【优质课件】人教版中职数学拓展模块3.1排列、组合与二项式定理1优秀课件.ppt

合集下载

最新语文版中职数学拓展模块3.1排列、组合1课件PPT.ppt

最新语文版中职数学拓展模块3.1排列、组合1课件PPT.ppt

动 脑 思 考
= n(n 1)(n 2) (n m 1) 21 (n m) 21
(n
n! m)!

索 新

Pnm
(n
n! m)!

例2 计算 P52 和 P44.
解 P52 =5×4=20, P44 4! 4 3 2 1 24.

例3 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙
第三章 概率与统计
3.1 排列与组合
基础模块中,曾经学习了两个计数原理.
一般地,完成一件事,有n类方式.第1类方式有 k1种方法, 第2类方式有 k2 种方法,……,第n类方式有 kn 种方法,那么完 成这件事的方法共有

N k1 k2 kn(种).

上面的计数原理叫做分类计数原理.

北京→重庆,北京→上海, 重庆→北京,

重庆→上海,上海→北京, 上海→重庆.
我们将被取的对象(如上面问题中的民航站)叫做元素,那么上面的

问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以

得到多少种不同的排列.


一般地,从n个不同元素中任取m (m≤n)个不同元素,按照一定的顺
北京、重庆、上海3个民航站之间的直达航线,要准备多少种不同的机票?

这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起
设 点在前,终点在后的顺序排列,求不同的排列方法的总数.


首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然
兴 后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法. 趣 根据分步计数原理,有3×2=6种不同的方法,即需要准备6种不同的飞机票:

排列、组合、二项式定理精选教学PPT课件

排列、组合、二项式定理精选教学PPT课件
当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。 我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师――戴尔·泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。 那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不
数有多少?
5×5=25
练习2
1.某段铁路上有12个车站,共需准备多少种普通客票?
P122
2.某段铁路上有12个车站,问有多少种不同的票价?
C122
3.用3,5,7,9四个数字,一共可组成多少个没有重 复数字的正整数
P41 P42 P43 P44
练习3
1.在(1+x)10的展开式中,二项式系数最大为 C150 ;
名称
排列
组合
一个~ ~~数
从n个不同元素中取出m个元 素,按一定的顺序排成一列
所有排列的个数
从n个不同元素中取出m个元 素,把它并成一组
所有组合的个数
符号
种数 公式 关系
性质
Pnm
C
m n
Pnm
Pnm
n(n 1) (n m
n! (n m)! Pnn n!

1)
0!
1
排列、组合、二项式定理
知识结构网络图:
排列与组合
二项式定理

中职数学拓展模块课件-二项式定理

中职数学拓展模块课件-二项式定理
解 (1) 因为
所以
= (2) 在二项式定理中,令a=1,b=x,可得
.
a b 7 =C07a7 C17a6b C72a5b2 C37a4b3 C74a3b4 +C57a2b5 +C67ab6 +C77b7
8.3.1 二项式定理
例2
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
8.3.2 二项式系数的性质
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
可以看出二项式系数具有如下性质:
(1)每一行的两端都是1,其余的每一个数都等于它“肩上”两 个数
的和,事实上,假设表中任一不为1 的数为 可知:
.
(2)每一行中与首末两端“等距离”的两个二项式系数相等.事实上,
8.3.2
二项式系数的性质
8.3.2 二项式系数的性质
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
某代表队参加校内拔河比賽,需要与其他7个代表 队各赛一场.不难发现,比赛结果可分为8类:赢0场,赢 1场,…,赢7场. 而赢0场有1(记作 )种情况,赢1场 有 种情况 (即在7场中赢1场),赢2场有 种情况,… 赢7场有 种情况.那么,该班比赛7场,比赛结果共有 多少种?
这一性质可以直接由 8.2节组合数的性质 1 得到:
.
(3)如果二项式(a+b)n的幂指数n是偶数,那么它的展开式正中间一
项的二项式系数最大;如果二项式(a+b)n的幂指数n是奇数,那么它的
展开式中间两项的二项式系数最大并且相等.
(4) (a+b)n的展开式的各个二项式系数之和为 . 根据二项式定理,
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业

