塑料成型过程中如何结晶形成

合集下载

塑料成型的理论基础

塑料成型的理论基础
空隙,润滑作用因而受到限制,表观粘度就随着剪切速率的增长而增大。
1.3 流动带来的缺陷
✓ 管壁滑移:在剪切作用下,聚合物熔体在管壁处的速率不为零。滑移程度不仅 与聚合物的化学结构有关,而且与是否采用润滑剂和管壁的性质有关;
✓ 末端效应(挤出胀大):熔体从口模出来后其直径大于口模直径,或称离模 膨胀,是分子链的弹性回复造成的。聚合物分子在流动中受到拉伸力的作用 ,弹性变形受到粘性阻滞,出口模后才能恢复,对制品的外观、尺寸,对产 量和质量都有影响。增加管子或口模平直部分的长度(即增加口模的长径比 ),适当降低成型时的压力和提高成型温度,采用强制定型装置,并对挤出 物加以适当速度的牵引或拉伸等,均有利于减小或消除弹性变形带来的影响 。
②其产生主要依赖于应力而非温度 ③制品使用时一般不会解取向
益处:可使制品在取向方向上的强度和光 泽提高
害处:无论何种取向,都会使制品性能表 现为各向异性,造成制品内应力,翘曲变 形,沿与取向方向垂直方向上的力学及其 它性能变劣,取向后热收缩率变大等,都 应极力避免。
3.5.1 热固性塑料模压制品中纤维状填料的定向
3.1影响聚合物的结晶能力的因素
• 链的规整性:规整度越高,越容易结晶;此外, 结构不对称但空间排列规整的聚合物也容易结晶;
• 分子链节和柔性:分子链节小柔性适中的容易结 晶,主要原因是易于成核,链的活动能力强,易 于使适当的构象排入晶格而形成结晶结构;
• 规整结构的稳定性:规整结构只能说明分子链能 够排列成整齐的阵列,但不能保证该阵列在分子 运动下的稳定性。
①流动取向,聚合物处于流动状态时,由于受剪切力作用流动, 取向单元沿流动方向所做的平行排列;成型时的流动取向,可分为 填充物和聚合物分子取向例如纤维会在剪应力作用下发生定向排列 。

成型加工简答题

成型加工简答题
? 收敛流动:在截面积逐渐减小的流道中的流动。<受力:压力、剪切力、拉伸力>;多发生在在锥形管或其他截面积逐渐变小的管道中。
? 拖拽流动:在具有部分动件的流道中的流动。<受力:拉伸力、剪切力>,如在挤出机螺槽中的聚合物流动以及线缆包覆物生产口模中。
8、牛顿流体及非牛顿流体在圆管中的流动特征各是什么?
三、简答题:
1、请用粘弹性的滞后效应相关理论解释塑料注射成型制品的变形收缩现象以及热处理的作用。(课本P12)
答:○1塑料注射成型制品的变形收缩。当注射制件脱模时,大分子的形变并非已经停止,在贮存和使用过程中,制件中大分子的进一步形变能使制件变形。制品收缩的主要原因是熔体成型时骤冷使大分子堆积得较松散(即存在“自由体积”)之故。在贮存和使用过程中,大分子的重排运动的发展,使堆积逐渐紧密,以致密度增加体积收缩。能结晶的聚合物则因逐渐形成结晶结构而使成型的制品体积收缩。制品体积收缩的程度是随冷却速度增大而变得严重,所以加工过程急冷(骤冷)对制件的质量通常是不利的。无论是变形或是体积收缩,都将降低制品的因次稳定性;严重的变形或收缩不均匀还会在制品中形成内应力,甚至引起制品开裂;同时并降低制品的综合性能。
真空成型、压力成型、压延、弯曲成型等加工
聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态。
熔融纺丝、注射、挤出、吹塑、贴合等加工
4、画出几种典型流体的剪切力-剪切速率流动曲线,并简单说明各自的流变行为特征。
宾汉流体:
与牛顿流体相同, 剪切速率~ 剪切应力的关系也是一条直线,不同处:它的流动只有当 t 高到一定程度后才开始,需要使液体产生流动的最小应力ty称为屈服应力。当t < ty时,完全不流动 。

关于塑料结晶性、收缩率和流动性的解析

关于塑料结晶性、收缩率和流动性的解析

本文摘自再生资源回收-变宝网()关于塑料结晶性、收缩率和流动性的解析一、结晶性1、热塑性塑料按其冷凝时无出现结晶现象可划分为结晶型塑料与非结晶型(又称无定形)塑料两大类。

所谓结晶现象即为塑料由熔融状态到冷凝时,分子由独立移动,完全处于无次序状态,变成分子停止自由运动,按略微固定的位置,并有一个使分子排列成为正规模型的倾向的一种现象。

2、作为判别这两类塑料的外观标准可视塑料的厚壁塑件的透明性而定,一般结晶性料为不透明或半透明(如POM等),无定形料为透明(如PMMA等)。

但也有例外情况,如聚四甲基戍烯为结晶型塑料却有高透明性,ABS为无定形但却并不透明。

3、在模具设计及选择注塑机时应注意对结晶型塑料时,料温上升到成型温度所需的热量多,要用塑化能力大的设备。

二、收缩率影响热塑性塑料成型收缩的因素如下:1、塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热固性塑料大。

