之间线段最短.PA +PB +PC 最小值=CD .。

勾股定理--与最短路径问题

勾股定理--与最短路径问题

17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。

7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。

初中数学常见模型之将军饮马

初中数学常见模型之将军饮马

将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。

中考压轴题突破:几何最值问题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

“PA+k·PB”型的最值问题(将军饮马、造桥选址、胡不归、阿氏圆、费马点)

“PA+k·PB”型的最值问题(将军饮马、造桥选址、胡不归、阿氏圆、费马点)

“PA+k·PB”型的最值问题 当k 值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”模型来处理,即可以转化为轴对称问题来处理。

当k 取任意不为1的正数时,通常以动点P 所在图像的不同来分类,一般分为2类研究。

其中 点P 在直线上运动的类型称之为“胡不归”问题;点P 在圆周上运动的类型称之为“阿氏圆”问题。

一、“将军饮马”模型“将军饮马”:把河岸看作直线L ,先取A (或B )关于直线L 的对称点A′(或B′),连接A′B (或B′A ),并与直线交于一点P ,则点P 就是将军饮马的地点,即PA+PB 即为最短路线。

例1. 如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。

例2. 如图,在矩形ABCD 中,AB =10,AD =6,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A ,B 两点距离之和PA+PB 的最小值为 .例3. 如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,△PMN 的周长最小值为 ;当△PMN 的周长取最小值时,四边形PMON 的面积为 。

变式:“造桥选址”模型例4. 如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a的距离为2,点B 到直线b 的距离为3,AB=302.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 的值为 。

例5. 如图,CD 是直线y=x 上的一条定长的动线段,且CD=2,点A(4,0),连接AC 、AD ,设C 点横坐标为m ,求m 为何值时,△ACD的周长最小,并求出这个最小值。

二、“胡不归”模型有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。

初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键

初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键

初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键 -初二数学轴对称这一章节中,课题研究中的最短路径问题,是中考的热门考点,在初二的考试中也是经常会出现。

最短路径问题中,初中阶段主要涉及三方面的内容,“将军饮马”、“造桥选址”和“费马点”,涉及到的知识点主要有“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”等,需要同学们根据题目给定的条件,做出最短路径问题,而这类题目的解题思路就是找对称点实现“折”转“直”,这是最为关键的,从而找到最短路径的点,解决出最短路径的问题,我们先来学习一个比较简单的“将军饮马”类型,最短路径的求解,通过四种题型,详解解释作图方法。

希望同学们能够认真总结,将这类题目掌握。

以“将军饮马”为原型常见的四种类型的题目分别是:(1)、A,B两点位于L的同侧,求出直线上一点P,使得PA+PB最小;(2)、A,B两点位于L的两侧,求出直线上一点P,使得PA+PB最小;(3)、在两条相交直线L1,L2内一点P,在两条直线上分别求出M,N,使△PMN的周长最小;(4)、在直线L1、L2上分别求点M、N,使四边形PQMN的周长最小。

例1:作图题.如图,小河边有两个村庄A、B,要在河边建一自来水厂P,向A村B村供水.(1)若要使厂部到A、B两村的距离相等,则厂部P应选在哪里?在图①中画出;(2)若要使厂部到A、B两村的输水管长度之和最小,则厂部P应选在什么地方?在图②中画出.(保留作图痕迹,不写作法,但要写结论)本题关键是掌握在直线L上的同侧有两个点A、B,在直线L 上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.例2:尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.本题不仅考察了最短路径的作图方法,还要求根据题意明确点P还在角COD的角平分线上。

