高中自主招生考试数学试卷

合集下载

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。

A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。

A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。

B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。

设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。

A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。

答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。

2024年广东省深圳中学自主招生数学试卷

2024年广东省深圳中学自主招生数学试卷

2024年广东省深圳中学自主招生数学试卷1.202420252024202363030301030×+=−×____________.2x +=的正数解为____________.3.等腰ABC △的底边AC 长为30,腰上的高为24,则ABC △的腰长为____________.4.已知实数m ,n 满足2202410m m ++=,224200n n ++=且1mn ≠,则601n mn=+____________. 5.若x 为全体实数,则函数223y x x =−+与2243y x x =−+的交点有____________个. 6.若0abc ≠,1a b c b c c a a b++=+++,则222a b c b c c a a b ++=+++____________. 7.K 为ABC △内一点,过点K 作三边的垂线KM ,KN ,KP ,若3AM =,5BM =,4BN =,2CN =,4CP =,则2AP =____________.8.记a ,b ,c 的最小值为{}min ,,a b c ,若{}()min 41,2,24fx x x x =++−+的最大值为M ,则6M =____________.9.已知正方形OBAC ,以OB 为半径作圆,过A 的直线交O 于M ,Q ,交BC 与P ,R 为PQ 中点,若18AP =,7PR =,则BC =____________.10.若a ,b ,c ,d ,e 为两两不同的整数,则22222()()()()()a b b c c d d e e f −+−+−+−+−的最小值为____________.11.PA ,PB 分别为1O 和2O 的切线,连接AB 交1O 于C 交2O 于D ,且AC BD =,已知1O 和2O 的半径分别为20和24,则2180PA PB = ____________.12.已知a ,b ,c 正整数,且只要1111a b c ++<,则111m a b c ++≤,设m 的最小值为r s (r s 为最简分数),则r s +=____________. 13.对于任意实数x ,y ,定义运算符号*,且*x y 有唯一解,满足()()()***a b c a c b c +=+,0*()(0*)(0*)a b a b +=+,则20*24=____________. 14.已知正整数A ,B ,C 且A C >,满足222879897ABC BCA CAB ++=,则ABC =____________.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为____________.2024深圳中学自招答案一、填空题.1.【解析】原式20242025220242023630306303018090054301030301020×+×++===−×−.2.x +=,x =, ∴218232x x x =−, ∵0x >,∴223218x −=,解得:5x =,∴该方程的正数解为5x =.3.【解析】①若ABC △为锐角三角形,如图所示:设ABC △的腰长为x ,在ACD △中,18AD =,在BCD △中,222(18)24x x −+=,解得:25x =,∴ABC △的腰长为25;②若ABC △为钝角三角形,如图所示:在BCD △中,222(18)24x x −+=,解得:25x =(舍), 综上所述:ABC △的腰长为25.4.【解析】由224200n n ++=得21120()2410n n+⋅+=,∵1m n ≠,∴m ,1n可以视为方程2202410x x ++=的两个实数根, ∴165m n +=−,∴60605011n mn m n ==++. 5.【解析】问题等价于方程2223243x x x x −+=−+的解的个数问题; ∴2240x x x +−=, 当0x ≥时,220x x −=,∴0x =或2x =;当0x <时,260x x −=,∴0x =或6x =(舍); 综上所述:函数223y x x =−+与2243y x x =−+的交点有2个. 6.【解析】222()()a b c a b c a b c a b c b c a c a b b c a c a b++++=+++++++++++, ∴222a b c a b c a b c b c a c a b++=++++++++, ∴2220a b c b c a c a b++=+++. 7.【解析】22222222()()KA KB KM AM KM BM AM BM −=−+=−, 同理可得:2222KB KC BN CN −=−,2222KC KA CP AP −=−,三式相加得:222222AM BN CP BM CN AP ++=++,∴222222.34452AP ++=++,解得212AP =.8.【解析】由题意作出以下图形:考虑24y x =−+与2y x =+的交点即可;联立242y x y x =−+ =+ ,解得2383x y = = ,∴83M =,∴616M =. 9.【解析】连接OP ,设AM x =,ACOC a ==, ∴18PM x =−,32QM x =−,由正方形的对称性:18OP AP ==,由圆幂定理:2AC AM AQ =⋅,22PM PQ OC OP ⋅=−,∴232a x =,2214(18)18x a −=−,∴214(18)3218x x −=−,解得:28823x =,∴BC ==.10.【解析】记1a b x −=,2b c x −=,3c d x −=,4d e x −=,5e a x −=,则1x 、2x 、3x 、4x 、5x 均为整数且不等于0,同时满足123450x x x x x ++++=,∴1x 、2x 、3x 、4x 、5x 中存在偶数个奇数,若存在2个1,2个1−,1个2,则对于1x 、2x 、3x 、4x 、5x 构成的数环而言必有一个1与1−相邻,这是不符合要求的,否则存在两数相等;所以至少存在两个数的绝对值为1,3个数的绝对值为2,∴222221234514x x x x x ++++≥,对于(,,,,)(1,3,5,4,2)a b c d e =而言可以取到14,故其最小值为14.11.【解析】过1O 、2O 、P 分别作AB 的垂线,垂足依次为E 、F 、G , ∴1190PAG O AE AO E ∠=°−∠=∠,2290PBG O BF BO F ∠=°−∠=∠,1122AE AG BD BF ===, ∴1APG O AE △∽△,2BPG O BF △∽△,∴1PA AO PG AE =,2PB BO PG BF =, ∴1122205246AO PA AO AE BO PB AO BF====,∴225180()180()1256PA PB =×=.12.【解析】不妨设a b c ≤≤,则2a ≥,当3a ≥时,1111111133412a b c ++≤++=; 当2a =时,11111112a b c b c ++=++<,∴1112b c +<,∴3b ≥, 当4b ≥时,1111111924520a b c ++≤++=, 当3b =时,1111114123742a b c ++≤++=, 即当(,,)(2,3,7)a b c =时,4142m =,83r s +=. 13.【解析】由(*)(*)(*)a b c a c b c +=+得*(*)(*)a b a c b c c =+−, ∴*(*)(*)*b a b c a c c a b =+−=,取0c =,则*(*0)(*0)(0*)(0*)0*()a b a b a b a b =+=+=+,对于0*()(0*)(0*)a b a b +=+,取0a b ==,得0*00=, 同时0*0(0*)(0*)0c c c =+−=,∴0*2c c =, ∴20*240*(2024)0*4422=+==.14.【解析】首先22228798971000ABC BCA CAB ++=<,∴A 、B 、C 均为一位数,且不为0,即从1到9,其次考虑末尾特点,222A B C ++的末尾为7,而完全平方数的末尾为014569,不考虑0,剩下14569,想要使得末尾为7,可以有1157++=或44917++=或56617++=或99927++=,由于A B C >>,故99927++=舍去(末尾为9的只有3、7两个),若满足1157++=,则对应的数为9、5、1,显然222951519195879897++>,舍去; 若满足56617++=,则对应的数为6、5、4,显然222654546465942057879897++=>,舍去; 若满足44917++=,则对应的数为8、3、2或8、7、2,计算222832328283879897++=符合题意;计算222872728287879897++>,舍去; 综上所述:832ABC =.15.【解析】设该等腰ABC △的腰为a ,底为b .由题意:112(2)2b a b ×+,∴48(2)b a b +,∴b 2322304(2)ab b a b −=+, ∴33223042304246082(48)(48)b b b b a b b b ++=−+−,∴3230446082(48)(48)(48)(48)b b b a b b b b b +==++−+−, 记4608(48)(48)b k b b =+−,k 为正整数,∴222248480kb b k −×−=,∴2∆==×为完全平方数,m =(m 为正整数),∴22248m k −=,即2()()48m k m k +−=, 由于2824823=×,有(81)(21)27++=个因子,应该存在(271)2114−÷+=组,考虑到()m k +与()m k −应该同奇偶,故存在14311−=组,列举如下: ∴(,)(1152,2)m k m k +−=或(576,4)或(384,6)或(288,8)或(192,12)或(144,16)或(128,18)或(96,24)或(72,32)或(64,36)或(48,48),∴(,)(577,575)m k =或)290,286(或)195,189(或)148,140(或(102,90)或(80,64)或(73,55)或(60,36)或(52,20)或(50,14)或(48,0), 根据求根公式,224824848(48)2m m b k k ×+×+=, 代入检验可得:当(,)(102,90)m k =或(80,64)或(60,36)或(52,20)或(50,14), 依次解得:80b =或96或144或240或336, ∵2a b k =+,∴2b k a +=,解得85a =或80或90或130或175, 综上所述:所有可能的等腰三角形的腰长之和为858090130175560++++=.。