排列、组合 和二项式定理幻灯片PPT

排列、组合 和二项式定理幻灯片PPT

组合
组合数的概念和推导 组合数公式 组合数性质
CnmCnnm C n m 1C n mC n m 1
kCnk nCnk1
C k k C k k 1 C k k 2 C n k C n k 1 1
计数综合问题
先选后排
7.从3名男生和3名女生中,选出3名分别担 任语文、数学、英语的课代表,要求至少 有1名女生,则选派方案共有( )
其中能被5整除的四位数共有

二维:有5有0,有5无0,无5有0
主元:个位为0,个位为5(再根据需要细 分,选0与不选0)
在6名内科医生和4名外科医生中,内科主 任和外科主任各一名,现在要组成人医疗 小组送医下乡,依下列条件各有多少种方 法:
既有内科医生又有外科医生(间接考察)
既有主任又有外科医生
排列数应用
组合 组合数
组合数应用
二项式定理
教学内容
不仅有着许多直接应用,还是学习概率理 论的准备知识,而且由于其思维方法的新 颖性与独特性,因此它也是培养学生思维 能力的不可多得的好素材;作为初中多项 式乘法公式的推广——二项式定理,不仅 使前面组合等知识的学习得到强化,而且 与后面概率中的二项分布有着密切联系。
排列、组合 和二项式定理 幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
知识结构
分类计数原理、分步计数原理
排列 排列数
3.展开式的每一项由若干个a和若干个b的乘积 构成,a和b的个数之和等于n,它可以表示为ankbk.

排列与组合、 二项式定理的应用PPT优秀课件

排列与组合、 二项式定理的应用PPT优秀课件
所以符合题意的不同取法种数为 C104(4C64+6+3)=141.
方法二, 在四面体中取定一个面,
记为, 那么取不同不共面的4个点, 可
分为四类:
第一类, 恰有3个点在 上, 这时该
3点必然不在同一条棱上, 因此, 4个点 的不同取法数为4(C633)=68.
第二类,恰有2个点在α上,可分两 种情况:①该2点在同一条棱上,这时4 个点的不同取法数为4C32(C42-3)=27; ② 该2点不在同一条棱上,这时4个点的不 同取法数为(C62-3C32)(C42-1)=30.
(4) 安排甲、乙和丙3人以外的其他4 人,有A44种排法;由于甲、乙要相邻, 故再把甲、乙排好, 有A22种排法, 最后把 甲、乙排好的这个整体与丙分别插入原 先排好的4人的空档中有A52种排法, 这样, 总共有A44 A22 A52=960种不同排法.
(5) 从7个位置中选出4个位置把男 生排好, 则有A74种排法; 然后再在余下 的3个空位置中排女生, 由于女生要按 身体高矮排列, 故仅有一种排法, 这样 总共有A74 840种不同排法.
[评注] 排列问题中,部分元素 相邻的问题可用“视一法”解;部分 元素不相邻的问题可用“插入法”解, 部分元素定序的问题也可用“插入法” 解.
[例5] 按以下要求分配6本不同的书, 各有几种分法?
(1) 平均分给甲、乙、丙三人,每人 2本;
(2) 平均分成三份,每份2本; (3) 甲、乙、丙三人一人得1本,一 人得2本,一人得3本;
4×3×2×2×2=96种;若区域4与区域6
不栽同一种花,则区
域2、3两块中有1种栽
5
法,总共有4×3×2× 6 1 4
1×1=24,所以一共有

