高中数学常见思想方法总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中常见数学思想方法
方法一 函数与方程的思想方法
函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.
函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.
【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.
(1)求公差d 的取值范围;
(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.
【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.
【解】(1) 由3a =12a d +=12,得到1a =12-2d ,
所以12S =121a +66d =12(12-2d )+66d =144+42d >0,
13S =131a +78d =13(12-2d )+78d =156+52d <0.
解得:2437
d -<<-. (2)解法一:(函数的思想)
n S =21115(1)(12)222
na n n d dn d n ++=+- =22
124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦
因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大.
由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝
⎭⎣⎦最小,所以6S 最大. 解法二:(方程的思想)
由0d <可知12313a a a a >>>>.
因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,
则n S 就是1S ,2S ,,n S 中的最大值.
121300S S >⎧⎨<⎩⇒1150260
d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩, 故在1S 、2S 、…、12S 中6S 的值最大.
【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.
【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15
92
2=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y
(1)设动点P 满足422=-PB PF ,求点P
(2)设3
1,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 【解】 (1)由题意知)0,2(F ,)0,3(A ,设,(y x P 4)3()2(2222=---+-y x y x
化简整理得2
9=x . (2)把21=x ,312=
x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(3
1:+=x y AM ①
直线)3(6
5:--=x y BN ② ①、②联立得107,
3T ⎛⎫ ⎪⎝⎭
. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)80
40,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)20
20,20)20(3(222+-+-m m m N 直线2222222224020203(20)8020:3(80)3(20)20208020
m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭
令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).
【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.
方法二 数形结合的思想方法
正确利用数形结合,应注意三个原则:
(1)等价性原则
数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.
(2)双向性原则
数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.
(3)简单性原则
有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.