圆的切线计算与证明题

合集下载

答案--如何证明圆的切线

答案--如何证明圆的切线

圆的切线证明一、连半径,证垂直要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.1、如图,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º. 求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可.证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB . ∵BD =OB ,∴BC =21OD .∴∠OCD =90º. ∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.本题在证明∠OCD =90º时,运用了“在一个三角形中,如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形”,当然也可以从角度计算的角度来求∠OCD =90º.2、如图,已知⊙O是△ABC 的外接圆,AB 是⊙O的直径,D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB .求证:DE 是⊙O 的切线.证明:连接OC ,则OA =OC ,所以∠CAO =∠ACO , 因为AC 平分∠EAB ,所以∠EAC =∠CAO =∠AC O,所以AE ∥CO ,又AE ⊥DE , 所以CO ⊥DE ,所以DE 是⊙O 的切线.3、已知⊙O 中,AB 是直径,过B 点作⊙O 的切线,连结CO ,若AD ∥OC 交⊙O 于D ,求证:CD 是⊙O 的切线。

点悟:要证CD 是⊙O 的切线,须证CD 垂直于过切点D 的半径,由此想到连结OD 。

证明:连结OD 。

∵AD ∥OC ,∴∠COB =∠A 及∠COD =∠ODA∵OA =OD ,∴∠ODA =∠OAD∴∠COB =∠COD∵CO 为公用边,OD =OB∴△COB ≌△COD ,即∠B =∠ODC∵BC 是切线,AB 是直径,∴∠B =90°,∠ODC =90°,∴CD 是⊙O 的切线。

微专题十二 与圆的切线有关的计算与证明

微专题十二 与圆的切线有关的计算与证明

微专题十二 与圆的切线有关的计算与证明[见学用《高分作业》PA48]类型一 与切线的性质有关的计算或证明【经典母题】如图Z12-1,⊙O 的切线PC 交直径AB 的延长线于点P ,C 为切点,若∠P =30°,⊙O 的半径为1,则PB 的长为__1__.图Z12-1 经典母题答图【解析】 如答图,连结OC .∵PC 为⊙O 的切线,∴∠PCO =90°,在Rt △OCP 中,∵OC =1,∠P =30°,∴OP =2OC =2,∴PB =OP -OB =2-1=1. 【思想方法】 (1)已知圆的切线,可得切线垂直于过切点的半径;(2)已知圆的切线,常作过切点的半径,得到切线与半径垂直.【中考变形】[2018·黄冈]如图Z12-2,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .(1)求证:∠CBP =∠D ;(2)若OA =2,AB =1,求线段BP 的长.图Z12-2 中考变形答图解:(1)证明:如答图,连结OB ,∵AD 是⊙O 的直径,∴∠ABD =90°,∴∠A +∠D =90°,∵BC 为切线,∴OB ⊥BC ,∴∠OBC =90°,∴∠OBA +∠CBP =90°,而OA =OB ,∴∠A =∠OBA ,∴∠CBP =∠D ;(2)∵OP ⊥AD ,∴∠POA =90°,∴∠P +∠A =90°,∵∠D +∠A =90°,∴∠P =∠D ,∴△AOP ∽△ABD ,∴AP AD =AO AB ,即1+BP 4=21,∴BP =7.【中考预测】[2018·白银]如图Z12-3,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE =EF .(1)求证:∠C =90°;(2)当BC =3,sin A =35时,求AF 的长.图Z12-3 中考预测答图解:(1)证明:如答图,连结OE ,BE ,∵DE =EF ,∴DE ︵=EF ︵,∴∠OBE =∠DBE ,∵OE =OB ,∴∠OEB =∠OBE ,∴∠OEB =∠DBE ,∴OE ∥BC ,∵⊙O 与边AC 相切于点E ,∴OE ⊥AC ,∴BC ⊥AC ,∴∠C =90°;(2)在△ABC ,∠C =90°,BC =3,sin A =35,∴AB =5,设⊙O 的半径为r ,则AO =5-r ,在Rt △AOE 中,sin A =OE OA =r 5-r=35, ∴r =158,∴AF =5-2×158=54.类型之二 与切线的判定有关的计算或证明【经典母题】已知:如图Z12-4,A 是⊙O 外一点,AO 的延长线交⊙O 于点C ,点B 在圆上,且AB =BC ,∠A =30°,求证:直线AB 是⊙O 的切线.图Z12-4 经典母题答图证明:如答图,连结OB ,∵OB =OC ,AB =BC ,∠A =30°,∴∠OBC =∠C =∠A =30°,∴∠AOB =∠C +∠OBC =60°.∵∠ABO =180°-(∠AOB +∠A )=180°-(60°+30°)=90°,∴AB ⊥OB ,又∵OB 为⊙O 半径,∴AB 是⊙O 的切线. 【思想方法】 证明圆的切线常用两种方法“作半径,证垂直”或者“作垂直,证半径”.【中考变形】1.[2018·南充]如图Z12-5,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB =2,PC =4.(1)求证:PC 是⊙O 的切线;(2)求tan ∠CAB 的值.图Z12-5 中考变形1答图解:(1)证明:如答图,连结OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5,∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;(2)∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB=90°,∴∠BCP=∠ACO,∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BCAC=12.2.[2018·郴州]如图Z12-6,已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.图Z12-6 中考变形2答图解:(1)证明:如答图,连结AO,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,∵OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD-∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA·sin∠AOM=4×sin60°=23,∴AE=2AM=4 3.【中考预测】如图Z12-7,AB是⊙O的直径,点C,D在⊙O上,∠A=2∠BCD,点E 在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.图Z12-7 中考预测答图解:(1)证明:如答图,连结OD.∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)如答图,连结BD,过点D作DH⊥BF于点H.∵DE与⊙O相切,∴∠ACD+∠BCD=∠ODB+∠BDE=90°,∵∠ACD=∠OBD,∠OBD=∠ODB,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=12BF=1,∴HD=DF2-FH2=3,在Rt△ODH中,OH2+DH2=OD2,即(OD-1)2+32=OD2,∴OD=5.即⊙O的半径是5.。

圆的切线性质题 2024高考数学题目及答案

圆的切线性质题 2024高考数学题目及答案

圆的切线性质题 2024高考数学题目及答案
题目:
已知圆O的半径为r,点A在圆上,且AO的长度为3r。

过点A作
圆O的切线,切线与AO的交点为点B。

若AC是圆O的直径,求证:∠ABC = 90°。

解析:
为了证明∠ABC = 90°,我们可以通过几何方法来推导。

首先,连接OB。

由于AB是圆O的切线,根据切线与半径的关系
可知∠OAB = 90°。

因此,三角形OAB是直角三角形。

另一方面,AC是圆O的直径,所以∠OAC = 90°。

根据直径的性质,直径所对的两个角是直角。

由于∠OAB = 90°,且∠OAC = 90°,所以∠OAB = ∠OAC。

根据
等角定理可知,∠ABC = ∠OAB + ∠OAC = ∠OAB + ∠OAB =
2∠OAB = 2 × 90° = 180°。

因为∠ABC = 180°,所以∠ABC是一个平角。

而在平面几何中,平角是不存在的。

所以,我们推断∠ABC只能是90°。

因此,已证明∠ABC = 90°。

答案:已证明∠ABC = 90°。

人教版九年级数学上册作业课件 第二十四章 圆 专题训练(十三) 与圆的切线有关的计算与证明

人教版九年级数学上册作业课件 第二十四章 圆 专题训练(十三) 与圆的切线有关的计算与证明
人教版
第二十四章 圆
专题训练(十三) 与圆的切线有关的计算与证明
类型1 已知圆的切线,求角的度数或线段长 1.(山西中考)如图,四边形OABC是平行四边形,以点O为圆心,OC 为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于 点E,连接EB交OC于点F.求∠C和∠E的度数.
解:连接 OB,∵⊙O 与 AB 相切于点 B,∴OB⊥AB,∵四边形 ABCO 为平行四边形,∴AB∥OC,OA∥BC,∴OB⊥OC,∴∠BOC=90°, ∵OB=OC,∴△OCB 为等腰直角三角形,∴∠C=∠OBC=45°,∵
则点 D 为⊙M 与 x 轴的切点,即 PM=MD,设 P(x,-34 x2+94 x+3), M(x,-34 x+3),则 PD=-34 x2+49 x+3,MD=-34 x+3,∴(-43 x2 +49 x+3)-(-34 x+3)=-34 x+3,解得 x1=1,x2=4(不合题意舍去), ∴⊙M 的半径为 MD=-43 +3=94 ;当⊙M 与 y 轴相切时,如图②所示, 延长 PM 交 AB 于点 D,过点 M 作 ME⊥y 轴于点 E,则点 E 为⊙M 与 y 轴的切点,即 PM=ME,PD-MD=EM=x,
6.(天水中考)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D. 过点A作⊙O的切线与OD的延长线交于点P,PC,AB的延长线交于点F.
(1)求证:PC是⊙O的切线; (2)若∠ABC=60°,AB=10,求线段CF的长.
解:(1)证明:连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD, ∴PA=PC,∵OP=OP,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP, ∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC, ∴PC是⊙O的切线