2、塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。

由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。

所以壁厚、冷却慢、高密度层厚的则收缩大。

另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。

3、进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及成型时间。

直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进料口宽及长度短的则方向性小。

距进料口近的或与料流方向平行的则收缩大。

4、成型条件模具温度高,熔融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。

模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部分收缩量大小及方向性。

第五章 聚合物加工中的物理化学变化

第五章 聚合物加工中的物理化学变化

4、低分子物和固体杂质的影响
固体杂质的影响:阻碍或促进结晶作用。起促进作用的 类似于晶核,能形成结晶中心,称为成核剂。 溶剂等的作用: 在聚合物熔体结晶过程中起晶种作用 的试剂,也为成核剂,如:有机芳酸及盐类(苯甲酸、苯甲 酸镉、对羟基苯甲酸及其钠盐),加入后能加快结晶速率, 生成的球晶尺寸小,材料刚性增加,力学性能提高,透明性 提高。溶剂CCl4扩散到聚合物中,能使其在内应力作用下的 小区域加速结晶。
塑性形变
当外力克服屈服应力时使高弹态下的大分 子链发生结缠和滑移。
B Y
A
应 力
B
Y A
y E
A Y
应变
B
当σ < σy时,只能对材料产生高弹形变,取向程度低、取向结 构不稳定。 当σ>σy时并持续作用于材料,能对材料进行塑性形变,它迫 使高弹态下大分子作为独立单元发生解缠和滑移,因为不可逆, 所以取向结构稳定、取向度高。
3、结晶取向和非结晶取向
根据聚合物取向时的结构状态不同取向分为结晶 取向和非结晶取向。 结晶取向是指发生在部分结晶聚合物材料中的取向; 非结晶取向则指无定形聚合物材料中所发生的取向。
4、单轴取向和双抽取向
根据取向的方式不同,取向又可分为单轴取向和双轴取向 (又称平面取向)。 单轴取向是指取向单元沿着一个方向做平行排列而形成 的取向状态; 双轴取向则指取向单元沿着两个互相垂直的方向取向。
2、塑化温度及时间
结晶型聚合物在成型过程中必须要经过熔融塑化阶段。
塑化中熔融温度及时间也会影响最终成型出的制品的结 晶结构。 塑化: 指聚合物在设备中加热达到充分的熔融状态,使之具 有良好的可塑性。
若塑化时熔融温度低,熔体中就可能残存较多的晶核;