惠州一中自主招生数学试卷

惠州一中自主招生数学试卷

选择题:
1. 函数f(x) = 2x^2 - 5x + 3 的图像开口向上还是向下?
A. 开口向上
B. 开口向下
C. 既不向上也不向下
D. 无法确定
2. 若等差数列的公差为3,首项为4,那么该等差数列的第n 项为16 的等差数列,那么n 的值是:
A. 4
B. 5
C. 6
D. 7
3. 直角三角形ABC 中,∠A = 30°,∠B = 90°,那么∠C 的大小是:
A. 30°
B. 60°
C. 90°
D. 120°
填空题:
1. 解方程:3x + 2 = 10,其中一个解是__。

2. 在等差数列7, 12, 17, ... 中,第6 项是__。

3. 若a × b = -15,且b = 5,那么a 的值是__。

应用题:
1. 一辆汽车以每小时60 公里的速度行驶,行驶了3 小时后,距离目的地还有多少公里?
2. 一个正方形花坛的周长是16 米,求花坛的面积。

3. 甲、乙两个工人同时作业,一共需要8 小时完成,甲一个人单独作业需要12 小时完成,那么乙一个人单独作业需要多少小时完成?。

余杭高级中学自主招生数学试卷

余杭高级中学自主招生数学试卷

余杭高级中学自主招生数学试卷1、代数式a3?a2化简后的结果是()[单选题] *A. aB. a?(正确答案)C. a?D. a?2、19.下列函数在(0,+?? )上为增函数的是(). [单选题] *A.?(x)=-xB.?(x)=-1/X(正确答案)C.?(x)=-x2D.?(x)=1/X3、45、下列说法错误的是()[单选题] *A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点(正确答案)4、2.当m=-2时,代数式-2m-5的值是多少()[单选题] *A.-7B.7C.-1(正确答案)D.15、47、若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()[单选题] *A.3B.4C.1或3D.3或5(正确答案)6、直线2x+y+m=0和x+2y+n=0的位置关系是()[单选题] *A、平行B、平行C、相交但不垂直(正确答案)D、不能确定7、12.下列说法正确的是()[单选题] *A.一个数前面加上“–”号这个数就是负数B.非负数就是正数C.0既不是正数,也不是负数(正确答案)D.正数和负数统称为有理数8、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.29、20.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是()[单选题] *21.A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AODD.∠BOC=∠AOD(正确答案)10、第三象限的角的集合可以表示为()[单选题] *A. {α|180°<α<270°}B. {α|180°+k·360°<α<270°+k·360°}(正确答案)C. {α|90°<α<180°}D. {α|90°+k·360°<α<180°+k·360°}11、12.已知点P(m,n),且mn>0,m+n<0,则点P在() [单选题] *A.第一象限B.第二象限C.第三象限(正确答案)D.第四象限12、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)13、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4B. x+y=5C. x2=6(正确答案)D. 2x+3=014、4.一个数是25,另一个数比25的相反数大- 7,则这两个数的和为[单选题] *A.7B. - 7(正确答案)C.57D. - 5715、已知cosα=7,则cos(7π-α)=()[单选题] *A.3B.-3C.7D.-7(正确答案)下列函数式正弦函数y=sin x 的周期的是()[单选题] *16、掷三枚硬币可出现种不同的结果()[单选题] *A、6B、7C、8(正确答案)D、2717、35.若代数式x2﹣16x+k2是完全平方式,则k等于()[单选题] *A.6B.64C.±64D.±8(正确答案)18、下列计算正确是()[单选题] *A. 3x﹣2x=1B. 3x+2x=5x2C. 3x?2x=6xD. 3x﹣2x=x(正确答案)19、420°用弧度制表示为()[单选题] * 7π/3(正确答案)-2π/3-π/32π/320、8. 估计√13?的值在() [单选题] *A、1和2之间B、2和3之间C、3和4之间(正确答案)D、4和5之间21、5.如图,点C、D是线段AB上任意两点,点M是AC的中点,点N是DB的中点,若AB=a,MN=b,则线段CD的长是()[单选题] *A.2b﹣a(正确答案)B.2(a﹣b)C.a﹣bD.(a+b)D.22、若(m-3)+(4-2m)i为实数,那么实数m的值为()[单选题] *A、3B、4(正确答案)C、-2D、-323、14、在等腰中,如果的长是的2倍,且三角形周长为40,那么的长是()[单选题] *A.10B.16 (正确答案)C.10D.16或2024、22.如果|x|=2,那么x=()[单选题] *A.2B.﹣2C.2或﹣2(正确答案)D.2或25、33.若x2﹣6x+k是完全平方式,则k的值是()[单选题] *A.±9B.9(正确答案)C.±12D.1226、14.命题“?x∈R,?n∈N*,使得n≥x2(x平方)”的否定形式是()[单选题] * A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?x∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2(正确答案)27、在0°~360°范围中,与868°终边相同的角是()[单选题] *148°(正确答案)508°-220°320°28、26.不等式|2x-7|≤3的解集是()[单选题] * A。