圆的切线的性质与证明

圆的切线的性质与证明

中考数学专题训练(附详解)圆的切线性质与证明二、方法的剖析与提炼例1.如图,ABAC分别是。

0的切线和割线,且/C=45 ,Z BDA=60 , CD= ,6,则切线AB的长是【解析】(根据切线AB和/ C=45得弦切角/ AB[=45° ,这样在AA BD中就有两个特殊角分别是45度和60度,然后过点A作AM L BD得两个特殊三角形即等腰直角三角形和含30度的直角三角形,这样特殊三角形的三边关系,在设AB=x时,其它边AD和AC就可以用x的代数式表示出来,最后带人切割线定理得到的等式AB=AD?A(就可得到方程,最后求方程解得AB的长度。

)【解答】解:过点A作AM L BD与点M••• AB为圆0的切线•••/ ABD MC=45vZ BDA=60 •••/ BAD=75,/ DAM=30,/ BAM=45设AB=,则碍在直角△ AM中, AD=牛由切割线定理得:AB=AD?AC知刊申+解得:x i=6, X2=0 (舍去)故AB=6故答案是:6【解法】过点A作AM L BD与点M,在直角△ AMD中,AD就可以利用AB表示出来,然后依据切割线定理,即可得到一个关于AB的方程, 即可求解。

【解释】在几何中求线段的长或角度的具体度数,往往会采用方程思想,体现数学中重要的数形结合思想。

故本题就采用了其中的常用方法方程思想,那么就需设未知数,抓住题意构造等式,而本题构造等式的突破口就是想到切割线定理,然后想办法利用题目中剩余的条件,把该等式中的相关量都用未知数的代数式表示好,并代入得方程就可解决本题。

例 2.(2020 贺州)如图,AB,BC,CD分别与O O 相切于E,F,G.且AB//CD.BO=6cm, CO=8cm.GD中考数学专题训练(附详解)(1)求证:B0丄CQ(2)求BE和CG的长.【解析】(1)由题目中的AB//CD得/ABC+Z BCD=180,再结合题目条件根据切线长定理得B0平分/ ABC, CO平分/ DCB然后根据角平分线的性质易得/ OBC+Z OCB=9C P,从而得到Z BOC=90,所以BOX CO.(2)根据切线长定理得BE=BF,GC=(再结合第(1)题的结论得RT A BCQ把切点和圆心O 相连,易证RT A BOF^ RT A BCO相似,根据相似三角形对应边成比例求得BF的长,即BE的长.CG的长可由BC-BF得至鷹【解答】(1)证明::AB / CD•••Z ABC+Z BCD=180o• Z BOC=90, • BO X CO.(2)解:连接OF,贝U OF X BC,oo• BF=3. 6cm, CG=CF=6 4cm.【解法】利用平行线和角平分线的性质完成第(1)题的证明,利用直角三角形的勾股定理和相似三角形对应边成比例的性质完成求解。

2020中考数学 冲刺专题:圆切线的相关证明与计算

2020中考数学 冲刺专题:圆切线的相关证明与计算

2020中考数学冲刺专题:圆切线的相关证明与计算1. 如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD.过点D作BC的平行线,与AB的延长线相交于点P.第1题图(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.(1)证明:如解图,连接OD,∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°,第1题解图∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC.∵PD∥BC,∴OD ⊥PD .又∵OD 是⊙O 的半径, ∴PD 是⊙O 的切线; (2)证明:∵PD ∥BC , ∴∠P =∠ABC . 又∵∠ABC =∠ADC , ∴∠P =∠ADC .∵∠PBD +∠ABD =180°,∠ACD +∠ABD =180°, ∴∠PBD =∠ACD , ∴△PBD ∽△DCA ;(3)解:∵△ABC 是直角三角形, ∴BC 2=AB 2+AC 2=62+82=100, ∴BC =10.∵OD 垂直平分BC , ∴DB =DC .∵BC 是⊙O 的直径, ∴∠BDC =90°.∵在Rt △DBC 中,DB 2+DC 2=BC 2,即2DC 2=BC 2=100, ∴DC =DB =5 2. ∵△PBD ∽△DCA , ∴PB DC =BD CA ,∴PB =DC ·BD CA =52·528=254.2.如图,点A在⊙O上,点P是⊙O外一点,P A与⊙O相切于点A,连接OP交⊙O 于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.第2题图(1)求证:PB是⊙O的切线;(2)若PC=9,AB=63,求图中阴影部分的面积.(1)证明:连接OB,∵OP⊥AB,∴AC=BC,∴OP垂直平分AB,∴AP=BP,又∵OA=OB,OP=OP,第2题解图∴△APO≌△BPO(SSS),∵P A切⊙O于点A,∴AP⊥OA,∴∠P AO=90°,∴∠PBO=∠P AO=90°,∴OB ⊥BP , 又∵点B 在⊙O 上, ∴PB 与⊙O 相切于点B ;(2)解:∵OP ⊥AB ,OP 经过圆心O , ∴BC =12AB =33, ∵∠PBO =∠BCO =90°,∴∠PBC +∠OBC =∠OBC +∠BOC =90°, ∴∠PBC =∠BOC , ∵∠PCB =∠BCO =90°, ∴△PBC ∽△BOC , ∴BC OC =PC BC ,∴OC =BC ·BC PC =33×339=3, ∴在Rt △OCB 中,OB =OC 2+BC 2=6,tan ∠COB =BCOC =3,∴∠COB =60°,PB =OP ·sin60°=63,∴S △OPB =12PB ·BO =183,S 扇形DOB =6036360 g =6π,∴S 阴影=S △OPB -S 扇形DOB =183-6π.3.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠A =2∠BCD ,点E 在AB 的延长线上,∠AED =∠ABC . (1)求证:DE 与⊙O 相切;(2)若BF =2,DF =10,求⊙O 的半径.第3题图(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,∵∠DEA=∠CBA,第3题解图∴∠DEA+∠DOE=∠CAB+∠CBA,∵∠ACB=90°,∴OD⊥DE,又∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如解图,连接BD,可得△FBD∽△DBO,BD DF BF==,BO OD BD∴BD=DF10∴OB=5.4.如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长,交⊙O于点D、E,连接AD并延长,交BC于点F,连接BD、BE.第4题图(1)试判断∠CBD 与∠CEB 是否相等,并证明你的结论; (2)求证:BD BE =CDBC ;(3)若BC =2AB ,求tan ∠CDF 的值. (1)解:∠CBD =∠CEB ,证明如下: ∵AB 是⊙O 的直径,BC 切⊙O 于点B , ∴∠CBD =90°-∠OBD ,又∵DE 过⊙O 的圆心,∴∠DBE =90°,OB =OD , ∴∠CEB =90°-∠ODB ,∠ODB =∠OBD , ∴∠CBD =∠CEB ;(2)证明:∵在△CBD 和△CEB 中, ∵∠CBD =∠CEB ,∠C =∠C , ∴△CBD ∽△CEB ,∴BD BE =CD BC ; (3)解:∵BC =2AB ,OB =12AB , ∴在Rt △OBC 中,OC =32AB ,∴CD =OC -OD =AB ,∵DE 是⊙O 的直径, ∴∠DBE =90°,∵∠CDF =∠ADE =∠ABE =∠BED ,∴tan ∠CDF =tan ∠BED =BD BE =CD BC =AB 2AB =22.5.如图,在Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O 上,CE=CA,AB和CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.第5题图(1)证明:如解图,连接OE,OC,第5题解图∵OA=OE,CE=CA,OC共用,∴△OEC≌△OAC(SSS),∴∠OEC=∠A=90°,∵OE是⊙O的半径,∴CE与⊙O相切;(2)解:在Rt△OEF中,OE=3,EF=4,∴OF=OE2+EF2=5,∴AF=8,在Rt△ACF中,设AC=x,则CF=CE+EF=x+4,∵AF2+AC2=CF2,∴82+x2=(x+4)2,解得x =6,则AC =6,在Rt △ABC 中,AB =6,AC =6, ∴BC =62,如解图,连接AD ,则AD ⊥BC , ∴BD =12BC =3 2.6.如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,点E 是AC 的中点,OE 交CD 于点F .(1)若∠BCD =36°,BC =10,求BD ︵的长; (2)判断直线DE 与⊙O 的位置关系,并说明理由.第6题图(1)解:如解图,连接OD ,∵∠BCD =36°, ∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,且BC =10, ∴l BD ︵=72π×5180=2π;第6题解图(2)解:DE 是⊙O 的切线.理由如下: ∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°, 又∵点E 是线段AC 的中点, ∴DE =AE =EC =12AC , 在△DOE 与△COE 中, ∵⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE , ∴△DOE ≌△COE , ∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线.7.如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线; (2)若BC =10,AB =16,求OF 的长.第7题图(1)证明:∵OC ⊥AB ,AB ∥CD , ∴OC ⊥DC , ∵OC 是⊙O 的半径, ∴CD 是⊙O 的切线; (2)解:如解图,连接BO .设OB =x ,∵AB =16,OC ⊥AB , ∴HA =BH =8, ∵BC =10,∴CH =6, ∴OH =x -6. 在Rt △BHO 中, ∵OH 2+BH 2=OB 2,∴(x -6)2+82=x 2,解得x =253, ∵CB ∥AE ,∴∠CBH =∠F AH , 在△CHB 和△FHA 中,⎩⎪⎨⎪⎧∠CBH =∠F AH ∠CHB =∠FHA BH =AH, ∴△CHB ≌△FHA ,∴CH =HF , ∴CF =2CH =12,∴OF =CF -OC =12-253=113.第7题解图8.如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 的中点,OE 交CD 于点F .(1)若∠BCD =36°,BC =10,求BD ︵的长;(2)判断直线DE 与⊙O 的位置关系,并说明理由;(3)求证:2CE 2=AB ·EF.第8题图(1)解:如解图,连接OD ,∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,且BC =10,∴l BD ︵=72π×5180=2π.第8题解图(2)解:DE 是⊙O 的切线;理由如下:∵BC 是⊙O 的直径,∴∠ADC =∠BDC =90°,又∵点E 是线段AC 的中点,∴DE =AE =EC =12AC ,在△DOE 与△COE 中,∵⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE,∴△DOE ≌△COE ; ∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(3)证明:∵△DOE ≌△COE ,∴OE 是线段CD 的垂直平分线,DE =CE , ∴点F 是线段CD 的中点,∵点E 是线段AC 的中点,则EF =12AD ,在△ACD 与△ABC 中,⎩⎨⎧∠CAD =∠BAC ∠ADC =∠ACB, ∴△ACD ∽△ABC ,则AC AB =AD AC ,即AC 2=AB ·AD ,而AC =2CE ,AD =2EF , ∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .。