塑料原材料基础—塑料的三个形态

塑料原材料基础—塑料的三个形态

塑料原材料基础—塑料的三个形态大家好,今天继续讲一下塑料的基础,上次我们说到了塑料的结晶与非结晶,今天我们讲一下塑料的三个形态:玻璃态、高弹态、粘流态。

高聚物在不同温度下会呈现三种不同的物理状态:玻璃态、高弹态、黏流态。

不同的状态具有不同的力学性能,这对高分子材料的成型加工和使用范围都有很大影响。

(1)玻璃态Tg是高聚物的重要特征温度,叫玻璃化温度。

它不是一个固定的温度值,而是随测试方法和条件不同而变化的。

当温度低于Tg时,高聚物是刚硬的,处于玻璃态,是坚硬的固体。

此时,由于分子运动能量低,链段运动被冻结,只能使主链内的键长和键角有微小的改变。

在宏观上表现为聚合物在受力方向上有很小的弹性变形,由于弹性模量高,形变值小,所以处于玻璃态的聚合物只能进行一些车、铣、削、刨等机械加工。

这一聚集态也是聚合物的使用态。

材料使用的下限温度称为脆化温度,低于脆化温度时,材料受力容易发生断裂破坏。

(2)高弹态在玻璃化温度Tg和勃流温度Tf之间,聚合物处于高弹态,也叫橡胶态。

处于高弹态的高聚物有以下重要特性:①可回复的弹性变形量高达100%~1000%,但变形的恢复不是瞬时完成的。

而金属材料的普弹形变不超过1%。

②弹性模量比普通弹性材料小三个数量级,一般只有lOkgf/cm²的数量级,且随绝对温度升高而升高。

③在快速拉伸时(绝热过程),高聚物温度上升,而金属材料温度下降。

如果把橡胶薄片拉长,把它贴在嘴唇或面颊上,就会感到橡皮在伸长时发热,回缩时吸热。

④形变与时间有关,橡胶受到外力(应力恒定)压缩或拉伸时,形变总是随时间而发展,最后达到最大形变,这种现象叫蠕变。

原因:由于橡胶是长链分子,整个分子的运动都要克服分子间的作用力和内摩擦力,高弹形变就是靠分子链段运动来实现的。

整个分子链从一种平衡状态过渡到与外力相适应的平衡状态,可能需要几分钟、几小时甚至几年。

也就是说,在一般情况下形变总是落后于外力,所以橡胶形变需要时间。

4 聚合物成型加工过程的物理和化学变化

4 聚合物成型加工过程的物理和化学变化

聚合物在管道中和模具中的流动取向
取向结构的分布规律
1. 在垂直于流动方向上取向度有差异
等温流动区合物制品中取 向度的分布(1)
2. 流动方向上取向度有差异 模腔中,流动方向上分子的取向程度是 逐渐减小 取向程度最大的不在浇口处,而在距浇 口不远的位置上 挤出成型中,有效取向主要存在较早冷 却的次表层。
二、影响降解的因素
(一)聚合物的结构
1.主链上与叔碳原子或季碳原子相邻的键不 稳定。 伯碳>仲碳>叔碳>季碳 2. 双键β位置上单键不稳定,使降解程度提 高,如橡胶易降解。 3. 取代基:分布(规整使强度提高);极 性(使强度提高);氯原子(易分解)
4. 主链含芳杂环、饱和环和结晶的 聚合物不易降解。 5. 含有C杂链结构,如-O-、-O-CO、 -NH-CO-、-NH-COO-等容易降解。 6. 杂质水,金属,易降解,杂质是 降解的催化剂。
应力对结晶速度和结晶度的影响
剪切力、拉伸力的作用使分子取向, 形成有序排列,结晶速度提高,结晶度 提高; 静压力提高使分子链运动减弱,不 利于分子链运动,相当于提高了结晶温 度,提高了结晶度; 但应力作用时间不能太长,否则取 向结构松弛,结晶速度会下降。
应力对晶体结构和形态的影响
τ ↑ ,σ ↑ ,纤维状晶体。 随γ ↑, ε↑,伸直链晶体↑,Tm ↑ 低压时,生成大而完善的球晶,脆 高压时,小而形状不规则的球晶,韧
(二)温度的影响(热降解)
降解的反应速度随T升高而增大,
K d Ad e

Ed RT
T升高,加热时间长,降解快
温度对PS降解反应速率的影响
(三)氧的影响 O2在高温下→过氧化结构,键能弱,不稳 定,Ed低→易降解 饱和聚合物不易形成过氧化物,只是薄弱 点形成过氧化结构;不饱和聚合物双键活 跃,易氧化形成过氧化物,易降解。

聚合物加工过程中的物理和化学变化-结晶

聚合物加工过程中的物理和化学变化-结晶

球晶的形成过程 聚合物从浓溶液中析出或由熔体冷却时。熔体中的有序 区域(链束)形成尺寸很小的晶坯(结晶团簇),晶坯长大 到某一尺寸时转变为初始晶核;大分子链通过热运动在晶核 上重排而形成最初的晶片。
初始晶片沿晶轴方向生长(此时晶轴与球晶半径相同), 接着出现偏离球晶半径方向的生长(即纤维状生长),并逐 渐形成初级球晶。球晶在生长过程中形成双眼结构,初级球 晶长大后即形成球晶。
b.聚合物在熔融状态的停留时间,高温下停留时间越长结 晶结构破坏越严重,残存的晶核越少
在熔融温度高和熔融时间长,晶体冷却时晶核的生成主要 是均相成核,结晶速度慢,结晶尺寸大。 在熔融温度低和熔融时间短,晶体冷却时晶核的生成主要 是异相成核,结晶速度快,结晶尺寸小而均匀,有利于提高制 品的力学强度、耐磨性和热畸变温度。
长大过程中球晶与周围的球晶相连接,在球晶之间形成直 线切截的界线。球晶的外形为具有直线状边界的多面体。
球晶由无数微小晶片按结晶生长规律向四面八方生长形成 的一个多晶聚集体,球晶中的晶片有扭曲的形状并相互重叠。
(3)伸直链晶片 由完全伸展的分子链平行规整排列而成的小片状 晶体,晶体中分子链平行于晶面方向,晶片厚度基本 与伸展的分子链长度相当。这种晶体主要形成于极高 压力下。如:聚乙烯在温度高于200℃,压力大于 400Mpa结晶时,可以得到伸直链晶体。 最稳定,可大幅提高聚合物的力学强度,如果能 提高制品中伸直链结构警惕的含量,可以有效的提高 聚合物的力学强度,但在常见的成型方法中,因压力 不足很难使聚合物形成伸直链晶体。
5、二次结晶及后结晶 一次结晶完后在一些残留的非晶区和晶体不完整部分即晶体 间的缺陷或不完善区域,继续进行结晶和进一步完整化过程。 二次结晶速度很慢,需要很长时间。 后结晶:聚合物加工过程中一部分来不及结晶的区域在加工 后发生的继续结晶过程。发生在球晶界面,是初始结晶的继续。 二次结晶及后结晶都会使制品的性能和尺寸在使用和储存中 发生变化,影响制品的正常使用。 热处理(退火): 在 Tg~Tm间对制品进行热处理,可加速聚合物二次结晶和后 结晶的过程,是一个松弛过程,通过适当的加热使分子链段加 速重排以提高结晶度和使晶体结构趋于完善。 热处理温度控制在最大结晶温度Tmax ,接近于等温和静态 的结晶过程。 通过热处理结晶度提高,晶体结构完善,制品的尺寸和形 状稳定性提高,内应力降低;耐热性提高。