【精选课件】人教版中职数学拓展模块3.1排列、组合与二项式定理1课件.ppt

【精选课件】人教版中职数学拓展模块3.1排列、组合与二项式定理1课件.ppt

盆里,问有多少不同的种法?
解一:分两步完成;
第一步选两葵花之外的花占据两端和中间的位置 有A53种排法
4.注意排列数公式、组合数公式有连 乘形式与阶乘形式两种,
公式 Anm =n(n-1)·…·(n-m+1),
Cnm =
n(n 1)(n 2) (n m 1) 常用于计算,
m!
而公式 Anm
=
(n
n! m)!
,Cnm
= n! 常用于
m!(n m)!
证明恒等式.
一.特殊元素和特殊位置优先策略
2.如果任何一类办法中的任何一种方 法都能完成这件事,即类与类之间是相互 独立的,即分类完成,则选用分类计数原 理;如果完成一件事要经历几个步骤(即 几步),且只有当这些步骤都做完,这件 事才能完成,即步与步之间是相互依存、 相互连续的,即分步完成,则选用分步计 数原理.
3.排列与组合的本质区别在于排列不 仅取而且排,即与顺序有关,而组合只取 出一组即可,与顺序无关.
一、两个原理
3.分类和分步的区别 分类:完成一件事同时存在n类方法,每一类 都能独立完成这件事,各类互不相关.分步:完成一 件事须按先后顺序分n步进行,每一步缺一不可, 只有当所有步骤完成,这件事才完成.
一、两个原理
练习1: 书架上放有3本不同的数学书,5本 不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的
一、两个原理
(2)三角形的三边长均为整数,且最长的边 长为11,则这样的三角形的个数有( C )
A.25个 B.26个 C.36个 D.37个
(2)设另两边长为x、y,且1≤x≤y≤11 (x 、 y∈Z) , 构 成 三 角 形 , 则 x+y≥12 , 当 y 取 11 时 , x=1,2,3,…,11,有11个;当y取10时,x=2,3,…,10,有9个;当y取 9时,x=3,4,…,9,共7个;……;当y取6时,x也只能为6,有1 个,故满足题设的三角形共有:11+9+7+5+3+1=36个,故

【高教版】中职数学拓展模块:3.2《二项式定理》ppt课件(1)

【高教版】中职数学拓展模块:3.2《二项式定理》ppt课件(1)

巩 固 知 识 典 型 例 题
Tm1 C x
m 9 m 9
(2) C9 (1)6 2 x 系数是指 x 的系数C3 (2)3 =-672. 9
6
3 二项式系数是 而第4项的 84 ; m m m C m m 9 9
4
9
由9-m=6,得m=3.
即二项展开式中含 x 的项为第4项. 故这一项的系数是
m 10
10 m
首先求出公式中字母 故 m的取值,从而确定要 求的是哪一项,最后根 解得 m=5. 据公式写出该项,是解 决这类问题的一般方 所以二项式展开式中第5项是常数项,为 法. 10 9 8 7 6 5 C10 252. 5 4 3 2 1
10 m m 0. 2
( a b) 3 (a b)4
………… 1 5 10 10 5 1 (a b)5 …… …… 上述二项式系数列成的表,称为杨辉三角. 是我国宋朝时的 数学家杨辉于1261年所著《详解九章算法》中列出的图表.
可以看出二项式系数具有下列性质:
(1)每一行的两端都是1,其余每个数都是它“肩上”两个数的和;
10
二项式系数与系数.
自 我 反 思 目 标 检 测
系数最大项是第6项,该项的二项式系数是252.
继续探索 活动探究
基础训练及对口升学精讲精练 书面作业:教材习题 P46 习题T3,T4
读书部分:阅读教材相关章节
继 续 探 索 活 动 探 究
书面作业:教材习题3.2(必做) 学习指导3.2(选做)
实践调查:用本课所学知识解决
生活中的实际问题
3 1 a b 种,所以 的系数是 a 的系数是C4;恰有1个取b的情况有C1 C 4 4;

语文版中职数学拓展模块3.1《排列、组合》ppt课件3

语文版中职数学拓展模块3.1《排列、组合》ppt课件3
解1: 桔子:0 – 6;苹果:0 - 9 包括空篮:7*10=70 篮子不空:70-1=69
解2: s1=没有桔子的装法:9 s2=至少有1个桔子的装法:6*10 由加法原理 S=s1+s2 篮子不空: 9+60=69
例5 解:
在1000和9999之间有多少个具有不同数字 的奇数?
1-9 0-9 0-9 奇数
解 (1)每2个点唯一确定一条直线
n

C
2 25

25! 2!23!

25 24 2

300
(2)每3个点唯一确定一个三角形
n

C
3 25

25! 3!22!

25 24 23 23
例2 15选修数学课,其中12人来上课,他们随 便坐在教室的25个座位上。
共有多少中不同坐法?
解 (1)选择12个人来上课:
设8个车中有1个红车,3个蓝车,4个黄车。
S {1 R,3 B,4 Y}, 所以
8! 8!2
n 8!