圆的切线专题证明题

圆的切线专题证明题

1、.已知:如图,CB是⊙O的直径,BP是和⊙O相切于点B的切线,⊙O的弦AC平行于OP.(1)求证:AP是⊙O的切线.(2)若∠P=60°,PB=2cm,求AC.2、⊿ABC中,AB=AC,以AB为直径作⊙O交BC于D,D E⊥AC于E。

求证:DE为⊙O的切线3、、如图,AB=BC,以AB为直径的⊙O交AC于D,作D E⊥BC于E.(1)求证:DE为⊙O的切线(2)作DG⊥AB交⊙O于G,垂足为F,∠A=30°。

AB=8,求DG的长4、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE是⊙O的切线.APOB5、如图,D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.求证:BD是⊙O的切线;6.如图,在中,,以为直径的分别交、于点、,点在的延长线上,且求证:直线是⊙0的切线;7、如图9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上,连接DB,且AD=DB.(1)判断DB与⊙O的位置关系,并说明理由。

(2)若AD=1,PB=BO,求弦AC的长8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。

(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。

9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P。

若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径.10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5,求BF的长。

初二圆切线练习题

初二圆切线练习题

初二圆切线练习题在初二数学学习中,圆和切线是一个重要的概念。

理解圆与切线的关系对于解决相关的练习题至关重要。

本文将介绍一些初二圆切线的练习题,希望能够帮助同学们巩固并提高自己的数学能力。

1. 题目一:已知一条圆的半径为5cm,切线与圆的交点到圆心的距离为4cm,求切线的长度。

解答:根据题目描述,我们可以画出一个示意图。

假设圆心为O,切点为A,切线上的一点为B。

连接OB,OA,OB与切线的交点为C。

由于OC与切线垂直,所以OC是切线的高。

我们可以利用勾股定理来求解该题。

根据题目中的信息,可得到以下关系式:OA² = OC² + AC²OA² = OC² + (AO - OC)²OA² = OC² + AO² - 2AO×OC + OC²OA² = 2OC² - 2AO×OC + AO²又因为OC是切线的高,所以OC = 4cm。

将OC替代为4,即可得到:OA² = 2×4² - 2×5×4 + 5²OA² = 32 - 40 + 25OA² = 17因此,OA = √17,切线的长度为√17cm。

2. 题目二:已知A、B两点在圆的外部,并且切线AB与连线OA的夹角为60度,其中O为圆心,OA的长度为8cm,圆的半径为5cm。

求切线AB的长度。

解答:同样地,我们先画出一个示意图,其中圆心为O,切点为C,切线上的一点为D。

连接OC,OD,AD,BD。

根据题目中的信息,我们可以得到以下关系式:OD = OA - CDOD = 8 - OCOD = 8 - 5OD = 3从图中我们可以发现△ACO为等边三角形,所以∠OAC = ∠OCA= ∠AOC = 60度。

同理可得∠OCB = ∠OBC = ∠BOC = 60度。

与圆的切线有关的计算与证明

与圆的切线有关的计算与证明

专题复习 : 与圆有关的证明与计算一、例题讲解例题 1:如图,AB 是⊙ O 的直径,过点 B 作⊙ O 的切线 BM ,弦 CD ∥ BM ,交 AB 于点 F ,且 DA=DC ,连接 AC ,AD ,延长 AD 交 BM 地点 E 。

M(1) 求证:△ ACD 是等边三角形;DE(2) 连接 OE ,若 DE=2,求 OE 的长。

AOBFC练习:如图,⊙ O 为△ ABC 的外接圆, BC 为⊙ O 的直径, AE 为⊙ O 的切线,过点 B 作BD ⊥ AE 于 D 。

(1)求证:∠ DBA=∠ ABC ;(2)如果 BD=1,tan ∠ BAD= 1,求⊙ O 的半径。

AD2EBOC例题 2:如图 ,以线段 AB 为直径作⊙ O , CD 与⊙ O 相切于点 E ,交 AB 的延长线于点 D , 连接 BE , 过点 O OC BE 交切线 DE 于点 C , 连接 AC 。

作 ∥(1)求证: AC 是⊙ O 的切线 ;()若BD=OB= 4 , 求弦 AE 的长。

2练习:如图, AB 是⊙ O 的直径,半径 OD 垂直弦 AC 于点 E .F 是 BA 延长线上一点,CDBBFD 。

(1)判断 DF 与⊙ O 的位置关系,并证明;(2)若 AB=10, AC=8,求 DF 的长。

CD EFA OB1二、课堂练习1.如图,⊙ O是△ ABC 的外接圆, AB= AC ,BD是⊙ O的直径, PA∥BC,与 DB的延长线交于点 P,连接 AD。

(1)求证: PA是⊙ O的切线;( 2)若 AB= 5,BC=4 ,求 AD的长。

2.如图,已知 BC是⊙ O的直径,AC切⊙ O于点 C,AB交⊙ O于点 D,E 为 AC的中点,连结 DE。

(1)若 AD=DB, OC=5,求切线 AC的长;(2)求证: ED是⊙ O的切线。

ADEBOC3.如图,△ ABC中, AB=AC,点 D 为 BC上一点,且 AD=DC,过 A,B,D 三点作⊙O,AE是⊙ O的直径,连结 DE.( 1)求证: AC是⊙ O的切线;(2)若 sin C 4 ,,求⊙O 的直径.5AC=6AOEB DC 4.如图,△ ABC内接于⊙ O,OC⊥AB于点 E,点 D在 OC的延长线上,且∠ B=∠D=30°.(1)求证: AD是⊙ O的切线;(2)若AB6 3 ,求⊙O的半径.AOE CBD25.如图,已知 BC是⊙ O的直径,AC切⊙ O于点 C,AB交⊙ O于点 D,E 为 AC的中点,连结 DE。