塑料结晶温度-概述说明以及解释

塑料结晶温度-概述说明以及解释

塑料结晶温度-概述说明以及解释1.引言1.1 概述塑料结晶温度是指塑料在一定条件下,通过热处理或冷却过程使分子有序排列而发生结晶的温度。

塑料材料的结晶过程是其在加热时分子链的有序排列,使其形成规则的结晶区域,并最终达到熔融状态。

塑料结晶温度的研究对于理解塑料材料的热处理过程、改善塑料制品的性能,以及指导塑料制品的加工工艺具有重要意义。

塑料的结晶温度受多种因素的影响,包括塑料分子的化学结构、分子链的长短和支化程度、分子间力的作用等。

对于不同的塑料材料,其结晶温度可能会有较大的差异。

因此,准确测定塑料的结晶温度对于研究和开发新型塑料材料以及优化塑料制品的性能至关重要。

目前,有许多方法被用于测定塑料的结晶温度,包括差示扫描量热法(DSC)、热机械分析法(TMA)、X射线衍射法等。

这些方法可以通过测量塑料材料的热性能、结构变化和晶体形态来确定其结晶温度。

同时,结晶温度的测定也可以借助计算机模拟和数值模型来预测和优化。

塑料结晶温度的应用领域广泛。

在塑料制品的加工工艺中,了解塑料的结晶温度有助于选择合适的加工温度和冷却条件,从而提高塑料制品的成品率和质量。

此外,塑料结晶温度还在塑料改性、塑料复合材料和塑料可降解材料等领域发挥着重要作用。

随着对塑料结晶温度研究的深入,我们可以预期在未来的研究中,人们将探索更多的塑料结晶温度测定方法、深入理解塑料结晶的机理以及发展更具性能优越的塑料材料。

1.2文章结构文章1.2 文章结构:本文将按照以下结构进行叙述:第一部分是引言部分,主要对本文的研究领域进行概述,介绍塑料结晶温度的背景和重要性。

同时,还将呈现文章的整体结构安排和目的,为读者提供一个清晰的导引。

第二部分是正文部分,将详细讨论塑料结晶温度的定义、影响因素、测定方法和应用领域。

在2.1节,将解释塑料结晶温度的定义,并探讨其在塑料工业中的重要性。

在2.2节,将分析影响塑料结晶温度的因素,包括塑料的分子结构、热处理条件等。

塑料三态的微观结构和工艺特性

塑料三态的微观结构和工艺特性
• 2、高弹态
• 处于高弹态下的塑料分子,动能增加,链段展开成网状,但分子 的运动仍 维持在小链段的旋转,链与链之间不发生位置移动.受外力作用时可产 生缓慢形变,当外力除去后,又是慢慢恢复原状.在这种状态下,塑料具有 一种类似橡胶的弹性,所以又称橡胶态.通常称为弹性或橡胶体的高聚 物,便函是在室温下处于高弹态的高聚物.
ABS 低压聚乙烯 聚碳酸酯
抗张强度 (Mpa)
横向
直向
25.5
44.1
20.6
22.5
33.8
70.6
28.4
29.4
63.7
64.2
伸 长 率 (%)
横向
直向
0.9
1.6
3.0
17.0
1.0
2.2
30.0
72.0


PDF created with pdfFactory Pro trial version
塑料三态的微观结构和工艺特性
• 1、玻璃态 • 处于玻璃态下的塑料分子,链段运动基本上处于停止的状态,分子在自身
的位置上振动,分子链缠绕成团状或卷曲状,相互交错,紊乱无序.在玻璃态 时分子的聚集状态如下图所示:
PDF created with pdfFactory Pro trial version
• 正常生产过程中的塑料,不般不会超过分解温度,但如果料筒内壁或螺 杆损伤后有死角,造成长时间停滞或受到剧烈的挤压剪切,就有可能发 生分解,注塑出来的制件,往往带有焰火状黄斑.
PDF created with pdfFactory Pro trial version
• 1-注塑机料筒; 2-树脂注入模具(实际上由主流道、浇口组成);
• 3-模具(型腔内部);

BOPP薄膜生产过程中的取向与结晶

BOPP薄膜生产过程中的取向与结晶
[2] ; 在 的结晶和较大的结晶颗粒都有可能导致破膜
横拉后热处理定型阶段, 为了提高刚性和强度, 要求 产生并加速结晶。 (也 !! 的最大结晶速率的温度大约为 / & .*+可以根据 345 测定的结果确定) , 温度越高或越低 如在 +- 或 +, 附近, 越难结晶, 在拉伸过程中要防止 预热、 拉伸时结晶度急剧增加, 因此不要在 !! 最大 结晶速度的温度区域内选择拉伸温度, 最好在结晶 开始熔融、 分子链能够运动的温度下进行拉伸, 即最 大结晶速度的温度到熔点之间。实际生产时应根据 !! 的热力学特性来相应地调整生产工艺。 ( & " 结晶对 $%!! 性能的影响
[%] 以大大提高取向方向 $$ 的力学性能 ; 双向拉伸也
择、 成核剂的使用等。 在 $$ 高性能工程化和透明改性方面, 如何使 均质化也是重要改性途径之一。 $$ 结晶微细化、
[ 参 考 文 献 ]
[,] 朱新远 ! 我国 *+$$ 薄膜现状及专用料的开发 [ -] ! 广州 化工, (,) : .’’’, .) .) ! [.] 中国包装技术协会塑料包装委员会第六届委员会年会 暨塑料包装新技术研讨会论文集 [ /] 中国包协 ! 苏州: 塑料包装协会, .’’. ! ["] 尹燕平 ! 双向拉伸塑料薄膜 [ 0] 化学工业出版 ! 北京: 社, ,111 ! [2] 金日光, 华幼卿 ! 高分子物理 [ 0] 化学工业出版 ! 北京: 社, ,11, ! [&] 吴耀根, 郑少华, 王云等 ! 专利, /3,,#11,,4! [#] 汤明, 王亚辉, 秦学军 ! *+$$ 专用料结构表征及性能研 究 [ -] ,.) : ! 塑料加工应用, ,111( ,! [%] 申开智, 胡文江, 向子上等 ! 聚丙烯在单向拉伸力场中 形成双向自增强片材及其结构与性能的研究 [ -] ! 高分 子材料科学与工程, (,) : .’’., ,) ,2& ! [)] 李军, 王文广, 高雯 ! 塑料透明改性 [ -] ! 塑料科技, ,111, (,) : ,.1 ., !