八年级上册最短路径难题讲解

八年级上册最短路径难题讲解

八年级上册最短路径难题讲解
八年级上册最短路径问题是一个重要的数学问题,涉及到图论和几何知识。

以下是几个经典的最短路径问题及相应的解题思路:
1. 将军饮马问题:两个将军分别在河的两岸,他们想要到河的对面饮马。

河水流速很快,不能逆流而上。

他们应该选择怎样的路径才能使其中一位将军到河对岸的总时间最短?
解题思路:在这种情况下,两个将军都可以选择直接过河,但是这样会花费较长的时间。

为了使总时间最短,他们可以选择在河岸的某一位置相遇,然后一起走到河对岸。

这样,他们可以节省掉单独过河的时间。

2. 造桥选址问题:有两个人分别在河的两岸,他们想要通过建造一座桥来互相通行。

为了使造桥的成本最低,他们应该选择怎样的桥址?
解题思路:在这种情况下,最短的路径就是直接在两岸之间建造一座桥。

因此,他们应该选择在河的中心建造桥,这样可以使得桥的长度最短,同时也可以节省造桥的成本。

3. 费马点问题:在三角形中,任意选取三个点,要求找到一个点到其他三个点的距离之和最短的位置。

解题思路:首先,我们可以将这个问题转化为求三角形三个顶点的中点。

然后,我们可以利用三角形的性质来证明这个结论。

具体来说,我们可以证明任意一个点到其他三个点的距离之和都大于等于三角形三个顶点的中点到其他三个点的距离之和,当且仅当这个点是三角形三个顶点的中点时取等号。

因此,三角形的费马点就是其三个顶点的中点。

以上是最短路径问题的几个经典例子及相应的解题思路。

通过这些例子,我们可以了解到最短路径问题的基本概念和方法,以及如何利用几何和图论的知识来解决这些问题。

最短路径(将军饮马)专题探究与总结

最短路径(将军饮马)专题探究与总结

将军饮马专题一、问题引入“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

二、问题描述如图所示,将军要带马去河边喝水,之后返回军营,问:将军怎么走,能使得路程最短?三、问题转化将现实问题转化为数学模型。

如图所示,将军位于A处,要带马去河边P处喝水,之后返回军营B处,问:P点定在哪里,才能使得路程最短?四、问题简化如图,在直线上找一点P使得PA+PB最小?如何解决这个问题呢?五、基础模型讲解【问题描述】如图,在直线l上求一点P,使P A+PB值最小.【解决方法】连接AB,与l交点即为P.【数学原理】两点之间线段最短.六、问题分析原问题不同于基础模型,难点在于A点、B点在同侧,P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,那能否利用我们学过的知识,将折线段转化为直线段?转化为基础模型?再利用“两点之间,线段最短”得到答案。

七、问题解决作点A关于直线的对称点A,,连接PA,,则PA,=PA,所以PA+PB=PA,+PB当A,、P、B三点共线的时候,PA,+PB=A,B,此时为最小值(两点之间线段最短)同理也可以作点B关于直线的对称点B,。