1!3!4! 1!3!4!
定理3.4.3
设n个 车 共 有k种 颜 色 , 第i种 颜 色 的 车ni个,
n n1 n2 nk。 则 在n n的 棋 盘 上 , 非 攻

定理3.3.1
特别:

n r


P(n, r) r!

n! r!(n r)!
C
0 n

1,
C
1 n

n,
C
2 n

n(n 1) 2
C
r n

C
n n
r
定理3.3.2

排列组合二项式定理PPT教学课件(1)

排列组合二项式定理PPT教学课件(1)
答:从书架上任取一本书有11种不同的取法。
(2)从书架上任取数学书语文书各1本,可以分成两个步骤 完成。第一步,取1本数学书有6种方法。第二步,取1语文 书有5种方法。根据乘法原理得到不同的取法种数为: N=m1.m2=6×5=30
答:从书架上任取数学书语文书各1本有30种不同的取法。
作业
棱锥、圆锥的体积
定理三:如果一个锥体(棱锥、圆锥)的底面积
是S,高是h,那么它的体积是
1
V锥体= 3 Sh 推论:如果圆锥的底面半径是r,高是h,
那么它的体积是
V圆锥=
1 3
πr2h
作业:
1、四面体O-ABC中,除OC外其余的棱长均为1,且OC与 平面ABC所成的角的余弦值为,求此四面体的体积。
2、三棱锥P-ABC中,已知PA⊥BC,PA=BC=a,PA,BC的 公垂线段为EF(E、F分别在PA、BC上),且EF=h,求 三棱锥的体积。


甲 丙

思考?
不 可 以 重 复 的 三 位 数 ?
可 以 组 成 多 少 个 各 位 数 字
由 数 字 1 、 2 、 3 、 4 、
5
练习1
从甲地到乙地,可以乘火车,也可以乘轮 船,还可以乘汽车。一天中火车有4班,汽 车有2班,轮船有3班。问:一天中乘坐这 些交通工具从甲地到乙地共有多少种不同 走法?
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’ A’ A’ A’ A’A’ A’ A’ A’ A’ A’ C’ C’ C’ C’ C’ C’ B’ B’ B’ B’ B’ B’

排列组合与二项式定理PPT课件

排列组合与二项式定理PPT课件

(1)C0n+Cn1

…+
Crn+…

Cnn= 2n;
C0n+
Cn2

…=
Cn1

C
3 n
+…=2n-1.
(2) 应 用 “ 赋 值 法 ” 可 求 得 二 项 展 开 式 中 各项 系 数 和 为
f(1).“奇数(偶次)项”系数和为12[f(1)+f(-1)],“偶数(奇次)
项”系数和为12[f(1)-f(-1)].
第18讲 │ 要点热点探究
要点热点探究
► 探究点一 计数原理及其应用
例1(1)在任意两个正整数m和n间定义某种运算,用⊗表 示运算符号,并规定,当m和n都为奇数或都为偶数时,m⊗n =m+n;当m和n中有一个为奇数,另一个为偶数时,m⊗n =mn,设集合M={(a,b)|a⊗b=36,a、b∈N+},则集合M 中共有________个元素;
第18讲 │ 要点热点探究
41 【解析】 一类:当 m、n 都为奇数时,由 m+n=36, 可知 m=1,3,5,…,35,相应的 n 随之确定,共有 18 个不同 数对(a,b);
二类:当 m 和 n 都为偶数时,由 m+n=36,可知 m= 2,4,6,…,34,相应的 n 随之确定,共有 17与D”看成一个整体,故有2A
3 4

48种涂法.
故不同的涂法共有24+48=72种,选A.
【点评】 本题的涂色问题是一类典型应用两个计数原理解决的 计数问题,在高考中多次出现这类问题,解决的基本思路有两条:一 是按照颜色的种类进行分类;二是按区域一个一个地涂色.在具体填 涂的过程中应用计数原理,找到问题的解决方案.
第18讲 │ 要点热点探究
【点评】 分清是分类还是分步,是决定用分类计算原理 还是分步计算原理的必要条件;分类时标准统一,做到不重不 漏.分步时程序清晰,做到独立、完整.如果题目中既要用到 分类计数原理,又要用到分步计数原理,一般应遵循“先分 类,再分步”的原则.