高分子物理考研习题整理02高分子的聚集态结构

高分子物理考研习题整理02高分子的聚集态结构

高分子物理考研习题整理02高分子的聚集态结构1 高分子结晶的形态①指出聚合物结晶形态的主要类型, 并简要叙述其形成条件有五种典型的结晶形态。

单晶: 只能从极稀的聚合物溶液中缓慢结晶得到。

球晶: 从浓溶液或熔融体冷却时得到。

伸直链晶体: 极高压力(通常需几千大气压以上)下缓慢结晶。

纤维状晶体:受剪切应力(如搅拌), 应力不足以形成伸直链片晶时得到。

串晶: 受剪切应力(如搅拌), 后又停止剪切应力时得到。

②让聚乙烯在下列条件下缓慢结晶, 各生成什么样的晶体?(1)从极稀溶液中缓慢结晶;(2)从熔体中结晶;(3)极高压力下结晶;(4)在溶液中强烈搅拌结晶(1)从极稀溶液中缓慢结晶, 得到的是单晶。

1957年Keller在极稀溶液中, 于Tm附近缓慢地冷却或滴加沉淀剂使聚乙烯结晶, 得到菱形的聚乙烯折叠链的单晶。

(2)从熔体中结晶, 得到的是球晶, 球晶的基本单元仍是折叠链晶片。

(3)极高压力下结晶, 得到的是伸直链晶体。

例如, 聚乙烯在226℃、4800atm下结晶8h, 得到完全伸直链的晶体, 其熔点由原来的137℃提高的140.1℃, 接近平衡熔点144℃。

(4)在溶液中强烈搅拌结晶, 得到的是串晶。

因为搅拌相当于剪切应力的作用, 使结晶与取向同时进行。

串晶由两部分组成, 中间为伸直链的脊纤维i, 周围是折叠链晶片形成的附晶。

由于结晶是在分子链的主链上成核, 在垂直方向上长大, 因此得到的是串晶。

③聚合物因结晶方法、热处理和力学处理不同, 呈现出不同的结晶形态, 简述下列各种形态结构的特征。

(1)单晶(2)球晶(3)拉伸纤维晶(4)非折叠的伸直链晶体(5)串晶(1)单晶: 厚为10-50nm的薄板状晶体(片晶), 有菱形、平行四边形、长方形、六角形等形状, 分子链呈折叠链构象, 分子链垂直于片晶表面;(2)球晶: 球形或截顶的球晶, 由折叠链片晶从中心往外辐射生长组成;(3)拉伸纤维晶: 纤维状晶体中分子链完全伸展, 但参差不齐, 分子链总长度大大超过分子链平均长度;(4)非折叠的伸直链晶体:厚度与分子链长度相当的片状晶体, 分子链呈伸直链构象;(5)串晶:以纤维状晶作为脊纤维, 上面附加生长许多折叠链片晶。