人教版九年级数学上册作业课件 第二十四章 圆 专题课堂(九) 与圆的切线有关的计算与证明

人教版九年级数学上册作业课件 第二十四章 圆 专题课堂(九) 与圆的切线有关的计算与证明

3.(2020·威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交 于点E,连接BE,CE,过点E作EF∥BC,交CM于点D. 求证:(1)BE=CE; (2)EF为⊙O的切线.
证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE 平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE= ∠EAM,∴∠BCE=∠EBC,∴BE=CE (2)如图,连接EO并延长交BC于点H,连接OB,OC,∵OB=OC,EB =EC,∴直线EO垂直平分BC,∴EH⊥BC,∵EF∥BC,∴EH⊥EF, ∵OE是⊙O的半径,∴EF为⊙O的切线
解:(1)连接 OE,∵AM,DE 是⊙O 的切线,OA,OE 是⊙O 的半径,
∴∠ADO=∠EDO,∠DAO=∠DEO=90°,∴∠AOD=∠EOD=12
∠AOE.∵∠ABE=21 ∠AOE,∴∠AOD=∠ABE,∴OD∥BE (2)OF=12 CD.理由:连接 OC,∵BC,CE 是⊙O 的切线,∴∠OCB= ∠OCE.∵AM∥BN,∴∠ADO+∠EDO+∠OCB+∠OCE=180°.由(1) 得∠ADO=∠EDO,∴2∠EDO+2∠OCE=180°,∴∠EDO+∠OCE =90°.∴△DOC 为直角三角形.在 Rt△DOC 中,∵F 是 DC 的中点,
解:(1)连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°, 即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3, ∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=EF
(2)如图,连接OG,EG,①当∠D=30°时,∠DAO=60°,而AB为直径, ∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE, ∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用 对称得FG=FC,∴FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF =FG=GE=CE,∴四边形ECFG为菱形 ②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC =67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠COE=45°, 利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG, ∴∠OGE=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边 形ECOG为正方形.故答案为:①30°;②22.5°

(完整版)证明圆的切线经典例题

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题证明圆的切线常用的方法有:一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直•例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F.求证:EF与O 0相切.证明:连结OE, AD.•/ AB是O 0的直径,••• AD 丄BC.又••• AB=BC ,•••/ 3= / 4.——• BD=DE,/ 1 = / 2.又••• OB=OE , OF=OF ,•••△ BOF ◎△ EOF ( SAS)•••/ OBF= / OEF.••• BF与O O相切,• OB 丄BF.•••/ OEF=9O°.• EF与O O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD 是/ BAC 的平分线, 求证:PA与O O 相切.证明一:作直径AE ,连结EC.•/ AD 是/ BAC 的平分线, •••/ DAB= / DAC. •/ PA=PD , •••/ 2= / 1+ / DAC.•••/ 2= / B+ / DAB , •••/ 1 = / B.•/ AE 是O O 的直径,• AC 丄 EC ,/ E+ / EAC=90°. •••/ 1 + / EAC=90°. 即OA 丄PA. • PA 与O O 相切.•/ PA=PD , •••/ PAD= / PDA. 又•••/ PDA= / BDE,证明二:延长AD 交O O 于E ,连结•/ AD 是/ BAC 的平分线, •BE=CE ,• OE 丄 BC.•••/ E+/ BDE=90 0.•/ OA=OE , •••/ E=/ 1. PP 为BC 延长线上一点,且 PA=PD.说明:例3 求证:证明一证明二•••/ 1 + / PAD=90°即OA丄PA.• PA与O O相切此题是通过证明两角互余,证明垂直的如图,AB=AC,AB是O O的直径,DM与O O相切.:连结OD.-AB=AC ,•/ B= / C.-OB=OD ,•/ 仁/ B.•/ 仁/C.•OD // AC.-DM 丄AC,•DM 丄OD.•DM与O O相切:连结OD, AD.•/ AB是O O的直径,•AD 丄BC.又••• AB=AC,• / 1= / 2.•/ DM 丄AC ,•/ 2+Z 4=90°,解题中要注意知识的综合运用O O交BC于D, DM丄AC于M • / 3+/4=90°.即0D 丄DM. ••• DM 是O O 的切线解题中注意充分利用已知及图上已知例4 如图,已知:AB 是O 0的直径,点 D 在AB 的延长线上.求证:DC 是O 0的切线 证明:连结OC 、BC.•/ OA=OC ,•••/ A= / 1= / 30°.•••/ BOC= / A+ / 1= 60°. 又••• OC=OB , • △ OBC 是等边三角形 • OB=BC. •/ OB=BD , • OB=BC=BD. • OC 丄 CD. • DC 是O O 的切线.说明:此题是根据圆周角定理的推论例5 如图,AB 是O O 的直径,CD 丄AB ,且OA 2=OD • OP. 求证:PC 是O O 的切线. 证明:连结OC•/ OA 2=OD • OP , OA=OC ,说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,C 在O O 上,且/ CAB=30 °, BD=OB ,3证明垂直的,此题解法颇多,但这种方法较• OC2=OD • OP,OC op ODOC .又•••/ 1= / 1,•••△ OCP s\ODC.•••/ OCP= / ODC.•/ CD 丄AB ,•••/ OCP=9O°.• PC是O O的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与厶CFG的外接圆相切分析:此题图上没有画出△ CFG的外接圆,但△ CFG是直角三角形,圆心在斜边FG的中点, 证明:为此我们取FG的中点O,连结. OC,证明CE丄OC即可得解.取FG中点O,连结OC.T ABCD是正方形,• BC 丄CD , △ CFG 是Rt△•/ O是FG的中点,EC • O是Rt A CFG的外心.•/ OC=OG ,•••/ 3= / G,•/ AD // BC,• / G= / 4.•/ AD=CD , DE=DE ,/ ADE= / CDE=45°,• △ ADE CDE (SAS)•••/ 4= / 1,Z 1 = / 3.•••/ 2+ / 3=90°, •••/ 1 + / 2=90°.即CE 丄OC.• CE 与厶CFG 的外接圆相切、若直线I 与O O 没有已知的公共点, 又要证明I 是O O 的切线,只需作OA 丄I ,A 为垂足,证明 OA 是O O 的半径就行了,简称:"作垂直;证半径”例7 如图,AB=AC , D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切.证明一:连结DE ,作DF 丄AC , F 是垂足.••• AB 是O D 的切线,• DE 丄 AB. •/ DF 丄 AC , •••/ DEB= / DFC=90°. •/ AB=AC , •••/ B= / C. 又••• BD=CD ,•••△ BDE 也厶 CDF (AAS ) • DF=DE.• AC 是O D 的切线连结DE , AD ,作DF 丄AC , F 是垂足.••• AB 与O D 相切, • DE 丄 AB.•/ AB=AC , BD=CD , •/ DE 丄 AB , DF 丄 AC , ••• DE=DF.证明二: 負B C••• F 在O D 上.• AC与O D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关•例8 已知:如图,AC, BD与O O切于A、B,且AC // BD,若/ COD=9O0. 求证:CD 是O O的切线.证明一:连结OA , OB,作OE丄CD , E为垂足.•••/ 4+ / 5=90°.•••/ 1 = / 5.• Rt△AOC s Rt△BDO.•AC OC"OB OD.•/ OA=OB ,•AC OC…OA OD.又•••/ CAO= / COD=90°,• △ AOC ODC ,•••/ 1 = / 2.又••• OA 丄AC , OE 丄CD,••• OE=OA.••• E点在O O上.• CD是O O的切线.证明二:连结OA , OB,作OE丄CD于E,延长DO交CA延长线于F.••• AC,BD 与O O 相切,• AC 丄OA , BD 丄OB.•/ AC // BD ,•••/ F=Z BDO.又••• OA=OB ,•△ AOF ◎△ BOD(AAS• OF=OD.•••/ COD=9O°,• CF=CD,/ 1= / 2.又••• OA 丄AC , OE 丄CD ,• OE=OA.• E点在O O上.• CD是O O的切线.证明三:连结AO并延长,作OE丄CD于E ,取CD中点F ,连结OF.••• AC与O O相切,• AC 丄AO.•/ AC // BD , • AO 丄BD.••• BD与O O相切于B,• AO的延长线必经过点• AB是O O的直径.•/ AC // BD , OA=OB ,B.CF=DF ,••• OF // AC ,•••/ 仁/COF.•••/ COD=90°, CF=DF ,1•OF —CD CF .2•••/ 2=Z COF.•••/ 仁/2.•/ OA 丄AC , OE 丄CD,•O E=OA.•E点在O O上.•C D是O O的切线说明:证明一是利用相似三角形证明/ 1 = / 2,证明二是利用等腰三角形三线合一证明/ 1 = / 2.证明三是利用梯形的性质证明/ 1= / 2,这种方法必需先证明A、0、B三点共线.以上介绍的是证明圆的切线常用的两种方法供同学们参考11。

苏教版九年级数学上册第二章 2.9 圆中有关切线的计算与证明(含答案)

