(完整word)初一动点问题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段与角的动点问题

1.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.

(1)当P运动到线段AB上且P A=2PB时,点Q运动到的位置恰好是线段OC的三等分点,求点Q的运动速度;

(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?

【解答】解:(1)P在线段AB上,由P A=2PB及AB=60,可求得P A=40,OP=60,故点P运动时间为60秒.

若CQ=OC时,CQ=30,点Q的运动速度为30÷60=(cm/s);

若OQ=OC,CQ=60,点Q的运动速度为60÷60=1(cm/s).

(2)设运动时间为t秒,则t+3t=90±70,解得t=5或40,

∵点Q运动到O点时停止运动,

∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则

PQ=OP=70cm,此时t=70秒,

故经过5秒或70秒两点相距70cm.

2.如图,直线l上依次有三个点O,A,B,OA=40cm,OB=160cm.

(1)若点P从点O出发,沿OA方向以4cm/s的速度匀速运动,点Q从点B出发,沿BO 方向匀速运动,两点同时出发

①若点Q运动速度为1cm/s,则经过t秒后P,Q两点之间的距离为|160﹣5t|cm(用含

t的式子表示)

②若点Q运动到恰好是线段AB的中点位置时,点P恰好满足P A=2PB,求点Q的运动速

度.

(2)若两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.

【解答】解:(1)①依题意得,PQ=|160﹣5t|;

故答案是:|160﹣5t|;

②如图1所示:4t﹣40=2(160﹣4t),解得t=30,

则点Q的运动速度为:=2(cm/s);

如图2所示:4t﹣40=2(4t﹣160),解得t=7,

则点Q的运动速度为:=(cm/s);

综上所述,点Q的运动速度为2cm/s或cm/s;

(2)如图3,两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.

OP=xBQ=y,则MN=(160﹣x)﹣(160﹣y)+x=(x+y),

所以,==2.

3.如图,射线OM上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动.

(1)当点P运动到AB的中点时,所用的时间为90秒.

(2)若另有一动点Q同时从点C出发在线段CO上向点O匀速运动,速度为3cm/秒,求经过多长时间P、Q两点相距30cm?

【解答】解:(1)当点P运动到AB的中点时,点P运动的路径为60cm+30cm=90cm,

所以点P运动的时间==90(秒);

故答案为90;

(2)当点P和点Q在相遇前,t+30+3t=60+60+10,解得t=25(秒),

当点P和点Q在相遇后,t+3t﹣30=60+60+10,解得t=40(秒),

答:经过25秒或40秒时,P、Q两点相距30cm.

4.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C 在点A与点B之间,且到点B的距离是到点A距离的2倍.

(1)点B表示的数是15;点C表示的数是3;

(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?

(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P 表示的数;若不存在,请说明理由.

【解答】解:(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.

故答案为:15,3;

(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;

点P与点Q相遇后,4t+2t=18+6,解得t=4;

(3)假设存在,

当点P在点C左侧时,PC=6﹣4t,QB=2t,

∵PC+QB=4,∴6﹣4t+2t=4,

解得t=1.

此时点P表示的数是1;

当点P在点C右侧时,PC=4t﹣6,QB=2t,

∵PC+QB=4,∴4t﹣6+2t=4,解得t=.

此时点P表示的数是.

综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.

5.将一副三角板放在同一平面内,使直角顶点重合于点O.

(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.

(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.

(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.

【解答】解:(1)∠AOD=∠BOC=155°﹣90°=65°,

∠DOC=∠BOD﹣∠BOC=90°﹣65°=25°;

(2)∠AOD=∠BOC,

∠AOB+∠DOC=180°;

(3)∠AOB+∠COD+∠AOC+∠BOD=360°,

∵∠AOC=∠BOD=90°,

∴∠AOB+∠DOC=180°.

6.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.

(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;

(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;

(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD 的度数.

【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,

又∵∠COB=60°,

相关文档
最新文档