高中自主招生数学试题及答案

高中自主招生数学试题及答案

高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。

A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。

7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。

8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。

9. 一个正方体的体积为27,它的边长是_________。

10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。

三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。

(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。

(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。

(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。

(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。

(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。

希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

重点高中自主招生数学试题

重点高中自主招生数学试题

重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。

2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。

3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。

三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。

将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。

2024年高中自主招生素质检测数学试题及参考答案

2024年高中自主招生素质检测数学试题及参考答案

学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。

2023年安徽省中学自主招生考试数学模拟试卷一及详细答案

2023年安徽省中学自主招生考试数学模拟试卷一及详细答案

安徽省168中学自主招生考试数学模拟试卷一参照答案与试题解析一、选择题(本大题共8小题,每题3分,共24分.).1.(3分)若不等式组旳解集是x>3,则m旳取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3考点:解一元一次不等式组.专题:计算题.分析:先解不等式组,然后根据不等式旳解集,得出m旳取值范围即可.解答:解:由x+7<4x﹣2移项整顿得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组旳解集是x>3,∴m≤3.故选C.点评:重要考察了一元一次不等式组解集旳求法,将不等式组解集旳口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m旳范围.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.考点:特殊角旳三角函数值.分析:本题中直角三角形旳角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC旳度数,再由特殊角旳三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.点评:本题考察旳是特殊角旳三角函数值,解答此题旳关键是构造特殊角,用特殊角旳三角函数促使边角转化.注:(1)求(已知)非特角三角函数值旳关是构造出含特殊角直角三角形.(2)求(已知)锐角三角函数值常根据定转化为求对应线段比,有时需通过等旳比来转换.3.(3分)(•南漳县模拟)如图,AB为⊙O旳一固定直径,它把⊙O提成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD旳平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD旳距离保持不变B.位置不变D.随C点移动而移动C.等分考点:圆周角定理;圆心角、弧、弦旳关系.专题:探究型.分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,因此有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆旳中点.故选B.点评:本题考察了圆周角定理.在同圆或等圆中,同弧和等弧所对旳圆周角相等,一条弧所对旳圆周角是它所对旳圆心角旳二分之一.也考察了垂径定理旳推论.4.(3分)已知y=+(x,y均为实数),则y旳最大值与最小值旳差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2考点:函数最值问题.分析:首先把y=+两边平方,求出定义域,然后运用函数旳单调性求出函数旳最大值和最小值,最终求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y旳最大值为2,当x=1或5时,y旳最小值为2,故当x=1或5时,y获得最小值2,当x取1与5中间值3时,y获得最大值,故y旳最大值与最小值旳差为2﹣2,故选D.点评:本题重要考察函数最值问题旳知识点,解答本题旳关键是把函数两边平方,此题难度不大.5.(3分)(•泸州)已知O为圆锥旳顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短路线旳痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段旳性质:两点之间线段最短;几何体旳展开图.专题:压轴题;动点型.分析:此题运用圆锥旳性质,同步此题为数学知识旳应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行旳最短路线应当是一条线段,因此选项A和B错误,又由于蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么假如将选项C、D旳圆锥侧面展开图还原成圆锥后,位于母线OM上旳点P应当可以与母线OM′上旳点(P′)重叠,而选项C还原后两个点不可以重叠.故选D.点评:本题考核立意相对较新,考核了学生旳空间想象能力.6.(3分)已知一正三角形旳边长是和它相切旳圆旳周长旳两倍,当这个圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈考点:直线与圆旳位置关系.分析:根据直线与圆相切旳性质得到圆从一边转到另一边时,圆心要绕其三角形旳顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解答:解:圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,∵等边三角形旳边长是和它相切旳圆旳周长旳两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形旳一种顶点旋转了三角形旳一种外角旳度数,圆心要绕其三角形旳顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考察了直线与圆旳位置关系,弧长公式:l=(n为圆心角,R为半径);也考察了旋转旳性质.7.(3分)二次函数y=ax2+bx+c旳图象如下图,则如下结论对旳旳有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个考点:二次函数图象与系数旳关系.专题:图表型.分析:由抛物线旳开口方向判断a旳符号,由抛物线与y轴旳交点判断c旳符号,然后根据对称轴及抛物线与x 轴交点状况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值不小于0,即y=4a+2b+c>0,对旳;④当x=3时函数值不不小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,对旳;⑤当x=1时,y旳值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,因此a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),对旳.