注塑成型工艺过程和特性之结晶性塑料

注塑成型工艺过程和特性之结晶性塑料

文章来源:注塑成型工艺过程和特性之结晶性塑料结晶性塑料有明显的熔点,固体时分子呈规则排列。

规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。

常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。

结晶对塑料性能的影响1)力学性能结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。

2)光学性能结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。

减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。

3)热性能结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM时,呈现粘流态。

因此结晶性塑料的使用温度从Tg(玻璃化温度)提高到TM(熔融温度)。

4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。

影响结晶的因素有哪些?1)高分子链结构,对称性好、无支链或支链很少或侧基体积小的、大分子间作用力大的高分子容易相互靠紧,容易发生结晶。

2)温度,高分子从无序的卷团移动到正在生长的晶体的表面,模温较高时提高了高分子的活动性从而加快了结晶。

3)压力,在冷却过程中如果有外力作用,也能促进聚合物的结晶,故生产中可调高射出压力和保压压力来控制结晶性塑料的结晶度。

4)形核剂,由于低温有利于快速形核,但却减慢了晶粒的成长,因此为了消除这一矛盾,在成型材料中加入形核剂,这样使得塑料能在高模温下快速结晶。

结晶性塑料对注塑机和模具有什么要求1)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相应提高。

2)结晶性塑料熔点范围窄,为防止射咀温度降低时胶料结晶堵塞射咀,射咀孔径应适当加大,并加装能单独控制射咀温度的发热圈。

3)由于模具温度对结晶度有重要影响,所以模具水路应尽可能多,保证成型时模具温度均匀。

塑料成型工艺期末考试重点

塑料成型工艺期末考试重点

1、塑料成型是将塑料(聚合物及所需助剂)转变为实用材料或塑料制品的一门工程技术。

2、离模膨胀的原因:聚合物熔体在流动时,由于大分子构象的变化,产生可回复的弹性形变,因而发生了弹性效应。

3、熔体破碎现象原因:当剪切速率过大超过一定极限值时,从模口出来的挤以物,其表面变得粗糙、失去光泽、粗细不匀和弯曲,这种现象被称为“鲨鱼皮症”。

此时如再增大剪切速率,挤出物会成为波浪形、竹节形或周期件螺旋形,在极端严重的情况下,会断裂。

熔体破碎定义:挤出物表面出现凹凸不平或外形发生畸变或断裂的总称。

4、结晶:是大分子链段由无规堆砌向三维空间有序排列的过程。

结晶度:聚合物结晶区域所占的比例。

结晶对性能的影响:(1)高聚物结晶后,抗透气性、耐酸碱腐蚀性、耐氧老化、耐油性均有提高。

另外结晶可提高塑料纤维类高聚物的热变形温度,即耐高温、耐热性。

(2)物理机械性能冲击强度降低、拉伸强度提高、硬度增加。

结晶度对密度与光学性质的影响(3)光学性能及产品尺寸的稳定性结晶度越高,晶粒尺寸越大,透光率下降。

结晶度越高,产品的尺寸越稳定。

5、拉伸取向:聚合物在受到外力拉伸时,大分子、链段或微晶等结构单元沿受力方向拉伸取向。

拉伸定向:在玻璃化温度和熔点之间,拉伸可以促进分子做整齐排列,即拉伸定向。

6、降解的原因:聚合物在热、力、氧、水、光、超声波和核辐射等作用下,往往会发生降解的化学反应,从而使其性能劣化。

降解的实质:(1)断链(2)交联(3)分子链结构的改变(4)侧基的改变(5)综合作用7、交联的定义:成型时,这些分子通过自带的基团的作用或自带反应点与交联剂的作用而交联在一起。

8、增塑剂的作用:经过增塑的聚合物,其软化点(或流动温度)、玻璃化温度、脆性、硬度、抗张强度、弹性模量等均将下降,而耐寒性、柔顺性、伸长率等则会提高。

增塑机理:聚合物大分子链常会以次价力而使它们彼此之间形成许多聚合物—聚合物的联结点,从而使聚合物具有刚性。

这些联结点在分子热运动中是会解而复结的,而且十分频繁。

聚合物加工过程中的物理和化学变化

聚合物加工过程中的物理和化学变化

2)利于结晶的因素
(1)链结构简单、重复结构单元较小、相对分子量适中 (2)主链上不带或只带极少的支链; (3)主链化学对称性好,取代基不大且对称; (4)规整性好;
(5)高分子链的刚柔性及分子间作用力适中。
2)结晶聚合物的基本结构模型
A 纓状微束模型 B 折叠链模型 C 隧道-折叠链模型 D 插线板模型
8)球晶径向生长速率与温度之间的关系
圆括号: 迁移项,随温度升高而增大; 方括号:成核项,与成核热力学条件有关
9)结晶速度常数K
定义:结晶达到50%所需时间 的倒数
K值
结晶快
橡胶能否结晶? 为什么?
10)二次结晶和后结晶
二次结晶:是在一次结晶完了后在一些残留的 非晶区域和晶体不完整部分即晶体间的缺陷或不完 善区域,继续进行结晶和进一步完整化的过程。
第4章 聚合物加工过程的物理和化学变化
一、聚合物的结晶 二、聚合物的取向 三、聚合物的降解 四、聚合物的交联
问题:
1、聚合物成型过程中有哪些物理和化学 变化?
2、哪些变化是有益的,哪些是有害的?
3、如何利用有益的物理和化学变化?如 何防止有害变化?
一、成型加工过程中聚合物的结晶
结晶的发生:塑料成型、薄膜的拉伸、纤维纺丝过 程
球晶
球晶的晶片有扭曲的 形状并相互重叠。
球晶中的缺陷 连接链
非晶区(无序或不规) 无规链簇
链末端 不规则折链等
不能结晶的分 子链等
杂质对球晶生长的影响
杂质陷入导致晶体生 长分叉示意图
杂质包括:不规则的分子链、 较短分子链(低分子量)、 小分子矿物质等
球晶在生长过程中,最 为突出的特点是连续发生非 结晶学上的小角度分叉,正 是靠这些径向发射生长晶片 的小角度分叉,才能填满球 状的空间,并且使条状片晶 总是保持与半径方向相平行。

塑料成型基础试题

塑料成型基础试题

1、聚合物具有一些特有的加工性质,如有良好的—可模塑性—可挤压性__,—可纺性—和—可延性__。

2、—熔融指数—是评价聚合物材料的可挤压性的指标。

3、分别写岀下列缩写对应的中文:PS:聚苯乙烯,PMMA:聚甲基丙烯酸甲酯,PE:聚乙烯,PP:聚丙烯,PVC 聚氯乙烯,PC聚碳酸酯,SBS:苯乙烯丁二烯苯乙烯共聚物,PA: 聚酰胺,POM 聚甲醛4、按照经典的粘弹性理论,线形聚合物的总形变由普弹性变、推迟高弹形变、粘弹性变________ 三部分组成。