八、思路概述作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段。

将军饮马问题可以抽离成具有:两个定点、一条定直线、一个动点的问题。

解决这类问题可以将两个定点中的一个(例如上图中的A或B)关于定直线对称,再将另一个定点与得到的对称点连接,与定直线的交点即为取得最小值的位置。

九、模型应用1、如图,A、B两个村子在河的同侧,A、B两村到河边CD的距离分别为AC=1km,BD=3km,CD=3km。

现要在河边CD上建一水厂向A,B两村输送自来水,铺设水管的费用为20000元/km。

(1)请你在河边CD上作出水厂位置O,使铺设水管的费用最省;(2)求出铺设水管的总费用。

最短路径(将军饮马)问题

最短路径(将军饮马)问题

最短路径(将军饮马)问题与拓展相关定理或公理:①线段公理:两点之间,线段最短。

由此可以推出两边之和大于第三边;②垂线段性质:垂线段最短。

问题提出:唐朝诗人李欣的诗《古从军行》开头两句:“白日登山望烽火,黄昏饮马傍交河。

”诗中隐隐含着一个有趣的数学问题。

如图,将军在观望烽火后从山脚下的A 点出发,走到河边饮马后再走到B 点的营地。

怎样走才能使总的路程最短?模型【1】一定直线,异侧两定点已知:直线l 和它异侧两点A 、B ,在直线l 上求作一点P ,使PA +PB 最小模型【2】一定直线,同侧两定点已知:直线l 和它同侧两点A 、B ,在直线l 上求作一点P ,使PA +PB 最小模型【3】两定直线,两定点已知:∠MON 内部有两点P 、Q ,在OM 、ON 上分别作点A 、B,使四边形PQBA 周长最小模型【4】两定直线,一定点已知:∠MON 内部有一点P 在OM 、ON 上分别作点A 、B ,使△PAB 周长最小A l A M O N P Q ON P模型【5】两定直线,一定点已知:∠MON 内部有一点P 在OM 、ON 上分别作点A 、B ,使AB +PB 最小注意:模型4与模型5的联系与区别变式:线段之差最大问题 模型【6】一定直线,同侧两定点已知:直线l 和它同侧两点A 、B ,在直线l 上求作一点P ,使︱PA -PB ︱最大模型【7】一定直线,异侧两定点已知:直线l 和它同侧两点A 、B ,在直线l 上求作一点P ,使︱PA -PB ︱最大造桥选址问题利用平移变换进行造桥选址,是平移变换的一个重要应用。

原题再现如图1,A 和B 两地在一条河的两岸,现要在河上造一座桥MN 。

桥造在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥与河垂直)。

(人教版八年级上册第86页)M O N P l lAB变式拓展模型【8】一定直线及直线上一长度不变的线段,同侧两定点已知:直线l 和它同侧两点A 、B ,在直线求作一条线段CD (长度不变),使AC +CD +DB 最小巩固练习1、如图,在四边形ABCD 中,∠B =∠D =90°,∠BAD =110°,在BC 上存在一点M ,在CD 上存在点N ,使△AMN 的周长最短,则∠MAN 的度数为 ;2、如图,Rt △ABC 中,BC =3,AC =4,AB =5, BD 平分∠BAC,点E 、F 分别为BD 、BC 上的动点, 连接CE 、EF ,则C E +EF 的最小值是______3、如图,若AP =4,∠CAB =30°,在AB 上有一动点M,AC 上有一动点N,则 PMN 周长的最小值是____________4、如图,△ABC 在平面直角坐标系中,且A (1,3)、B (-4,1)、若M (a-1,0)、N (a ,0),当BM +MN +NA 最小时,直接写出a 的值是_________.几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.l D A B C 第1题图 D C B A BA C P DC AB E F例1、如图,△ABC 是等边三角形,边长为6,AD ⊥BC ,垂足是点D,点E 为直线AD 上一点,以CE 为边作等边三角形CEF ,则DF 的最小值是________练习:1、如图,△ABC 是等边三角形,边长为6, 点D 为BC 中点,,点E 为直线BC 上一点,以AE 为边作等边三角形AEF ,则DF 的最小值是________2、平面直角坐标系中,C (0,4),K (2,0),A 为x 轴上一动点,连接AC ,将AC 绕A 点顺时针旋转90°得到AB ,当点A 在x 轴上运动,BKABC B。

初中数学常见模型之将军饮马

初中数学常见模型之将军饮马

将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。

专题17 最值模型之垂线段最短、将军饮马及造桥选址模型(原卷版)

专题17 最值模型之垂线段最短、将军饮马及造桥选址模型(原卷版)