【数学课件】排列、组合、二项式定理复习

【数学课件】排列、组合、二项式定理复习
排列、组合、二项式定理复习
一、主要知识点
1、分类计数原理与分步计数原理
2、排列与组合 (1)排列数公式
Anm n(n 1)(n 2)(n m 1) (m n)
Anm

(n
ቤተ መጻሕፍቲ ባይዱ
n! m)!
Ann n! n(n 1)(n 2)2 1
排列、组合、二项式定理复习
(2)组合数公式
排列、组合、二项式定理复习
例6、有6个坐标连成一排,3个人就座,恰有 2个空位相邻的排法种数是______
例7、一个城市的街道如图所示,某人要
从A点走到B点(只能向右或向上走),
共有多少种不同的走法?
B
A
排列、组合、二项式定理复习 例8、求下列各式的展开式中 x5 的系数 (1)(1+x)2(1-x)5 (2)(1+2x- 3x2)5
二、典型例题 例1、从4名男同学和6名女同学中选出7人排 成一排,
(1)如果要选出3名男同学和4名女同学,共 有多少种不同排法?
(2)在(1)题中若4名女同学必须排在一起, 共有多少种不同排法?
(3)在(1)题中若3名男同学必须必须不相 邻,共有多少种不同排法?
排列、组合、二项式定理复习
例2、7位同学排成一排,要求A、B、C三人 从左到右顺序一定,共有多少种不同排法?
好好学习,天天向上。 2、教育人就是要形成人的性格。——欧文
3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身

【优质课件】高教版中职数学拓展模块3.2二项式定理1优秀课件.ppt

【优质课件】高教版中职数学拓展模块3.2二项式定理1优秀课件.ppt

趣 导 入
情况有
C
3 4
种,所以
a
b3的系数是C34;恰有4个取b的情况有
C
4 4
种,
所以 b4的系数是C44.
因此
(a b)4 C04a4 C14a3b C24a2b2 C34ab3 C44b4.
利用这种方法可以得到二项式定理:
设a , b是任意实数,n是任意给定的正整数,则
巩 固
Tm1 C9m x9m (2)二 系m 数项C是式9m 指系(1数x)6m的是2C系m39数x9C8m439;(而2第)3 =4项-6的72.

由9-m=6,得m=3.

即二项展开式中含 x 6的项为第4项.

故这一项的系数是
型 例
C39
(1)3

23

987 3 21
知 识
略.

2.求 (a 3b)7 的展开式的第4项及含有 a2b5的项.

练 习
T4 945a4b3;T6 5103a2b5.
二项式定理的内容是什么?


(a b)n C0nan C1nan1b Cmn a b求(x 2 y)10 的展开式中二项式系数最大的项.并指出这项的
动 脑
(a b)n C0nan C1nan1b Cmn a b nm m Cnnbn 公式右边的多项式叫(a b)n的二项展开式,共有n+1项,其中
思 每一项的系数 Cmn(m=0,1,2…n)叫该项的二项式系数,第m+1项
考 Cmn anmbm叫做二项式的通项.记作 Tm1,由公式可以看出,二项展开

职中二项式定理ppt课件

职中二项式定理ppt课件

二项式定理的应用场景
总结词
二项式定理在数学、物理、工程等多个领域都有广泛的应用。
详细描述
在数学中,二项式定理常用于解决一些代数问题,如因式分解、求根公式等。在物理中,二项式定理可以用于计 算一些物理量的近似值,如光的波长、电子的能量等。在工程中,二项式定理可以用于解决一些优化问题,如线 性规划、组合优化等。
03
二项式定理的扩展与推广
二项式定理的扩展形式
二项式定理的通项公式
通过组合数和幂运算,推导出二项式定理的通项公式,用于 计算特定项的值。
二项式定理的推广
将二项式定理的适用范围从两项扩展到多项,并推导出相应 的展开式。
二项式定理的几何意义
二项式定理与几何图形的关系
通过图形解释二项式定理的原理,如利用三角形和组合数的关系解释二项式系 数。
习题二及答案
习题二
$(a+b+c)^2$的展开式中,$a^2$的 系数是多少?
答案
根据二项式定理,$(a+b+c)^2$的展 开式中$a^2$的系数是 $C_2^1b^1c^0+C_2^0b^0c^2=2 c+2b$。
习题三及答案
习题三
$(a+b)^5$的展开式中,常数项是多少?
答案
根据二项式定理,$(a+b)^5$的展开式中常 数项是$C_5^4a^1b^4=5b定理简介 • 二项式定理的公式与证明 • 二项式定理的扩展与推广 • 二项式定理的实际应用 • 习题与解答
01
二项式定理简介
二项式定理的定义
总结词
二项式定理是数学中的一个基本定理 ,它描述了两个数的乘积的展开式的 特定规律。
详细描述
二项式定理指出,对于任何两个数a和 b(其中b不为0),它们的乘积可以 展开为(a+b),(a+b)^2,(a+b)^3等 幂次的各项,这些项的系数遵循特定 的规律。