③④⑤对旳.故选B.点评:考察二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴旳交点、抛物线与x轴交点旳个数确定.8.(3分)如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,假如,那么△ABC旳内切圆半径为()A.1B.C.2D.考点:三角形旳内切圆与内心;等边三角形旳性质.分析:过P点作正△ABC旳三边旳平行线,可得△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,于是求出三角形ABC旳面积,进而求出等边三角形旳边长和高,再根据等边三角形旳内切圆旳半径等于高旳三分之一即可求出半径旳长度.解答:解:如图,过P点作正△ABC旳三边旳平行线,则△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,又知S△AFP+S△PCD+S△BPE=,故知S△ABC=3,S△ABC=AB2sin60°=3,故AB=2,三角形ABC旳高h=3,△ABC旳内切圆半径r=h=1.故选A.点评:本题重要考察等边三角形旳性质,面积及等积变换,解答本题旳关键是过P点作三角形三边旳平行线,证明黑色部分旳面积与白色部分旳面积相等,此题有一定难度.二、填空题(本大题共8小题,每题3分,共24分)9.(3分)与是相反数,计算=.考点:二次根式故意义旳条件;非负数旳性质:绝对值.专题:计算题.分析:根据互为相反数旳和等于0列式,再根据非负数旳性质列式求出a+旳值,再配方开平方即可得解.解答:解:∵与|3﹣a﹣|互为相反数,∴+|3﹣a﹣|=0,∴3﹣a﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a>0,∴(+)2=5,∴+=.故答案为:.点评:本题考察了二次根式故意义旳条件,非负数旳性质,求出a+=3后根据乘积二倍项不含字母,配方是解题旳关键.10.(3分)若[x]表达不超过x旳最大整数,,则[A]=﹣2.考点:取整计算.专题:计算题.分析:先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x]表达不超过x旳最大整数得到,[A]=﹣2.解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A]=[﹣]=﹣2.故答案为﹣2.点评:本题考察了取整计算:[x]表达不超过x旳最大整数.也考察了分母有理化和零指数幂.11.(3分)如图,M、N分别为△ABC两边AC、BC旳中点,AN与BM交于点O,则=.考点:相似三角形旳鉴定与性质;三角形中位线定理.专题:计算题;证明题.分析:连接MN,设△MON旳面积是s,由于M、N分别为△ABC两边AC、BC旳中点,易知MN是△ABC旳中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON旳面积是2s,进而可知△BMN旳面积是3s,再根据中点性质,可求△BCM旳面积等于6s,同理可求△ABC旳面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON旳面积是s,∵M、N分别为△ABC两边AC、BC旳中点,∴MN是△ABC旳中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON旳面积=2s,∴△BMN旳面积=3s,∵N是BC旳中点,∴△BCM旳面积=6s,同理可知△ABC旳面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考察了相似三角形旳鉴定和性质、三角形中位线定理,解题旳关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O旳面积为3π,AB为直径,弧AC旳度数为80°,弧BD旳度数为20°,点P为直径AB 上任一点,则PC+PD旳最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦旳关系.专题:探究型.分析:先设圆O旳半径为r,由圆O旳面积为3π求出R旳值,再作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,由圆心角、弧、弦旳关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′旳度数,进而可得出结论.解答:解:设圆O旳半径为r,∵⊙O旳面积为3π,∴3π=πR2,即R=.作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,∵旳度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD旳最小值为3.故答案为:3.点评:本题考察旳是轴对称﹣最短路线问题及垂径定理,圆心角、弧、弦旳关系,根据题意作出点C有关直线AB 旳对称点是解答此题旳关键.13.(3分)从1,2,3,5,7,8中任取两数相加,在不一样旳和数中,是2旳倍数旳个数为a,是3旳倍数旳个数为b,则样本6、a、b、9旳中位数是 5.5.考点:中位数.分析:首先列举出所有数据旳和,进而运用已知求出a,b旳值,再运用中位数是一组数据重新排序后之间旳一种数或之间两个数旳平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有也许:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不一样数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2旳倍数旳个数为a=5,是3旳倍数旳个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据旳中位数是:=5.5,故答案为:5.5.点评:此题考察了列举法求所有也许以及中位数旳定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间旳那个数(最中间两个数旳平均数),叫做这组数据旳中位数,假如中位数旳概念掌握得不好,不把数据按规定重新排列,就会出错.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成旳图形面积为S,则S 旳最小值是.考点:两条直线相交或平行问题.分析:首先用k表达出两条直线与坐标轴旳交点坐标,然后表达出围成旳面积S,根据得到旳函数旳取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴旳交点是A(,0),与y轴旳交点是B(0,2k﹣1)直线y=(k+1)x+2k+1与X轴旳交点是C(,0),与y轴旳交点是D(0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC旳面积最小,最小值S=2﹣=.点评:本题考察了两条指向相交或平行问题,解题旳关键是用k表达出直线与坐标轴旳交点坐标并用k表达出围成旳三角形旳面积,从而得到函数关系式,运用函数旳知识其最值问题.15.(3分)(•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重叠,折痕与PF交于Q点,则PQ旳长是cm.考点:翻折变换(折叠问题).专题:压轴题.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形旳性质,用含x旳式子表达Rt△EGQ 旳三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形旳性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.点评:本题考察图形旳翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称旳性质,折叠前后图形旳形状和大小不变,如本题中折叠前后对应线段相等.16.(3分)(•随州)将半径为4cm旳半圆围成一种圆锥,在圆锥内接一种圆柱(如图示),当圆柱旳侧面旳面积最大时,圆柱旳底面半径是1cm.考点:圆柱旳计算;二次函数旳最值;圆锥旳计算.专题:压轴题.