专题17 最值模型之垂线段最短、将军饮马及造桥选址模型(原卷版)模型一垂线段最短模型典例1(2023春•莲湖区期中)如图,OC平分∠AOB,P是OC上一点,PH⊥OB于点H,Q是射线OA上的一个动点,若PH=3,则PQ长的最小值为()A.1B.2C.3D.4针对练习1.(2023秋•通州区期末)如图,在△ABC中,∠ABC=60°,BC=6,CD是△ABC的一条高线.若E,F 分别是CD和BC上的动点,则BE+EF的最小值是()A.6B.3√2C.3√3D.32.(2022春•临湘市期末)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD =3,Q为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.√53.(2023•龙岩模拟)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于D,点E,F分别在AD,AB 上,则BE+EF的最小值是()A .4B .4.8C .5D .5.44.(2023春•鄄城县期中)已知∠ABC =60°,点P 为平面内一点,且BP 为定长,∠ABP =20°,Q 为射线BC 上一动点,连接PQ ,当BP +PQ 的值最小时,∠BPQ = .5.(2022秋•东港区校级期末)如图,在Rt △ABC 中,∠C =90°,∠BAC =15°,点P 为AC 边上的动点,点D 为AB 边上的动点,若AB =6cm ,则PB +PD 的最小值为 cm .模型二 将军饮马模型类型一 一直线同侧两定点典例2 (2022秋•和平区校级期末)如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,CE =5,AD =7,P 是AD 上一个动点,则BP +EP 的最小值是( )A .7B .3.5C .5D .2.5类型二 两射线一顶点两动点典例3(2021秋•颍东区期末)如图,∠AOB =30°,点P 是∠AOB 内的定点且OP =3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .3B .23C .43D .6针对练习1.(2021秋•天津期末)如图,在△ABC中,AB的垂直平分线DE交BC于点D,垂足为E,M为DE上任意一点,BA=3,AC=4,BC=6,则△AMC周长的最小值为()A.7B.6C.9D.102.(2021秋•丛台区校级期末)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°3.(2020秋•西城区校级期中)在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC三条中线的交点处B.AD的中点处C.A点处D.D点处模型三造桥选址模型类型一异侧两定点一定长典例1(2021春•奉化区期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.类型二同侧两定点一定长典例2(2019•安徽模拟)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AD、BC的中点,点P、Q在EF上.且满足PQ=2,则四边形APQB周长的最小值为()A.10B.12C.14D.16针对练习1.有一以互相平行的直线a、b为岸的河流,其两侧有村庄A和村庄B,现在要在河上建一座桥梁MN(桥与河岸垂直),使两村庄之间的距离最短,从作图痕迹上来看,正确的是()A.B.C.D.2.(2023•浠水县二模)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上的两个动点,且PQ=2,当BP=()时,四边形APQE的周长最小.A.3B.4C.5D.2√23.(2022秋•离石区期末)为贯彻国家城乡建设一体化和要致富先修路的理念,某市决定修建道路和一座桥,方便张庄A和李庄B的群众出行到河岸a.张庄A和李庄B位于一条河流的同一侧,河的两岸是平行的直线,经测量,张庄A和李庄B到河岸b的距离分别为AC=p(m),BD=q(m),且CD=(p+q)m,如图所示.现要求:建造的桥长要最短,然后考虑两村庄到河流另一侧桥头的路程之和最短,则这座桥应建造在C,D间距离C m处.(河岸边上的点到河对岸的距离都相等)4.如图,某条护城河在CC'处直角转弯,河宽不变,从A处到达B处,须经两座桥,如何恰当地架桥才能使从A地到B地的路程最短?。

将军饮马最短路径类

将军饮马最短路径类

课程主题:最短路径问题学习目标1、掌握和最小、差最大、造桥选址类、两点之间线段最短类的最短路径问题模型2、熟练运用模型在代数、几何中进行转化教学内容1、如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F、G是垂足,若正方形ABCD周长为a,则EF+EG等于。

2、如图,菱形ABCD中,AB=4,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是。

1、回顾将军饮马问题、造桥选址问题EDCBAP知识点一(最短路径问题)【知识梳理】1、两动点最短距离:两点之间,线段最短2、点到直线的距离:垂线段最短3、PA+PB最短:将军饮马问题,对称A.B不同侧,两点之间线段最短4、|PA-PB|最大:差最大,保证A.B同侧,当P.A.B三点共线时差最大5、造桥选址问题:先压缩桥变成将军饮马问题利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。