【人教版】中职数学(拓展模块):3.1《排列、组合与二项式定理》课件

【人教版】中职数学(拓展模块):3.1《排列、组合与二项式定理》课件
答:可以组成100个三位整数.
一、两个原理
题型一 利用两个计数原理求方法数
例1(1)现要排一份5天的值班表,每天
有一人值班,共有5人,每人可以多天值班 或不值班,但相邻两天不准由同一人值班, 问此值班表共有 1280 种不同排法.
一、两个原理
(1)值班表须依题设一天一天的分步 完成.第一天有5人可选,有5种排法,第二 天不能用第一天的人,有4种排法,同理, 第三天、第四天、第五天也有4种,故由分 步计数原理排值班表共有5×4×4×4×4=1280 种,应填1280.
一、两个原理
(2)三角形的三边长均为整数,且最长的边 长为11,则这样的三角形的个数有( C )
A.25个 B.26个 C.36个 D.37个
(2)设另两边长为x、y,且1≤x≤y≤11 (x、 y∈Z), 构 成 三 角 形 , 则 x+y≥12, 当 y取 11时 , x=1,2,3,…,11,有 11个 ;当 y取 10时 , x=2,3,…,10,有 9 个 ;当 y 取9时,x=3,4,…,9,共7个;……;当y取6时,x也只能为6,有 1个,故满足题设的三角形共有:11+9+7+5+3+1=36个,故
2.如果任何一类办法中的任何一种方 法都能完成这件事,即类与类之间是相互 独立的,即分类完成,则选用分类计数原 理;如果完成一件事要经历几个步骤(即 几步),且只有当这些步骤都做完,这件 事才能完成,即步与步之间是相互依存、 相互连续的,即分步完成,则选用分步计 数原理.
3.排列与组合的本质区别在于排列不 仅取而且排,即与顺序有关,而组合只取 出一组即可,与顺序无关.
为了参加学校的元旦文艺会演,某 班决定从爱好唱歌的4名男同学和5名女 同学中选派4名参加小合唱节目,如果要 求男女同学至少各选派1名,那么不同的 选派方法有多少种?

【人教版】中职数学(拓展模块)3.1《排列、组合与二项式定理》教案设计

【人教版】中职数学(拓展模块)3.1《排列、组合与二项式定理》教案设计

排列组合教案第一部分基本内容一.课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

二.命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。

三.要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数 (2)排列数公式:系mn A =)!(!m n n -=n·(n-1)…(n-m+1);(3)全排列列:nn A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 4.组合(1)组合的定义,排列与组合的区别; (2)组合数公式:C n m=)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ;(3)组合数的性质 ①C n m=C nn-m;②rn r n r n C C C 11+-=+;③rC n r=n·C n-1r-1;④C n 0+C n 1+…+C n n =2n;⑤C n 0-C n 1+…+(-1)nC n n=0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=C n 0a n+C n 1a n-1b+…+C n k a n-k b k+…+C n n b n; (2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k; 6.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性。

排列组合、二项式定理复习纲要优秀课件

排列组合、二项式定理复习纲要优秀课件

m 1 n 1
m 1 n
三、七类典型的排列组合问题
1、有特殊元素或特殊位置的排列问题: 一般地,分步处理,优先(第一步)处理特 殊元素或特殊位置。 2、相邻的排列问题: 一般地,(分两步)先将相邻的元素 合并(看成一个元素)与其它元素一起排列好, 再处理好合并的元素间的位置关系。
3、不相邻的排列问题
最好是先分堆(遇到平均分堆就除以堆 数的排列数),再分配(排列)
(1)注意分“堆”与分给“人”的区别; (2)注意均匀分配与不均匀分配的区别;
(3)注意分给“人”的不均匀分配时有 对某些人指定量与不指定量的区别。
练习: 1、6本不同的书均分成3堆,有多少种不 同的分法? 2、6本不同的书,均分给3个人,有多少 种分法?
2、二项式展开式的通项:
rn r r n
n n n
T C a b ,r 0 , 1 , 2 , n r 1
3、二项式系数的性质:
(1)在展开式中,与两端距离相等的二项式系数 相等; (2)当n为奇数的时候,中间两项的二项式系数 最大; 当n为偶数的时候,中间项的二项式系数最 大。
n ! P n ( n 1 )( n 2 ) ( n m 1 ) ( n m )!
从n个不同的元素中任取m个不同的元素的组合 数为
P n ! C P m !(n m )!
m n
m n m m
组合性质 C C
m n n m n
C C C
m n
4、二项式定理的应用:
(1)整除性的证明、求余数;
(2)近似计算|x|<<1时, ( 1 x ) 1 nx
n
要注意误差绝对值应小于精确度的一半, 否则应该加项。