分析:易得扇形旳弧长,除以2π也就得到了圆锥旳底面半径,再加上母线长,运用勾股定理即可求得圆锥旳高,运用相似可求得圆柱旳高与母线旳关系,表达出侧面积,根据二次函数求出对应旳最值时自变量旳取值即可.解答:解:扇形旳弧长=4πcm,∴圆锥旳底面半径=4π÷2π=2cm,∴圆锥旳高为=2cm,设圆柱旳底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱旳侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱旳侧面积有最大值.点评:用到旳知识点为:圆锥旳弧长等于底面周长;圆锥旳高,母线长,底面半径构成直角三角形;相似三角形旳相似比相等及二次函数最值对应旳自变量旳求法等知识.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一种交点.(1)求抛物线旳解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线旳对称轴上与否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,阐明理由.考点:二次函数综合题.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为有关x 旳二元一次方程,令△=0求b旳值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形旳腰或底,分别求Q点旳坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一种交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意旳点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意旳Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).点评:本题考察了二次函数旳综合运用.关键是根据题意求出抛物线解析式,根据等腰三角形旳性质,分类求Q 点旳坐标.18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,既有一工程车需从距B点50m旳A处前方取土,然后通过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m旳地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所通过旳途径长.考点:解直角三角形旳应用-坡度坡角问题.分析:作出圆与BA,BC相切时圆心旳位置G,与CD相切时圆心旳位置P,与CD相切时圆心旳位置I,分别求得各段旳途径旳长,然后求和即可.解答:解:当圆心移动到G旳位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G旳路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P旳位置(P是圆心在C,且与BC相切时圆心旳位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心旳位置),移动旳途径是弧,弧长是:=m;圆心从I到N移动旳距离是:6﹣1=5m,则圆心移动旳距离是:(47+)+(8+)+5+=60+2+(m).点评:本题考察了弧长旳计算公式,对旳确定圆心移动旳路线是关键.19.(14分)如图,过正方形ABCD旳顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜测:CE与DF旳大小关系?并证明你旳猜测.(2)猜测:H是△AEF旳什么心?并证明你旳猜测.考点:相似形综合题.分析:(1)运用正方形旳性质得到AD∥BC,DC∥AB,运用平行线分线段成比例定理得到,,从而得到,然后再运用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF旳垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF旳垂心.点评:本题考察了相似形旳综合知识,本题是一道开放性问题,对旳旳猜测是深入解题旳方向和基础,非常重要.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1旳圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2旳圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形旳面积;(2)求证:EF=MN;(3)求r1+r2旳值.考点:圆旳综合题.专题:综合题.分析:(1)由于菱形ABCD边长为,∠ABC=120°,根据菱形旳性质得到ADC和△DBC都是等边三角形,运用等边三角形旳面积等于边长平方旳倍即可得到菱形旳面积=2S△DBC=2××(6)2=54;(2)由于PM与PE都是⊙O1旳切线,PN与PF都是⊙O2旳切线,根据切线长定理得到PM=PN,PN=PE,则PM﹣PN=PE﹣PB,即EF=MN;(3)由于BE与BG都是⊙O1旳切线,根据切线旳性质和切线长定理得到BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,于是有∠O2BE=60°,∠EO2B=30°,根据含30°旳直角三角形三边旳关系得到BE=O2E=r2,则BG=r2,DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,则MN=DM+DN=12﹣(r1+r2),而EF=EB+BC+CF=r2+6+r1=6+(r1+r2),运用EF=MN可得到有关(r1+r2)旳方程,解方程即可.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形旳面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2旳切线,∴PM=PE,又∵PN与PF都是⊙O1旳切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2旳切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.点评:本题考察了圆旳综合题:圆旳切线垂直于过切点旳半径;从圆外一点引圆旳两条切线,切线长相等,并且这个点与圆心旳连线平分两切线旳夹角;掌握菱形旳性质,记住等边三角形旳面积等于边长平方旳倍以及含30°旳直角三角形三边旳关系.21.(15分)(•黄冈)如图,已知抛物线旳方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y 轴相交于点E,且点B在点C旳左侧.(1)若抛物线C1过点M(2,2),求实数m旳值;(2)在(1)旳条件下,求△BCE旳面积;(3)在(1)条件下,在抛物线旳对称轴上找一点H,使BH+EH最小,并求出点H旳坐标;(4)在第四象限内,抛物线C1上与否存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似?若存在,求m 旳值;若不存在,请阐明理由.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)将点(2,2)旳坐标代入抛物线解析式,即可求得m旳值;(2)求出B、C、E点旳坐标,进而求得△BCE旳面积;(3)根据轴对称以及两点之间线段最短旳性质,可知点B、C有关对称轴x=1对称,连接EC与对称轴旳交点即为所求旳H点,如答图1所示;(4)本问需分两种状况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾旳等式,故此种情形不存在.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C有关x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE旳长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整顿得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似,m=+2.点评:本题波及二次函数旳图象与性质、相似三角形旳鉴定与性质、轴对称﹣最小途径问题等重要知识点,难度较大.本题难点在于第(4)问,需要注意分两种状况进行讨论,防止漏解;并且在计算时注意运用题中条件化简计算,防止运算出错.。