苏教版九年级数学上册第二章 2.9 圆中有关切线的计算与证明(含答案)

2.9圆中有关切线的计算与证明一.解答题(共20小题)1.(2019秋•金坛区期中)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT 交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图1,求∠T和∠CDB的度数;(2)如图2,当BE=BC时,求∠CDO的度数.2.(2019秋•睢宁县期中)如图,在⊙O中,P A是直径,PC是弦,PH平分∠APB且与⊙O 交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.3.(2019秋•泗阳县期中)如图,CD是⊙O的切线,切点为E,AC、BD分别与⊙O相切于点A、B.如果CD=6,AC=4,求DB的长.4.(2019秋•扬州期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB =∠CAD,过点A作⊙O的切线,交CD的延长线于点E.判定直线CD与⊙O的位置关系,并说明你的理由;5.(2019秋•兴化市期中)如图,AB是⊙O的直径,F是⊙O上一点,连接FO、FB.C为中点,过点C作CD⊥AB,垂足为D,CD交FB于点E,CG∥FB,交AB的延长线于点G.(1)求证:CG是⊙O的切线;(2)若∠BOF=120°,且CE=4,求⊙O的半径.6.(2019秋•镇江期中)在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB 边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.7.(2019秋•玄武区期中)如图,在▱ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.8.(2019秋•建邺区期中)如图,四边形ABCD内接于⊙O,∠DAB=90°,点E在BC的延长线上,且∠CED=∠CAB.(1)求证:DE是⊙O的切线.(2)若AC∥DE,当AB=8,DC=4时,求BD的长.9.(2019秋•玄武区期中)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD 为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E.过点N作NF ⊥AB,垂足为F.(1)求证:NF是⊙O的切线;(2)若NF=2,DF=1,求弦ED的长.10.(2019秋•江阴市期中)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD(1)求证:直线CE是⊙O的切线;11.(2019春•建湖县期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O的切线,交CD的延长线于点E.(1)判定直线CD与⊙O的位置关系,并说明你的理由;12.(2019春•宿豫区期中)已知,⊙O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交⊙O于点E,连接OA、OE、CE,若∠ABC =30°,求证:四边形ACEO是菱形.13.(2019秋•锡山区期中)如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合).(1)若点P到⊙C的切线长为,则AP的长度为;(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)14.(2019秋•灌云县期中)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)求证:直线DE是⊙O的切线;(2)若AE=8,⊙O的半径为5,求DE的长.15.(2019秋•建邺区期末)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P 为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.16.(2019秋•大名县期中)已知,△ABC中,∠ACB=90°,AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.(1)如图①,若⊙O经过点C,交BC于点D,求CD的长.(2)在(1)的条件下,若BC边交l于点E,OE=2,求BE的长.(3)如图②,若直线l还经过点C,BC是⊙O的切线,F为切点,则CF的长为.17.(2019秋•东台市期中)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足D,AD交⊙O于点E.(1)求证:AC平分∠DAB.(2)连接CE,若CE=6,AC=8,求出⊙O的直径的长.18.(2019秋•锡山区期中)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求的值.19.(2019秋•江阴市期中)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AP的长.20.(2018秋•邳州市期中)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC 交⊙O于点B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)AC与⊙O有怎样的位置关系?为什么?(2)若OB=3,BD,求线段AC的长.答案解析一.解答题(共20小题)1.(2019秋•金坛区期中)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT 交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图1,求∠T和∠CDB的度数;(2)如图2,当BE=BC时,求∠CDO的度数.【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=70°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=70°,由此可得结论.【解析】(1)如图①,连接AC,∵AT是⊙O切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=40°,∴∠T=90°﹣∠ABT=50°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=50°,∴∠CDB=∠CAB=50°;(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=40°,∴∠BCE=∠BEC=70°,∴∠BAD=∠BCD=70°,∵OA=OD,∴∠ODA=∠OAD=70°,∵∠ADC=∠ABC=40°,∴∠CDO=∠ODA﹣∠ADC=70°﹣40°=30°.2.(2019秋•睢宁县期中)如图,在⊙O中,P A是直径,PC是弦,PH平分∠APB且与⊙O 交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.【分析】(1)连接OH,由题意可得∠OHP=∠HP A=∠HPB,可证OH∥BP,则可得OH⊥BH,根据切线的判定可证HB是⊙O的切线;(2)过点O作OE⊥PC,垂足为E,可证四边形EOHB是矩形,可得OE=BH=4,OH =BE,再根据勾股定理可求OP的长,即可求⊙O的直径.【解答】证明:(1)如图,连接OH,∵PH平分∠APB,∴∠HP A=∠HPB,∵OP=OH,∴∠OHP=∠HP A,∴∠HPB=∠OHP,∴OH∥BP,∵BP⊥BH,∴OH⊥BH,∴HB是⊙O的切线;(2)如图,过点O作OE⊥PC,垂足为E,∵OE⊥PC,OH⊥BH,BP⊥BH,∴四边形EOHB是矩形,∴OE=BH=4,OH=BE,∴CE=OH﹣2,∵OE⊥PC∴PE=EC=OH﹣2=OP﹣2,在Rt△POE中,OP2=PE2+OE2,∴OP2=(OP﹣2)2+16∴OP=5,∴AP=2OP=10,∴⊙O的直径是10.3.(2019秋•泗阳县期中)如图,CD是⊙O的切线,切点为E,AC、BD分别与⊙O相切于点A、B.如果CD=6,AC=4,求DB的长.【分析】由于CD、AC、BD是⊙O的切线,则可得AC=CE,ED=DB,由已知数据易求DE的长,进而可求出DB的长.【解析】∵CD切⊙O点E,AC切切⊙O点A.∴CE=AC=4,∴ED=CD﹣CE=2,∵CD切⊙O点E,BD切⊙O点B.∴BD=ED=2.4.(2019秋•扬州期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB =∠CAD,过点A作⊙O的切线,交CD的延长线于点E.判定直线CD与⊙O的位置关系,并说明你的理由;【分析】连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根据切线的判定推出即可;【解答】(1)证明:连接OD,∵OD=OB,∴∠DBA=∠BDO,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDB=∠CAD,∴∠CDB+∠BDO=90°,即OD⊥CE,∵D为⊙O的一点,∴直线CD是⊙O的切线;5.(2019秋•兴化市期中)如图,AB是⊙O的直径,F是⊙O上一点,连接FO、FB.C为中点,过点C作CD⊥AB,垂足为D,CD交FB于点E,CG∥FB,交AB的延长线于点G.(1)求证:CG是⊙O的切线;(2)若∠BOF=120°,且CE=4,求⊙O的半径.【分析】(1)连接OC.由点C为的中点,得到,求得∠COB=∠COF,根据平行线的性质得到∠OCG=∠OMB=90°,于是得到CG是⊙O的切线;(2)连接BC.由(1)知,∠COB=∠COF∠BOF=60°,推出△OBC为等边三角形.得到∠OCD=30°,则EM CE=2,根据勾股定理得到CM,求得OM=CM,于是得到结论.【解答】(1)证明:连接OC.∵点C为的中点,∴,∴∠COB=∠COF,∵OB=OF,∴OC⊥BF,设垂足为M,则∠OMB=90°,∵CG∥FB,∴∠OCG=∠OMB=90°,∴CG是⊙O的切线;(2)解:连接BC.由(1)知,∠COB=∠COF∠BOF=60°,∵OB=OC,∴△OBC为等边三角形.∵∠OCD=30°,则EM CE=2,∴CM,∴OM=CM,∴OC=4,即⊙O的半径为4.6.(2019秋•镇江期中)在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB 边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.【分析】(1)由题意可知P A=t,BQ=2t,从而得到PB=6﹣t,BQ=2t,然后根据△PQB的面积=4cm2列方程求解即可;(2)当t=0时,点P与点A重合时,点B与点Q重合,此时圆Q与PD相切;当⊙Q 正好与四边形DPQC的DC边相切时,由圆的性质可知QC=QP,然后依据勾股定理列方程求解即可;【解析】(1)∵当运动时间为t秒时,P A=t,BQ=2t,∴PB=5﹣t,BQ=2t.∵△PBQ的面积等于4cm2,∴PB•BQ(5﹣t)•2t.∴(5﹣t)•2t=4.解得:t1=1,t2=4.答:当t为1秒或4秒时,△PBQ的面积等于4cm2;(2)(Ⅰ)由题意可知圆Q与AB、BC不相切.(Ⅱ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.∵∠DAB=90°,∴∠DPQ=90°.∴DP⊥PQ.∴DP为圆Q的切线.(Ⅲ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.解得:t1=﹣15+10,t2=﹣15﹣10(舍去).综上所述可知当t=0或t=﹣15+10时,⊙Q与四边形DPQC的一边相切.7.(2019秋•玄武区期中)如图,在▱ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.【分析】(1)连接OB,交AD于点E,由已知条件易证OE⊥AD,由垂径定理进而可证明;(2)设⊙O的半径为r,则OE=r﹣3,在Rt△ABE中,∠OEA=90°,由勾股定理可得:OE2+AE2=OA2即(r﹣3)2+42=r2,解方程即可求出圆的半径r.【解析】(1)证明:连接OB,交AD于点E.∵BC是⊙O的切线,切点为B,∴OB⊥BC,∴∠OBC=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OED=∠OBC=90°,∴OE⊥AD,∴;(2)∵OE⊥BC,OE过圆心O∴AE AD=4,在Rt△ABE中,∠AEB=90°,∴BE═3,设⊙O的半径为r,则OE=r﹣3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r﹣3)2+42=r2,∴r,∴⊙O的半径为.8.