语文版中职数学拓展模块3.2《二项式定理》ppt课件2

语文版中职数学拓展模块3.2《二项式定理》ppt课件2

x

的展开式
两题展开式中各项的系数,二项式系数 分别是什么?
二项展开式中每一项的系数与二项式系数相等吗?
题型一. 通项的应用
Tk 1

C
k n
a
nk
b
k
6
例1.求

2

x
1
x

的展开式的第3项和第5项,
并说出它们的系数和二项式系数
变式:在 2
x
1

6
的展
开式中

x
①是否存在常数项和一次项?
二项式定理
b b
a a
(a b)2 a2 2ab b2
公元1世纪 其中提及:
(a b)2 a2 2ab b2
《九章算术》
(a b)3 a3 3a2b 3ab2 b3
(a b)n ?
二项式定理所研究的内容
探究 (a b)n 的展开式
(a+b)2 =a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3
a2b:相当于有一个括号中取b的情况有
C
1 3
种,
所以a2b的系数是
C
1 3
;
同理,ab2 有
C
2 3
个;
b3

C33
个;
(a+b)4=(a+b)(a+b)(a+b)(a+b)
展开式应有下面形式的各项:
a4, a3b, a2b2, ab3, b4
如何求各项系数?
你能写出 1 )5 展开式中常数项为-40,则 a=
x
x
题型三. 三项变两项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数的基本原理
排列
组合
排列数
Pnm公式
组合数
Cnm公式
应用
组合数的 两个性质
本章知识结构
一、两个原理
1.分类加法计数原理 完成一件事,有n类办法,在第1类办法中有m1种不同 的n①类方m办法1+法,m在中2+第m有23m类+n…办种+法不m中同n种有的不m方同2种法的不,方那同法么的. 完方成法这,件…事…共,有在N第= 2.分步乘法计数原理 完成一件事,需要分成n个步骤,做第1步有m1种不同 的种不方同法的,做方第法2步,那有么m完2种成不这同件的事方共法有,……,做第n步有mn N=② m1·m2·…·mn 种不同的方法.
二、 排列与排列数
(3)排列数计算公式.
Anm
=n(n-1)(n-2)…(n-m+1)=⑤
n!
(n m()其! 中m≤n).
(ⅰ)若m=n,排列称为全排列,记
=1·2·3·…·(n-1)·n=n!(称为n的阶乘);
Ann (ⅱ)规定0素中,取出m(m≤n)个不同元素组 成一组,叫做从n个不同元素中取出m个元素的一 个组合.
一、两个原理
(2)三角形的三边长均为整数,且最长的边 长为11,则这样的三角形的个数有( C )
A.25个 B.26个 C.36个 D.37个
(2)设另两边长为x、y,且1≤x≤y≤11 (x 、 y∈Z) , 构 成 三 角 形 , 则 x+y≥12 , 当 y 取 11 时 , x=1,2,3,…,11,有11个;当y取10时,x=2,3,…,10,有9个;当y取 9时,x=3,4,…,9,共7个;……;当y取6时,x也只能为6,有1 个,故满足题设的三角形共有:11+9+7+5+3+1=36个,故
所以
C 1x
2
=C
4 x
2