5、晶核形成的方法:均相成核、异相成核。

6、单螺杆挤岀机的基本结构:传动部分、加料装置、料筒、螺杆、机头和口模、辅助设备。

7、生胶按物理性状通常分为捆包胶、颗粒胶、粉末胶、孚L —和液体胶。

1. 聚合物加工转变包括:(形状转变)、(结构转变)、(性能转变)。

2. 写岀熔融指数测量仪结构示意图各个结构的名称:(热电偶测温管)、(料筒)、(岀料孔)、(保温层)、(加热器)、(柱塞)、(重锤)。

3. 按照塑料塑化方式的不同,挤岀工艺可分为(干法)和(湿法)二种;按照加压方式的不同,挤岀工艺又可分为(连续式)和(间歇式)两种。

4. 填充剂按用途可分为两大类:(补强填充剂)、(惰性填充剂)。

5. 测硫化程度的硫化仪:(转子旋转振荡式硫化仪)。

6. 合成纤维纺聚合物的加工方法:(熔融法)和(溶液法)。

2、聚合物流动过程最常见的弹性行为是:端末效应和不稳定流动。

3、注射过程包括加料、塑化、注射、冷却和脱模五大过程。

5、开放式炼胶机混炼通常胶料顺序:生胶(或塑炼胶)、小料、液体软化剂、补强剂、填____________6、常用的硫化介质有:饱和蒸汽、过热蒸汽、过热水、热空气以及热水。

____7、螺杆结构的主要参数:t、W、h分别指的是螺距、螺槽宽度、螺槽深度。

1、非牛顿流体受到外力作用时,其流动行为有以下特征:(剪应力)和(剪切速率)间通常不呈比例关系,因而剪切粘度对剪切作用有依赖性;非牛顿性是(粘性)和(弹性)行为的综合,流动过程中包含着不可逆形变和可逆形变两种成分。

第41节:结晶性塑料注塑工艺要点

第41节:结晶性塑料注塑工艺要点

第四十一问:结晶性塑料注塑工艺要点一、结晶性塑料的定义:分子链部分形成有序排列、冷却后组成规整结晶结构的塑料称为结晶性塑料。

通常把结晶度在50%以上的聚合物称为结晶性塑料,一般而言,结晶性塑料的结晶度在50%~80%间。

塑料按结晶性来分有结晶性塑料和非结晶性塑料,结晶塑料的分子链是有规则排列,非结晶形塑料分子链是无定型排列。

常见结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA(包括PA6、PA66、PA46、PA9T、PA6T、PA1010、PA610、PARA、PA MXD6等)、聚亚胺PAI、聚四氟乙烯PTFE、氯化聚醚CPT、聚苯硫醚PPS、液晶树脂LCP、聚对苯二甲酸乙二醇酯PET、聚对苯二甲酸丁二醇酯PBT、四氟乙烯—全氟烷氧基乙烯基醚共聚物PFA、乙烯-四氟乙烯共聚物ETFE、脂肪族聚酮POK、聚醚醚酮PEEK、聚4-甲基戊烯TPX、间规聚苯乙烯SPS等等。

结晶性塑料在注塑生产方面有比较明显的特性,以下简单介绍:二、结晶性塑料的特性:1.力学性能:结晶性塑料分子排列规则,通常呈许多线状、细长的高分子集合态,分子间的引力相互作用力强,故有韧性强的特性;结晶度越大,材料脆性高,产品的屈服强度、弹性模量、刚硬度随之提高,但同时延展性较差,抗冲击性能降低。

2.光学性能:由于结晶塑料的分子结晶面与非结晶面之间会产生光散射,所以其透明性能不高,常会不透明状态;一般说来,结晶性塑料是不透明的,但有以下几种情况特别:◎尼龙经非结晶共聚改性后,有透明尼龙,此时巳转化为非结晶性塑料;◎PP、PE、PET等材料的吹塑等级是透明或半透明的,因为产品较薄的原因。

◎结晶性塑料聚4-甲基戊烯TPX却为透明材料。

3.热学性能:结晶性塑料有明显的熔点,在温度上升过程不出现高弹态,当温度上升到熔融温度TM时,呈粘流态;塑料的结晶温度是在熔点以下、玻璃化温度以上,不同的塑料种类有不同的最快结晶温度点。

如PP料的最快结晶温度128℃。

分子结构与结晶能力、结晶速度

分子结构与结晶能力、结晶速度


Company Logo
Logo (二)共聚物的结晶能力
共聚物的结晶能力主要取决于共聚单元对分子链的 对称性和规整性的影响。 1、无规共聚物:无规共聚通常会破坏链的对称性 和规整性,从而使共聚物结晶能力降低。 (1)两种共聚单体的均聚物若有相同类型的晶体 结构,则共聚物能结晶,而晶胞参数随共聚物的组 成而发生变化。 (2)两种共聚单元的均聚物若有不同的晶体结构, 但其中一种组分比例高很多时,共聚物仍可结晶; 而两者比例相当时,则失去结晶能力,如乙丙共聚 物。
但冲击强度则不仅与结晶度有关还与球晶的尺寸大小有关球晶尺寸小材料的冲击logowwwthemegallerycomcompanylogo?聚合物的结晶度高达40以上时由于晶区相互连接贯穿整个材料因此它在tg以上仍不软化其最高使用温度可提高到接近材料的熔点这对提高塑料的热形变温度是有重要意义的
Logo
2、分子链的柔顺性
一定的链的柔顺性是结晶时链段向结晶表面扩散和 排列所必需的,链的柔顺性不好,将在一定程度上 降低高聚物的结晶能力。如聚乙烯的分子链柔性很 好,所以其结晶能力很强。而聚对苯二甲酸乙二醇 酯的主链上含有苯环,使其分子链的柔顺性下降, 结晶能力降低,只有在熔体缓慢冷却时才能结晶。 聚碳酸酯主链上苯环密度更大,不能结晶。但柔顺 性太大时,分子链虽容易向晶体表面扩散,也容易 从晶格上脱落,也不能结晶,如二甲基硅氧烷。