(2019秋•建邺区期中)如图,四边形ABCD内接于⊙O,∠DAB=90°,点E在BC的延长线上,且∠CED=∠CAB.(1)求证:DE是⊙O的切线.(2)若AC∥DE,当AB=8,DC=4时,求BD的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解析】(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF AC,在Rt△BCD中,BD49.(2019秋•玄武区期中)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD 为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E.过点N作NF ⊥AB,垂足为F.(1)求证:NF是⊙O的切线;(2)若NF=2,DF=1,求弦ED的长.【分析】(1)欲证明NF为⊙O的切线,只要证明ON⊥NF.(2)证明四边形ONFH是矩形,由勾股定理即可解决问题.【解答】(1)证明:连接ON.如图所示:∵在Rt△ACB中,CD是边AB的中线,∴CD=BD,∴∠DCB=∠B,∵OC=ON,∴∠ONC=∠DCB,∴∠ONC=∠B,∴ON∥AB∵NF⊥AB∴∠NFB=90°∴∠ONF=∠NFB=90°,∴ON⊥NF又∵NF过半径ON的外端∴NF是⊙O的切线;(2)解:过点O作OH⊥ED,垂足为H,如图2所示:设⊙O的半径为r∵OH⊥ED,NF⊥AB,ON⊥NF,∴∠OHD=∠NFH=∠ONF=90°.∴四边形ONFH为矩形.∴HF=ON=r,OH=NF=2,∴HD=HF﹣DF=r﹣1,在Rt△OHD中,∠OHD=90°∴OH2+HD2=OD2,即22+(r﹣1)2=r2,∴r.∴HD,∵OH⊥ED,且OH过圆心O,∴HE=HD,∴ED=2HD=3.10.(2019秋•江阴市期中)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD(1)求证:直线CE是⊙O的切线;【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;11.(2019春•建湖县期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O的切线,交CD的延长线于点E.(1)判定直线CD与⊙O的位置关系,并说明你的理由;【分析】(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO =90°,根据切线的判定推出即可;【解答】(1)证明:连接OD,∵OD=OB,∴∠DBA=∠BDO,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDB=∠CAD,∴∠CDB+∠BDO=90°,即OD⊥CE,∵D为⊙O的一点,∴直线CD是⊙O的切线;12.(2019春•宿豫区期中)已知,⊙O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交⊙O于点E,连接OA、OE、CE,若∠ABC =30°,求证:四边形ACEO是菱形.【分析】(1)作直径AP,连接CP,根据圆周角定理得到∠CAD=∠APC,∠ACP=90°,求得∠DAP=90°,AD⊥AP,根据切线的判定定理即可得到结论;(2)连接OC,根据圆周角定理得到∠CAE=∠CAD=∠ABC=30°,得到∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°,推出△AOC、△COE都是等边三角形,得到OA =AC=CE=EO,于是得到结论.【解析】(1)直线AD与⊙O相切,理由:作直径AP,连接CP,∵∠APC=∠ABC,∠CAD=∠ABC,∴∠CAD=∠APC,∵AP是⊙O的直径,∴∠ACP=90°,∴∠CAP+∠APC=90°,∴∠CAP+∠CAD=90°,即∠DAP=90°,∴AD⊥AP,∴直线AD与⊙O相切;(2)证明:连接OC,∵∠ABC=30°,∴∠CAE=∠CAD=∠ABC=30°,∴∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°,∵OA=OC,OC=OE,∴△AOC、△COE都是等边三角形,∴OA=AC=CO,OC=CE=EO,∴OA=AC=CE=EO,∴四边形ACEO是菱形.13.(2019秋•锡山区期中)如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合).(1)若点P到⊙C的切线长为,则AP的长度为2或2;(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)【分析】(1)由题意切线长为,半径为1,可得PC=2,所以点P只能在边BC或边AC上.分两种情形分别求解即可;(2)首先求出三个特殊位置时切线的长,结合图形即可判断;【解析】(1)由题意切线长为,半径为1,可得PC=2,所以点P只能在边BC或边AC上.如图1中,连接P A.在Rt△P AC中,P A2.如图2中,P A=AC=PC=4﹣2=2,综上所述,满足条件的P A的长为2或2.故答案为2或2.(2)如图3中,当CP⊥AB时.易知CP,此时切线长PE,如图4中,当点P与点B重合时,切线长PE2,如图5中,当点P与点A重合时,切线长PE,观察图形可知:当0<m时,点P的位置有2个位置;当m时,点P的位置有3个位置;当m<2时,点P的位置有4个位置;当m=2时,点P的位置有3个位置;当2m时,点P的位置有2个位置;当m时,点P的位置有1个位置.14.(2019秋•灌云县期中)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)求证:直线DE是⊙O的切线;(2)若AE=8,⊙O的半径为5,求DE的长.【分析】(1)连接OD,由角平分线和等腰三角形的性质得出∠ODA=EAD,证出EA∥OD,再由已知条件得出DE⊥OD,即可得出结论.(2)作DF⊥AB,垂足为F,由AAS证明△EAD≌△F AD,得出AF=AE=8,DF=DE,求出OF=3,由勾股定理得出DF,即可得出结果.【解答】(1)证明:连接OD,如图1所示:∵AD平分∠BAC,∴∠EAD=∠OAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=EAD,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,∵点D在⊙O上,∴直线DE与⊙O相切.(2)作DF⊥AB,垂足为F,如图2所示:∴∠DF A=∠DEA=90°,在△EAD和△F AD中,,∴△EAD≌△F AD(AAS),∴AF=AE=8,DF=DE,∵OA=OD=5,∴OF=3,在Rt△DOF中,DF4,∴DE=DF=4.15.(2019秋•建邺区期末)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P 为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.【分析】(1)连接OA,由圆心角等于2倍的圆周角得出∠AOC=120°,由OA=OC,得出∠OAC=∠OCA(180°﹣∠AOC)=30°,由AP=AC,推出∠APC=∠ACP =30°,由三角形内角和定理得出∠P AC=120°,则∠P AO=∠P AC﹣∠OAC=90°,即可得出结论;(2)连接OB,由切线的性质得出P A=PB,由OA=OB,得出PO是AB的垂直平分线,则CB=CA,由又∠ABC=60°,即可得出结论.【解答】证明:(1)连接OA,如图1所示:∵∠ABC=60°,∴∠AOC=120°,∵OA=OC,∴∠OAC=∠OCA(180°﹣∠AOC)(180°﹣120°)=30°,∵AP=AC,∴∠APC=∠ACP=30°,∴∠P AC=180°﹣30°﹣30°=120°,∴∠P AO=∠P AC﹣∠OAC=120°﹣30°=90°,∴AP⊥OA,又∵OA是⊙O的半径,∴AP是⊙O的切线;(2)连接OB,如图2所示:∵AP、PB为⊙O的切线,∴P A=PB,∵OA=OB,∴PO是AB的垂直平分线,∴CB=CA,∵∠ABC=60°,∴△ABC是等边三角形.16.(2019秋•大名县期中)已知,△ABC中,∠ACB=90°,AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.(1)如图①,若⊙O经过点C,交BC于点D,求CD的长.(2)在(1)的条件下,若BC边交l于点E,OE=2,求BE的长.(3)如图②,若直线l还经过点C,BC是⊙O的切线,F为切点,则CF的长为4.【分析】(1)由圆周角定理可得AD是直径,根据勾股定理可求CD的长;(2)过点O作OF⊥CD,垂足为F,根据垂径定理可得CF=DF=3,根据中位线定理可得OF=4,根据勾股定理可求EF的长,即可求BE的长;(3)连接OF,OA,过点O作OE⊥AC于点E,可证四边形OECF是矩形,可得CF=OE,FO=CE=5,由勾股定理可求AE的长,即可求CF的长.【解析】(1)如图:连接AD∵∠ACB=90°,∴AD是直径∴AD=10在Rt△ACD中,CD 6(2)如图:过点O作OF⊥CD,垂足为F∵OF⊥CD∴CF=DF=3,且AO=DO∴OF AC=4在Rt△OFE中,EF2∵BE=BC﹣CF﹣EF∴BE=8﹣3﹣25﹣2(3)如图:连接OF,OA,过点O作OE⊥AC于点E,∵BC是⊙O的切线∴OF⊥BC,∴∠BFO=∠ACB=90°,OE⊥CE,∴四边形OECF是矩形∴CF=OE,FO=CE=5,∴AE=AC﹣CE=3在Rt△AEO中,OE4,∴CF=4故答案为:417.(2019秋•东台市期中)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足D,AD交⊙O于点E.(1)求证:AC平分∠DAB.(2)连接CE,若CE=6,AC=8,求出⊙O的直径的长.【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;(2)根据圆周角定理和圆心角、弧、弦之间的关系求出CE=BC=6,根据勾股定理求出AB即可.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:∵∠CAD=∠CAO,∴,∴CE=BC=6,∵AB为直径,∴∠ACB=90°,由勾股定理得:AB10,即⊙O直径的长是10.18.(2019秋•锡山区期中)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求的值.【分析】(1)连接OD,根据等边对等角性质和平行线的判定和性质证得OD⊥DF,从而证得DF是⊙O的切线;(2)根据圆周角定理、勾股定理得出BE=2AE,CE=4AE,然后在RT△BEC中可求的值.【解答】(1)证明:连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE2AE,在RT△BEC中,.19.(2019秋•江阴市期中)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AP的长.【分析】(1)连接OC,由AC平分∠EAP,得到∠DAC=∠OAC,由等腰三角形的性质得到∠CAO=∠ACO,等量代换得到∠DAC=∠ACO,根据平行线的性质得到∠E=∠OCP=90°,于是得到结论;(2)设PB=x,PC=2x,根据勾股定理得到PC,PB,求得AP【解析】(1)连接OC,∵AC平分∠EAP,∴∠DAC=∠OAC,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴AE∥OC,∴∠E=∠OCP=90°,∴PE是⊙O的切线;(2)∵PB:PC=1:2,∴设PB=x,PC=2x,∵OC2+PC2=OP2,即()2+(2x)2=(x)2,∴x,∴PC,PB,∴AP,20.(2018秋•邳州市期中)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC 交⊙O于点B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)AC与⊙O有怎样的位置关系?为什么?(2)若OB=3,BD,求线段AC的长.【分析】(1)根据等腰三角形的性质得到∠OAD=∠B,得到∠ODB=∠CAD,根据余角的性质得到∠OAC=90°,于是得到结论;(2)根据勾股定理得到,根据等腰三角形的性质得到CA=CD=x,根据勾股定理即可得到结论.【解析】(1)∵OA=OB,∴∠OAD=∠B,∵∠ODB=∠ADC,∠CAD=∠ADC,∴∠ODB=∠CAD,∵OB⊥OC,∴∠BOC=90°,∠ODB+∠B=90°,∴∠CAD+∠OAD=90°,∴∠OAC=90°,∴AC与⊙O相切于点A;(2)OA=OB=3,BD,在Rt△ODB中,∴,∵∠CAD=∠CDA,∴CA=CD=x,在Rt△OAC中,∴AC2+OA2=OC2,x2+32=(x+1)2,解得:x=4,∴AC=4.。