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。

高中阶段自主招生考试数学试卷及参考答案

高中阶段自主招生考试数学试卷及参考答案

第2题乐清中学自主招生考试数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。

2.全卷由试题卷和答题卷两部分组成。

试题的答案必须做在答题卷的相应位置上。

做在试题卷上无效。

3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。

4.答题过程不准使用计算器。

祝你成功! 一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求) 1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是,则A S S S 123<<B S S S 213<<C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 A π-1 B π-2 C D4.由得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠ 为直角的点P 的个数是S S S 123、、121-π221-π第3题A 0B 1C 2D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2, 且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =a x 2+(a -b )x —b 的图象如图所示, 那么化简的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂 直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S正方形ABCD =▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案: (1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张11.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.第10题第11题第7题第8题第12题读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答:▲.(2)作DE∥AB的目的是:▲.(3) 判断四边形ABED为平行四边形的依据是:▲.(4)判断四边形ABCD是等腰梯形的依据是▲.(5)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?答▲.乐清中学自主招生考试数学标准答案题号 1 2 3 4 5 6答案 A D A C C A二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8.256 9.576或10.(1)13 (2)3n+1 (3)15250 11. a b ab12.(1)没有错误(2)为了证明AD∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义(5)不一定,因为当AD=BC时,四边形ABCD是矩形三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1 2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.48.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是.10.命题“如果a2=b2,那么a=b”的逆命题是命题.(填写“真”或“假”)11.命题:“两直线平行,则同旁内角互补”的逆命题为.12.命题“若a=b,则a2=b2”的逆命题是.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是命题.(填“真”或“假”)14.命题“如a=b,那么|a|=|b|”的逆命题是命题.(填“真”或“假”)15.命题:“如果a=b,那么3a=3b”的逆命题是,该逆命题是(填“真”或“假”)命题.16.“若a=b,则a2=b2”的逆命题是命题.(填“真”或“假”)17.命题“若a=b,则|a|=|b|”的逆命题是.18.命题“如果a2=b2,那么a=b”的逆命题是命题(填“真”或“假”).19.命题“若a2=b2,则a=b.”的逆命题是.20.命题:“如果a=b,那么a2=b2”的逆命题是,该命题是命题(填真或假).21.命题:“若a=b,则a4=b4”,该命题的逆命题是;该命题的逆命题是命题.(填“真”或“假”)22.命题“如果a2=b2,那么a=b”的逆命题是,该命题的逆命题是命题(填真或假)23.命题“如果,那么a=b”的逆命题是:.24.命题“如果a=b,那么a2=b2”的逆命题是.高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)参考答案与试题解析一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1【解答】解:命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可以取a=﹣1,b=1说明.故选:D.【点评】本题考查命题与定理,解题的关键是理解题意,灵活运用所学知识解决问题.2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补是真命题;②若a2=b2,则a=b的逆命题是若a=b,则a2=b2是真命题;③锐角与钝角互为补角的逆命题是互补的角是锐角与钝角,是假命题;④相等的角是对顶角的逆命题是对顶角相等,是真命题;故选:B.【点评】此题主要考查了命题与定理,正确把握相关性质是解题关键.3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个【解答】解:①正确.,,,0,cos60︒五个数中,其中,是无理数.②错误.mx2﹣2x﹣10是代数式,表示方程.③错误.平行四边形是中心对称图形,不是轴对称图形.④正确.“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤错误.在同圆或等圆中,相等的圆心角所对的弧相等.⑥错误.单项式的次数是2次.故选:B.【点评】本题考查无理数、一元二次方程、代数式、中心对称图形、轴对称图形、圆心角与弧之间的关系、单项式的次数的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④对顶角相等的逆命题是相等的角是对项角,是假命题;它们的逆命题是真命题的个数是2个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【解答】解:在,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.4【解答】解:把原命题的题设与结论交换得到它的逆命题,所以①正确;真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;假命题:若am>bm,则a>b,其逆命题:若a>b,则am>bm,它是假命题,所以③错误;真命题的逆命题不一定是真命题,所以④错误;每个定理一定有逆命题,所以⑤正确;命题“若a=b,那么a3=b3”的逆命题为“若a3=b3,则a=b”,它是真命题,所以⑥错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理;两个命题的题设与结论互换的命题互为逆命题.8.