下面对三类线段和的最值问题进行分析、讨论。

(1)两点一线的最值问题: (两个定点 + 一个动点)问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2.连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
Q+QB.
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
思维方法三
沿垂直于河岸方向依次把 B点平移至B1、B2,使 BB1=PQ,B1B2 =MN ; 连接B2A交于A点相邻河 岸于M点,建桥MN; 连接B1N交B1的对岸于 P点,建桥PQ; 从A点到B点的最短路径 为AM+MN+NP+MN +NP+PQ+QB转化 为AB2+B2B1+B1B.
A A1
B
2、利用基本问题的解决方法确定桥PQ: (1)在沿垂直于第二条河岸的方向平移A1至A2,
使A1A2=PQ. (2)连接A2B交A2的对岸Q点,在点处建桥PQ.
A A1 A2
P
Q
B
3、确定PQ的位置,也确定了BQ和PQ,此时问题可 转化为由A点、P点和第一条河确定桥MN的位置.
A A1
A A1
1、2两种方法改变了. 怎样调整呢?
把A或B分别向下或上平移一个桥长
那么怎样确定桥的位置呢?
问题解决
A
如图,平移A到A1,使A
A1等于河宽,连接A1B
A1
M
交河岸于N作桥MN,此
时路径AM+MN+BN
最短.
N
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1. AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.

N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
思维火花
我们能否在不改变AM+MN+BN的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
各抒己见
1、把A平移到岸边. 2、把B平移到岸边. 3、把桥平移到和A相连.
4、把桥平移到和B相连.
合作与交流
上述方法都能做到使AM+MN+BN不变呢?请 检验.
a
A
M
b
N
B
解决问题 2
① 作图
A A′
M N
a b
B
② 证明
A A′
a
M′
b
M
N′
N
B
A A′
M′ M
N
证明: a
b
N′ B
练习
1、如图1,台球桌上有一个黑球,一个白球,如何用球杆去击白球使其 撞到AB边反弹后再撞到黑球? 2、如图2,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD 上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数为 多少?
平移的方法有四种:三个桥长都平移 到A点处;都平移到B点处;MN、PQ 平移到A点处;PQ、GH平移到B点处
M N P Q
G
H
B
问题解决 A
A1
沿垂直于河岸方向依次把A点平 A 2 移至A1、A2、A3,使AA1 A3 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
问题延伸一
如图,A和B两地之间
A
有两条河,现要在两
条河上各造一座桥MN
和PQ.桥分别建在何处
才能使从A到B的路径
最短?(假定河的两
岸是平行的直线,桥
要与河岸垂直)
B
思维分析
如图,问题中所走总路径是
A
AM+MN+NP+PQ+QB.
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两点 之间,线段最短”解决问题,只 有利用平移变换转移到两侧或 同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
A
M
N
P
Q
B2
B1
B
问题延伸二
A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线 ,桥要与河岸垂直)
B
思维分析
A
如图,问题中所走总路径是 AM+MN+NP+PQ+QG+GH+HB.
桥MN、PQ和GH在中间,且方 向不能改变,仍无法直接利用 “两点之间,线段最短”解决问 题,只有利用平移变换转移到 两侧或同一侧先走桥长.
A
C
l
B
② 点A,B分别是直线l同 侧的两个点 B
A l
C
B′
解决问题 1
① 作图 B
A l
C B′
② 证明
B A
C l
C′
B′
A
C′
C
B 证明: l
B′
问题 2 (造桥选址问题)如图,A和B两地在一条河的两岸,现要在河 上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假定河的两岸是平行的直线,桥要与河垂直。)
M
P
N
P
Q Q
连接A1P交A1的对岸于N点,在N点处建桥MN.
问题解决
沿垂直于河岸方向依次把 A点A1、A2,使AA 1=MN,A1A2 =
A
A1 A2
PQ ;
M
连接A2B交于B点相邻
河岸于Q点,建桥PQ; 连接A1P交A1的对岸
N P
于N点,建Байду номын сангаасMN;
Q
从A点到B点的最短路径
为AM+MN+NP+P
M N
P Q
G H
B
问题解决
沿垂直于河岸方向依次把A点平 移至A1、A2、A3,使AA1 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
最短路径 问题
将军饮马 造桥选址
问题
问题
郧西县河夹中学
段廉洁
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B
地.牧马人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
D
A 图1
C
A
D
A″
B
N
M
B
A′
C
图2
郧西县河夹镇初级中学 段廉洁
造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔早在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行 的直线,桥要与河垂直)
A
B
思维分析
A
1、如图假定任选位置造 桥MN,连接AM和BN,从 A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
相关文档
最新文档