圆的切线的二级结论及其证明

圆的切线的二级结论及其证明

圆的切线的二级结论及其证明结论一:过圆x 2+y 2=r 2上一点(x 0,y 0)的切线方程:x 0⋅x +y 0⋅y =r 2 标准方法:由题意可知切线过(x 0,y 0),只需要求得斜率k 即可方法一:由初中阶段圆的切线知识可知,切线与过切点的半径互相垂直而过切点的半(直)径的斜率为y 0x 0∴切线的斜率k =-x 0y 0∴切线方程为 y -y 0=-x 0y 0(x -x 0) 即y 0y -y 02=-x 0x +x 02点(x 0,y 0)在圆上∴x 02+y 02=r 2移项可得x 0⋅x +y 0⋅y =r 2方法二:圆心到直线的距离为r设直线为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0圆心到该直线的距离d =|-kx 0+y 0|k 2+1=r (注意目标:解出k ) k 2x 02-2kx 0y 0+y 02=r 2(k 2+1) (解出k 恐怕不太容易)整理可得: (x 02-r 2)k 2-2x 0y 0k +y 02-r 2=0 (由k 的唯一性可知这货的∆=0)∴k =x 0y 0x 02-r2 ∴切线方程为: y -y 0=x 0y 0x 02-r2(x -x 0) 整理为: x 02y -r 2y +y 0r 2=x 0y 0x (这怎么能是答案呢?但真的是)∵点(x 0,y 0)在圆上∴x 02+y 02=r 2∴x 02 =r 2-y 02代入上式:(r 2-y 02)y -r 2y +y 0r 2=x 0y 0x整理即为结论方法三:使用代数方法,联立直线和圆,应该有唯一解,即一个交点,求出k 当k 不存在时,切点就是(±r ,0),易得切线即为x =±r ,符合结论⎩⎪⎨⎪⎧x 2+y 2=r 2y -y 0=k ()x -x 0 x 2+(x -x 0)2k 2+2y 0(x -x 0)k +y 02-r 2=0(k 2+1)x 2-2k 2x 0x +2ky 0x +k 2x 02-2kx 0y 0+y 02-r 2=0(k 2+1)x 2-2(k 2x 0-ky 0)x +k 2x 02-2kx 0y 0+y 02-r 2=0(k 2+1)x 2-2k (kx 0-y 0)x +(kx 0-y 0)2-r 2=0∆=[2k (kx 0-y 0)]2-4(k 2+1)[(kx 0-y 0)2-r 2]=4k 2(kx 0-y 0)2-4k 2(kx 0-y 0)2+4k 2r 2-4(kx 0-y 0)2+4r 2=4k 2r 2-4(kx 0-y 0)2+4r 2=0∴k 2r 2-(kx 0-y 0)2+r 2=0 (观察可知,只有k 是未知的,其余x 0、y 0、r 均为常量)整理可得:(r 2-x 02)k 2+2x 0y 0k +r 2-y 02=0有k 的唯一性可知,上面关于k 的一元二次方程有唯一解k =k 1=k 2=x 0y 0x 02-r 2 ∴切线方程为:y -y 0=x 0y 0x 02-r 2 (x -x 0) x 02y -x 02y 0-r 2y +y 0r 2=x 0y 0x -x 02y 0x 02y -r 2y +y 0r 2=x 0y 0x ①∵x 02=r 2-y 02代入①式:(r 2-y 02)y -r 2y +y 0r 2=x 0y 0xr 2y -y 02y -r 2y +y 0r 2=x 0y 0x-y 02y +y 0r 2=x 0y 0x-y 0y +r 2=x 0x即:x 0⋅x +y 0⋅y =r 2方法四:对x 2+y 2=r 2两侧求导2x +2yy '=0∴k =y '=-x 0y 0,同方法一点评:由于圆具有最丰富的特性,因此其切线的求法方法也比较多,利用几何特性、代数表达都可以,以上三个方法,方法一、二必须掌握,但仅仅限于圆的问题,椭圆就不可以了;方法三是对椭圆、双曲线、抛物线切线的热身;计算让人头晕目眩,不过到了椭圆、双曲线时,不得不采用;方法四有点擦边球,大题不能采用,但最简单。

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

九年级数学证明圆的切线专题

九年级数学证明圆的切线专题

九年级数学证明圆的切线专题证明一条直线是圆的切线;主要有两个思路:1是证这条直线到圆心的距离等于这个圆的半径:2;是利用切线的判判定定理;证明这条直线经过一条半径的外端;并且和这条半径垂直. 1不常用;一般常用2.1.如图;在Rt ABC 中;90C ;点D 是AC 的中点;且90A CDB ;过点,A D 作O ;使圆心O 在AB 上;O 与AB 交于点E .(1)求证:直线BD 与O 相切;(2)若:4:5,6AD AE BC ;求O 的直径.2.如图;在Rt △ABC 中;∠C=90o ;O 、D 分别为AB 、BC 上的点;经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ;且D 为EF 的中点。