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b【解答】解:已知本题中命题的题设是a=b,结论是|a|=|b|,所以它的逆命题中的题设是|a|=|b|,结论是a=b,所以本题中的逆命题是如果|a|=|b|,那么a=b.故选:B.【点评】本题考查了互逆命题的知识.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.10.命题“如果a2=b2,那么a=b”的逆命题是真命题.(填写“真”或“假”)【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,故答案为:真.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如果a=b,那么ac=bc.”,它的逆命题是“如果ac=bc,那么a=b.”,是假命题,故答案为:假.【点评】本题考查的是命题的概念、命题的真假判断,掌握逆命题的概念是解题的关键.14.命题“如a=b,那么|a|=|b|”的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如a=b,那么|a|=|b|”的逆命题是如果|a|=|b|,那么a=b,是假命题,【点评】本题考查的是命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.命题:“如果a=b,那么3a=3b”的逆命题是如果3a=3b,那么a=b,该逆命题是真(填“真”或“假”)命题.【解答】解:根据题意得:命题“如果a=b,那么3a=3b”的条件是如果a=b,结论是3a=3b,故逆命题是如果3a=3b,那么a=b,该命题是真命题.故答案为:如果3a=3b,那么a=b,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.也考查了命题的真假判断.16.“若a=b,则a2=b2”的逆命题是假命题.(填“真”或“假”)【解答】解:若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.此逆命题为假命题.故答案为假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.17.命题“若a=b,则|a|=|b|”的逆命题是若|a|=|b|,则a=b.【解答】解:命题“若a=b,则|a|=|b|”的逆命题是:“若|a|=|b|,则a=b”.故答案为若|a|=|b|,则a=b【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.命题“如果a2=b2,那么a=b”的逆命题是真命题(填“真”或“假”).【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.命题“若a2=b2,则a=b.”的逆命题是若a=b,则a2=b2.【解答】解:命题“若a2=b2,则a=b”的条件是a2=b2,结论是a=b,故逆命题是:若a=b,则a2=b2.故答案为如果a=b,那么a2=b2.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.20.命题:“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b,该命题是假命题(填真或假).【解答】解:根据题意得:命题“如果a=b,那么a2=b2”的条件是如果a=b,结论是a2=b2”,故逆命题是如果a2=b2,那么a=b,该命题是假命题.故答案为:如果a2=b2,那么a=b;假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.21.命题:“若a=b,则a4=b4”,该命题的逆命题是若a4=b4,则a=b;该命题的逆命题是假命题.(填“真”或“假”)【解答】解:“若a=b,则a4=b4”的条件是:a=b,结论是:a4=b4,∴逆命题是:若a4=b4,则a=b,若a4=b4,则a=±b,故为假命题,故答案为若a4=b4,则a=b,假.【点评】本题考查了互逆命题的知识以及真假命题的判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,难度适中.22.命题“如果a2=b2,那么a=b”的逆命题是如果a=b,那么a2=b2,该命题的逆命题是真命题(填真或假)【解答】解:命题“如果a2=b2,那么a=b”的条件是如果a2=b2,结论是a=b,故逆命题是:如果a=b,那么a2=b2,为真命题.故答案为如果a=b,那么a2=b2,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.命题“如果,那么a=b”的逆命题是:如果a=b,那么.【解答】解:命题“如果a=b”的逆命题是:如果a=b,那么故答案为:如果a=b,那么【点评】本题考查了逆命题的概念.关键是明确交换原命题的题设和结论,得到逆命题.24.命题“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b.【解答】解:“如果a=b,那么a2=b2”的逆命题是:如果a2=b2,那么a=b.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考点卡片1.四种命题及其关系四种命题及其关系.1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题.3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.。

重点高中自主招生数学试题

重点高中自主招生数学试题

E A B F第3题图DA BCEGF第6题图数学测试试卷2017.2一、选择题(每小题6分,共60分)1、已知52015-=xx ,则=-+---21)1()2(23x x x ( )A 、2016B 、2017C 、2018D 、20192、已知关于x 的不等式组⎪⎩⎪⎨⎧>-+>-+xt x t x 235352恰有三个整数根。

则t 的取值范围是( ) A 、78712-<≤-t B 、23712-<≤-t C 、3423-<≤-t D 、7834-<≤-t3、如图,六边形ABCDEF 由五个单位正方形组成,称能平分此六边形的面积的直线为“好线”。

则共存在“好线”( )条。

A 、1B 、2C 、3D 、无数 4、如图,在平面直角坐标系中,R t△OAB 的顶点A 在x 轴的正半轴上,B )3 ,3(,C )0 ,21(,P 为斜边OB 上的一动点,则PA+PC的最小值为( )A 、313B 、 231C 、193+D 、725、已知z y x 、、均为非负数,且满足x 2z -y -41-z y ==+。

若z y +-=22x w 2,则w 的最小值为( ) A 、-1 B 、923 C 、21- D 、0 6、如图,正△ABC 的边长为6,D 、E 分别为边BC 、AC 上的一点,满足CD=AE 。