Company Logo
Logo
例如,聚乙烯和聚四氟乙烯,主链上全部是碳原 子,没有杂原子,也没有不对称原子。碳原子上 是清一色的氢原子或者氟原子,分子结构简单、 对称又规整,所以非常容易结晶。聚乙烯的最高 结晶度可达95%,且结晶速度极快。即使在液氮中 淬火,也得不到完全非晶态的样品。 而一般聚合物的结晶度仅50%左右。

材料蒸镀成膜以后结晶的原因

材料蒸镀成膜以后结晶的原因

材料蒸镀成膜以后结晶的原因
材料蒸镀成膜后结晶的原因可以从多个方面来解释。

首先,蒸
镀过程中,材料会以原子或分子的形式沉积在基底表面上,然后在
表面扩散并重新排列成晶体结构。

这种重新排列是由于原子或分子
之间的相互作用力,比如范德华力、静电力等,导致了结晶的形成。

其次,蒸镀过程中的温度和压力等条件也会影响材料的结晶过程。

高温有利于原子或分子的扩散和重新排列,有助于形成更完整的晶
体结构。

同时,压力也会影响原子或分子的排列方式,从而影响最
终的结晶形态。

此外,材料的化学成分和晶体结构本身也会影响其
在蒸镀后的结晶行为。

不同的材料具有不同的晶体结构和晶格参数,这将直接影响蒸镀成膜后的结晶特性。

总的来说,材料蒸镀成膜后
结晶的原因是多方面的,包括原子间相互作用力、温度压力条件、
化学成分和晶体结构等因素的综合影响。

这些因素共同作用下,导
致了材料蒸镀成膜后的结晶现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文摘自再生资源回收-变宝网()塑料成型过程中如何结晶形成
在聚合物成型过程中,不仅经历加热和冷却过程,而且受到剪切应力、拉伸应力等作用。

料制品也随着发生一系列的物理和化学变化。

这些变化主要包括结晶、取向、降解和交联它们对塑料制品的质量和性能有着决定性的影响。

以下各节格分别加以讨论。

塑料成型过程中熔体受到剪切应力或拉伸应力作用,产生流动、取向等,所以在成型过程中聚合物的结晶是动态结晶。

同时,不仅制品中同一区域的熔体温度随时间延长而降低,而且同一时间不同区域的制品所处的温度也不同,因此成型中聚合物结晶还是非等温过程。

结晶聚合物的形态结构不仅与聚合物本身的分子结构有关,还与其结晶形成的历史密切相关。

1、冷却速度的影响
温度对聚合物结晶有着显著的影响。

在Tm—Tg的范围内,结晶温度稍有变化,即使变化1℃,也可使结晶速度相差几倍到几十倍。

因此,在塑料成型过程中温度从Tm
降低到Tg以下时的冷却速度,决定着制品是否能形成结晶以及结晶的速度、结晶度、晶体的形态和尺寸等。

冷却速度慢,聚合物的结晶过程从均相成核作用开始,在制品中容易形成大的球晶。

而大的球品结构使制品发脆,力学性能下降。

冷却程度不够容易使制品扭曲变形。

如果冷却速度过快,聚合物熔体的过冷程度大,骤冷使聚合物来不及结晶而成为过冷液体的非品结构,以致制品体积松散。

在厚制品的内部由于冷却温度稍慢仍可形成微晶结构,使得制品内外结晶程度不均匀,制品会产生内应力。

同时,由于制品中的微品和过冷液体结构不稳定,成型后的继续结晶会改变制品的形状尺寸和力学性能。

在塑料成型中常采用中等的冷却速度,控制冷却温度在最大结晶温度和rl之间。

塑料制品表面层能在较快的时间内冷却成为硬壳。

冷却过程中接近表层的区域先结晶,内层因在较长的时间内处于Tg以上的温度范围,有利于晶体的生长。

因此,制品的晶体结晶完整,结构稳定,外观尺寸稳定性好。

2、退火
退火(热处理)的方法能够使结晶聚合物的结晶趋于完善(结晶度增加),将不稳定结晶结构转变为稳定的结晶结构,微小的晶粒转变为较大的品粒等。

退火可明显使晶片厚度增加,熔点提高,但在某些性能提高的同时又可能导致制品“凹陷”或形成空洞及变脆。

此外,退火也有利于大分子的解取向和消除注射成型等过程中制品的冻结应力。

3、应力、应变作用的影响
塑料在挤出、注射、压延、模压和薄膜拉伸等成型过程中,受到高流体静压力的作用而使聚合物的结晶作用加快。

在拉伸和剪切应力作用下,大分子沿应力或应变的方向伸宣并有序排列,有利于诱发晶核形成和晶体的生长,使结晶速率增加,片晶厚度增加。

例如,在500MPa的压力下,聚合物可能生成完全伸直链晶体。

聚合物熔体的结晶度随着应力的增加而增大,并且压力能使熔体结晶温度升高。

本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;
变宝网官网:/tags.html?qx
买卖废品废料,再生料就上变宝网,什么废料都有!。

相关文档
最新文档