所以5=x+2,x=3,经检验知x=3.
点评 凡遇到解排列、组合的方程,
不等式问题时,应首先应用性质和 排列、组合的计算公式进行变形与 化简,并注意有关解排列、组合的 方程、不等式问题,最后结果都需 要检验.
题型三 结合两个计数原理求 排列、组合问题的方法数
例3用 0,1,2,3,4 这 五 个 数 字 , 可 以 组
成多少个满足下列条件的没有重复数 字的五位数: (1)比21034大的偶数; (2)左起第二位、第四位是奇数的偶数.
(1)(方法一)可分五类:
当末位数字是0,而首位数字是2, A21 A22 +A22=6(个); 当末位数字是0,而首位数字是3或4,有A21 A33 =12(个); 当末位数字是2,而首位数字是3或4,有A21 A33=12(个); 当末位数字是4,而首位数字是2,有 A22 +A11 =3(个); 当末位数字是4,而首位数字是3,有 A33 =6(个). 故有6+12+12+3+6=39(个).
位整数(各位上的数字允许重复)?
解:要组成一个三位数,需要分成三个步骤:
第一步确定百位上的数字,从1~4这4个数字中任选一个数 字,有4种选法; 第二步确定十位上的数字,由于数字允许重复,共有5种选 法;
第三步确定个位上的数字,仍有5种选法.根据乘法原理, 得到可以组成的三位整数的个数是 N=4×5×5=100.
(2)由组合数的性质可得
+ C x1 x 1
C
+ x
x 1
C x2 x2
=
C
2 x 1
+
C
1 x 1
+ Cx42
=
C
2 x
2
+
C4 x2
.
又C
x 1 x3
=
C
2 x3
,
所以 C
2 x3
=
C2 x2
+
C4 x2
,

C
1 x
2
+
C2 x2
=
C2 x2
+
C
4 x
2,
取法?
答案:N=m1+m2+m3=3+5+6=14.
(2)若从这些书中,取数学书、语文书、英语
书各一本,有多少种不同的取法?
N=m1×m2×m3=90.
(3)若从这些书中取不同的科目的书两本,有多
少种不同的取法?
N=3×5+3×6+
5×6=63.
一、两个原理
练习2: 由数字0,1,2,3,4可以组成多少个三
例2 解下列方程:
(1)
P4 2 x1
=140
Px3;
(2)
C
x 1 x3
=
+ C x1 x 1
+ C C x
x2
x 1
x2
.
(1)根据排列的意义及公式得 4≤2x+1 3≤x (2x+1)2x(2x-1)(2x-2)=140x(x-1)(x-2),
x≥3 则有
(4x-23)(x-3)=0, 解之并检验得x=3.
选C.点评(1)是分步问题,用分步计数原
理;(2)是分类问题,用分类计数原理.
二、排列与排列数
从n个不同的元素中,任取M个元素, 按照一定的顺序排成一列,叫做从n个
不同的元素中取出M个元素的一个 排 列。
所有排列的个数叫做 排列数 ,用 Pnm
表示。
Pnm n(n 1)(n 2)
(n m 1) n! (n m)!
所有组合的个数叫做Cnm组合数,用符号 表示.
组合与组合数
(3)组合数计数公式.
Cnm =⑥
Anm Amm
=⑦ n(n 1)(n 2) (n m 1) .
m!
n!
=⑧ m!(n m)! .
规定 Cn0 =1. (4)组合数的两个性质.
(ⅰ)
Cnm
=
C nm n
;
(ⅱ)
Cm n 1
一、两个原理
3.分类和分步的区别 分类:完成一件事同时存在n类方法,每一类 都能独立完成这件事,各类互不相关.分步:完成一 件事须按先后顺序分n步进行,每一步缺一不可, 只有当所有步骤完成,这件事才完成.
一、两个原理
练习1: 书架上放有3本不同的数学书,5本 不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的
答:可以组成100个三位整数.
一、两个原理
题型一 利用两个计数原理求方法数
例1(1)现要排一份5天的值班表,每天
有一人值班,共有5人,每人可以多天值班 或不值班,但相邻两天不准由同一人值班, 问此值班表共有 1280 种不同排法.
一、两个原理
(1)值班表须依题设一天一天的分步 完成.第一天有5人可选,有5种排法,第二 天不能用第一天的人,有4种排法,同理, 第三天、第四天、第五天也有4种,故由分 步计数原理排值班表共有 5×4×4×4×4=1280种,应填1280.
=
Cnm
+
C m1 n
.
排列与组合的区别
排列与组合的共同点是“从n个不同元
素中,任取m个不同元素”;而不同点是
排列要“按照一定的顺序排成一列”,而
组合却是“只需组成一组(与顺序无
关)”.因此,“有序”与“无序”是排列
与组合的重有要序标志.⑨“
”为无排序列问题,
⑩“ ”为组合问题.
题型二 排列、组合数方程问题
相关文档
最新文档