设BE 与AD 交于点F ,连结CF ,作EG ∥CF 与AD 交于点G 。

若EF=1,则AG 的长为( ) A 、61 B 、21C 、1D 、2 7.如图,△ABC 的外接圆⊙O 的半径长为5,BC=8,点P 为BC 的中点,以点P 为圆心 作⊙P ,若⊙P 与⊙O 相切,则⊙P 的半径长为( ) A .3 B . 3.5 C .2或8 D .2或4就读学校: 班级: 姓名: 试场号: 座位号:………………………………………………………装………………………………订………………………………线………………………………………8.如图,在菱形网格中,每个小菱形的边长都是1,点A ,B ,C 都在格点上,则在网格中与△ABC 面积相等且有一条边重合的格点三角形的个数是( )A .5B .6C . 7D .89.如图,直线l 1:1-=x y 与直线l 2:12-=x y 交于点P ,直线l 1与x 轴交于点A .一动点C 从点A 出发,沿平行于y 轴的方向向上运动,到达直线l 2上的点B 1,再沿平行于x 轴的方向向右运动,到达直线l 1上的点A 1;再沿平行于y 轴的方向向上运动,到达直线l 2上的点B 2,再沿平行于x 轴的方向向右运动,到达直线l 1上的点A 2,…依此规律,则动点C 到达点A 10所经过的路径总长为( )A .1210- B .2210- C .1211- D .2211-10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,点E ,F 分别在 边AC ,BC 上,ED ⊥DF 于点D ,延长FD 交CA 的延长线于点G ,且EG=EF .若AC=2,BC=4,则AE 的长是( )A .52B .54C .34D .65二、填空题(每小题6分,共36分) 11、已知为pn m 、、实数,若41+-x x 、均为多项式p nx mx x +++23的因式,则8622+--p n m = .12、如图,在平面直角坐标系中,O 为坐标原点,□ABOC 的对角线交于点M ,双曲线)0(<=x xky 经过点B 、M 。

高中自招试题数学答案及解析

高中自招试题数学答案及解析

高中自招试题数学答案及解析试题一:已知函数\( f(x) = 3x^2 - 2x + 1 \),求其导数\( f'(x) \)。

答案:首先,根据导数的定义,我们对函数\( f(x) \)进行求导。

对于\( f(x) = 3x^2 - 2x + 1 \),其导数\( f'(x) \)为:\[ f'(x) = 6x - 2 \]解析:求导的过程涉及到幂函数的导数规则,即\( (x^n)' = n \cdot x^{n-1} \)。

对于常数项1,其导数为0。

将各项的导数相加,得到最终的导数表达式。

试题二:设集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B 的交集A∩B。

答案:集合A和集合B的交集A∩B为{2, 3}。

解析:交集是指两个集合中共有的元素。

在这个例子中,我们可以看到元素2和3同时出现在集合A和集合B中,因此它们构成了这两个集合的交集。

试题三:若\( \sin(2x) = 2\sin(x) \),求\( x \)的值。

答案:根据二倍角公式,我们知道\( \sin(2x) = 2\sin(x)\cos(x) \)。

将题目中的等式代入,得到:\[ 2\sin(x)\cos(x) = 2\sin(x) \]由于\( \sin(x) \neq 0 \),我们可以除以\( 2\sin(x) \)得到:\[ \cos(x) = 1 \]这意味着\( x \)的值是\( 2k\pi \),其中\( k \)是整数。

解析:这个问题的关键在于识别并应用二倍角公式。

通过将等式转换为已知的三角恒等式,我们可以简化问题并找到\( x \)的解。

试题四:解不等式\( |x - 3| < 2 \)。

答案:不等式\( |x - 3| < 2 \)可以分解为两个不等式:\[ -2 < x - 3 < 2 \]解得:\[ 1 < x < 5 \]解析:绝对值不等式可以通过将其分解为两个不等式来解决。

高中自主招生考试数学试题(含答案详解)

高中自主招生考试数学试题(含答案详解)

一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高中自主招生考试数学模拟试卷
一、选择题(本大题共8小题,每小题3分,共24分.).
1.(3分)若不等式组的解集是x>3,则m的取值范围是()
A
. m>3 B.m≥3C.m≤3D. m<3
2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()
(2)(3)A.B.C.D.
3.(3分)(2011?南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()
A.到CD的距离保持不变B.位置不变
C.
等分
D.随C点移动而移动
4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()
A.
2﹣1 B.
4﹣2
C.
3﹣2
D.
2﹣2
5.(3分)(2010?泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()
A.B.C.D.
6.(3分)如图(6),已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()
A. 6圈B.圈C. 7圈D. 8圈
7.(3分)二次函数y=ax2+bx+c的图象如下图(7),则以下结论正确的有:①abc>0;
②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()
(6)(7)(8)A. 2个B. 3个C. 4个D. 5个
8.(3分)如图8,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,如果,那么△ABC的内切圆半径为()
A. 1 B.C. 2 D.
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)与是相反数,计算=_________.
10.(3分)若[x]表示不超过x的最大整数,,则[A]=_________.
11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则= _________.
(11)(12)
12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为_________.
13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.
14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.
15.(3分)(2010?随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD 上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q 点,则PQ的长是_________cm.
(15)(16)
16.(3分)(2010?随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是_________cm.
三、解答题(72)
17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.
(1)求抛物线的解析式;
(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.
18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径
长.
19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.
(1)猜想:CE与DF的大小关系?并证明你的猜想.
(2)猜想:H是△AEF的什么心?并证明你的猜想.
20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.
(1)求菱形的面积;
(2)求证:EF=MN;
(3)求r1+r2的值.
21.(15分)(2012?黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.。

相关文档
最新文档