(1)(4分)求证:BC 与⊙O 相切(2)(4分)当AD=23;∠CAD=30o 时;求AD 的长。

3. 如图;已知CD 是O 的直径;AC ⊥CD ;垂足为C ;弦DE ∥OA ;直线AE 、CD 相交于点B .(1)求证:直线AB 是OO 的切线;(2)如果AC =1;BE =2;求tan ∠OAC 的值.4.如图;在△ABC中;AB=AC;以AB为直径作⊙O;交BC于点D;过点D作DE⊥AC;垂足为E。

(1)求证:DE是⊙O的切线;(2)如果BC=8;AB=5;求CE的长。

5.如图;在△ABC中;∠C=90°;∠ACB的平分线交AB于点O;以O为圆心的⊙O与AC相切于点D.(1)求证:⊙O与BC相切;(2)当AC=3;BC=6时;求⊙O的半径6.如图;AB是⊙O的直径;AM;BN分别切⊙O于点A;B;CD交AM;BN于点D;C;DO平分∠A DC.(1)求证:CD是⊙O的切线;(2)若AD=4;BC=9;求⊙O的半径R.7.如图;在平面直角坐标系中;△ABC 是⊙O 的内接三角形;AB =AC ;点P 是AB 的中点;连接P A ;PB ;PC .(1)如图①;若∠BPC =60°;求证:AP AC 3;(2)如图②;若2524sin BPC;求PAB tan 的值.8.如图;AB 为⊙O 的直径;弦CD 与AB 相交于E ;DE=EC ;过点B 的切线与AD 的延长线交于F ;过E 作EG ⊥BC 于G ;延长GE 交AD 于H .(1)求证:AH=HD ;(2)若cos ∠C= 4/5;;DF=9;求⊙O 的半径9.如图;在△ABC 中;∠BAC=90°;AB=AC ;AB 是⊙O 的直径;⊙O 交BC 于点D ;DE ⊥AC 于点E ;BE 交⊙O 于点F ;连接AF ;AF 的延长线交DE 于点P .(1)求证:DE 是⊙O 的切线;(2)求tan ∠ABE 的值;(3)若OA=2;求线段AP 的长.10如图;已知在△ABP 中;C 是BP 边上一点;∠PAC=∠PBA ;⊙O 是△ABC 的外接圆;AD 是⊙O 的直径;且交BP 于点E .(1)求证:PA 是⊙O 的切线;(2)过点C 作CF ⊥AD ;垂足为点F ;延长CF 交AB 于点G ;若AG?AB=12;求AC 的长;OP第22题图①CB A 第22题图②O P C B A(3)在满足(2)的条件下;若AF :FD=1:2;GF=1;求⊙O 的半径及sin ∠ACE 的值.11.如图;在⊙O 中;直径AB ⊥CD ;垂足为E ;点M 在OC 上;AM 的延长线交⊙O 于点G ;交过C 的直线于F ;∠1=∠2;连结CB 与DG 交于点N .(1)求证:CF 是⊙O 的切线;(2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点;⊙O 的半径为4;cos ∠BOC=41;求BN 的长.12、如图;PA 为⊙O 的切线;A 为切点;直线PO 交⊙O 与点E ;F 过点A 作PO 的垂线AB 垂足为D ;交⊙O 与点B ;延长BO 与⊙O 交与点C ;连接AC ;BF .(1)求证:PB 与⊙O 相切;(2)试探究线段EF ;OD ;OP 之间的数量关系;并加以证明;(3)若AC=12;tan ∠F=;求cos ∠ACB 的值.。

人教版九年级数学上册作业课件 第二十四章 圆 专题(八) 与切线有关的证明与计算

人教版九年级数学上册作业课件 第二十四章 圆 专题(八) 与切线有关的证明与计算
人教版
第二十四章 圆
专题(八) 与切线有关的证明与计算
1.如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AB上一点,以 CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.
(1)求证:AB是⊙O的切线; (2)若DF=2,DC=6,求BE的长.
解:(1)证明:∵AB=AC,AD⊥BC, ∴CD=DB,又CO=OE,∴OD∥BE, ∴∠CEB=∠DOC=90°,∴CE⊥AB, ∴AB是⊙O的切线
(1)求证:DE是⊙O的切线; (2)若△ABC的边长为4,求EF的长.
解:(1)证明:如图,连接OD,∵△ABC是等边三角形,∴∠B=∠C= 60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°, ∴∠EDC=30°,∴∠ODE=90°.∴DE⊥OD.∵点D在⊙O上,∴DE是 ⊙O的切线
(2)如图,连接 AD,BF,∵AB 为⊙O 的直径, ∴∠AFB=∠ADB=90°,∴AF⊥BF,AD⊥ BD.∵△ABC 是等边三角形,边长为 4,∴DC =21 BC=2,FC=21 AC=2.∵∠EDC=30°,
∴EC=12 DC=1,∴EF=FC-EC=1
3.如图,⊙O经过菱形ABCD的三个顶点A,C,D,且与AB相切于点A. (1)求证:BC为⊙O的切线; (2)求∠B的度数.
(2)如图,连接 EF,ED,∵BD=CD=6,∴BF=BD-DF=4,∵CO= OE,∠DOC=90°,∴DE=DC=6,∵CE 为⊙O 的直径,∴∠EFC= 90°,∴EF= DE2-DF2 =4 2 ,∴BE= BF2+EF2 =4 3
2.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D, 交AC边于点F,作DE⊥AC于点E.

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的切线证明与计算专题训练
1.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于E,B为切点的切线交OD 延长线于F.
求证:EF与⊙O相切.
2.如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.
求证:PA与⊙O相切.
3.如图,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DM⊥AC于M.
求证:DM与⊙O相切.
4.如图,已知AB是⊙O的直径,点C在⊙O上,且∠CAB=30O,BD=OB,D在AB的延长线上.
求证:DC是⊙O的切线.
5.如图,AB=AC,D为BC中点,⊙D与AB切于点E.
求证:AC是⊙D的切线.
6.如图,AB是⊙O的直径,AC是弦,点D是弧BC的中点,DP⊥AC,垂足为点P.
求证:PD是⊙O的切线.
7.已经⊙O中,AB是直径,过B点作⊙O的切线,连接CO,若AD//OC交⊙O于D.
求证:CD是⊙O的切线.
8.如图,⊙O是Rt△ABC的外接圆,∠ABC=90O,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线与点E.
求证:BE是⊙O的切线.
9.如图,在△ABC中,∠C=90O,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点
D.
(1)求证:BC是⊙O的切线;
(2)若BD=5,求AC的长.
10.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.
(1)求证:GE是⊙O的切线;
(2)若OC=5,CE=6,求AE的长.
11.如图,在Rt△ABC中,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径作圆.
(1)求证:AC是⊙D的切线;
(2)求证:AB+EB=AC.
12.如图,AB=BC,以AB为直径的⊙O交AC于D,作DE⊥BC于E.
(1)求证:DE为⊙O的切线;
(2)作DG⊥AB交⊙O于G,垂足为F,∠A=30O,AB=8,求DG的长.
13.如图,AB 为⊙O 的直径,D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 的延长线的垂涎PQ ,
垂足为C.
(1)求证:PQ 是⊙O 的切线; (2)若⊙O 的半径为2,3=TC ,求弦AD 的长.
14.如图,割线ABC 与⊙O 相交与B 、C 两点,D 为⊙O 上一点,E 为弧BC 的中点,OE 交BC 于点F ,DE 交AC 于G ,∠ADG=∠AGD.
(1)求证:AD 是⊙O 的切线;
(2)若AB=2,AD=4,BC=6,EG=2,求⊙O 的半径.
15.如图,线段AB 经过圆心O ,交⊙O 于A 、C 两点,点D 在⊙O 上,∠A=∠B=30O . (1)求证:BD 是⊙O 的切线;
(2)若点N 在⊙O 上,且DN ⊥AB ,垂足为M ,NC=10,求AD 的长.
16.如图,A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC=BC ,OB AC 2
1
=.
(1)求证:AB 是⊙O 的切线;
(2)若∠ACD=45O ,OC=2,求弦CD 的长.
17.如图,⊙O是△ABC的外接圆,P为圆外一点,PA//BC,且A为劣弧的中点,割线PBD过圆心,交⊙O于另一点D,连接CD.
(1)求证:PA是⊙O的切线;
(2)当AB=13,BC=24时,求⊙O的半径及CD的长.
18.如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90O.
(1)求证:AC是⊙O的切线;
(2)若∠ACB=75O,⊙O的半径为2,求BD的长.
19.如图,AB是⊙O直径,OD⊥BC与点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)求证:直线BD与⊙O相切;
(2)当AB=10,BC=8时,求BD的长.
20.如图,AB是⊙O的直径,∠BAC=30O,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.
(1)求证:CF与⊙O相切;
(2)若⊙O的半径为1,且AC=CE,求MO的长.。

相关文档
最新文档