全等三角形的概念与性质
全等三角形的概念、性质与判定
1. 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。
3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。
4. 常见的一个三角形经过变换得到另一个全等三角形。
(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。
注意:“边边角”不一定成立。
反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。
【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。
分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。
全等三角形的性质及判定(经典讲义)
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
全等三角形概念与性质
全等三角形概念与性质三角形是几何学中的基本图形之一,最常见的是直角三角形、等腰三角形和等边三角形。
除了这些特殊的三角形,还有一种特殊的三角形被称为“全等三角形”。
本文将讨论全等三角形的概念和性质。
概念:全等三角形是指具有相同的形状和大小的两个三角形。
换句话说,如果两个三角形的对应边长相等,对应角度相等,则这两个三角形是全等三角形。
全等三角形可以通过平移、旋转和翻转来重合。
性质一:对应边长相等全等三角形的对应边长相等。
如果两个三角形ABC和DEF是全等三角形,那么AB = DE,BC = EF,AC = DF。
性质二:对应角度相等全等三角形的对应角度相等。
如果两个三角形ABC和DEF是全等三角形,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。
性质三:对应的高、中线、角平分线相等在全等三角形中,对应的高、中线和角平分线也相等。
也就是说,如果两个三角形ABC和DEF是全等三角形,那么它们的对应的高H1H2,中线M1M2和角平分线L1L2分别相等。
性质四:面积相等全等三角形的面积也相等。
如果两个三角形ABC和DEF是全等三角形,那么它们的面积相等,可以用面积公式S = 1/2 * 底边长 * 高。
性质五:全等三角形可以证明其他形状的相等如果两个三角形是全等三角形,那么它们的其他对应部分也相等。
通过证明两个三角形全等,可以得出更多的相等关系,这对于解决几何问题非常有用。
应用:全等三角形在实际生活和几何学中有广泛的应用。
下面列举几个例子:1. 结构物的设计:在建筑、桥梁和其他结构物的设计中,确定三角形的相等性对保证结构的稳定性和均衡性非常重要。
通过利用全等三角形的性质,工程师可以设计出不同部分相等的结构,从而增强结构的强度和稳定性。
2. 地图和导航:地图和导航系统依赖于准确的测量和定位,而全等三角形的性质提供了一种测量和定位的方法。
通过测量两个地点和一个共同的角度,可以确定两个地点之间的距离和方向。
3. 几何证明:在几何学的证明过程中,利用全等三角形的性质可以简化证明过程。
14.3 全等三角形的概念与性质
第十四章 第二节 《全等三角形》§14.3全等三角形的概念与性质知识概要1.全等形:能够重合的两个图形叫做全等形.2.全等三角形:两个三角形是全等形,就说它们是全等三角形。
两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。
如:若ABC ∆和DEF ∆是全等三角形,记作ABC ∆≌DEF ∆,符号“≌”表示全等,读作“全等于”,其中A 和D 、B 和E 、C 和F 分别是对应顶点;AB 和DE 、BC 和EF 、CA 和FD 分别是对应边;A ∠和D ∠、B ∠和E ∠、C ∠和F ∠分别是对应角。
注意:用符号表示两个全等三角形时,通常把对应顶点的字母写在对应的位置上。
3.全等三角形的性质:全等三角形的对应边相等,对应角相等。
4.画三角形:一个三角形有6个元素(三条边和三个内角),要完全确定一个三角形的形状和大小,关键就是确定它的三个顶点的相对位置。
如果确定下列情况之一中的三个元素,所画三角形也就确定了:(1)两角及其夹边;(2)两边及其夹角;(3)三边;(4)两角及其对边。
经典题型精析(一)全等三角形的概念例1.下列说法正确的是( )A .所有的等边三角形都是全等B .所有的直角三角形都全等C .有两边对应相等的两个直角三角形全等D .斜边对应相等的两个等腰直角三角形全等随堂练习:下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形的周长和面积都相等C .全等三角形是指面积相等的两个三角形D .所有的等边三角形都是全等三角形例2.如图,ABC ∆≌AED ∆,写出其中的对应边与对应角。
随堂练习:(1)如图,ABC ∆≌ADE ∆,D B ∠=∠,则AC 与_________是对应边,=∠CAB _________.(2)如图,ABC ∆中,090=∠BCA ,AC BC =,以AC 为斜边作ACD Rt ∆,CD 与AB 相交于点E ,作CE BF ⊥,垂足为F ,若BF 平分CBE ∠,则图中共有全等三角形( )A .3对B .2对C .1对D .0对(二)全等三角形的性质例3.已知ABC ∆≌C B A ''∆,068=∠A ,070=∠B ,cm B A 13='',求AB 与C '∠的值。
三角形的全等性质
三角形的全等性质三角形是几何学中的基本形状之一,它有许多重要的性质和定理。
其中,全等性质是三角形的重要性质之一,指的是具有相等边长和相等内角的两个三角形是全等的。
本文将介绍三角形全等性质的定义、判定方法,以及全等性质的应用。
一、全等性质的定义对于两个三角形ABC和DEF,如果它们的对应边长相等,即AB=DE,BC=EF,AC=DF,并且对应角度也相等,即∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以说三角形ABC与三角形DEF是全等的。
全等性质可以用符号≌表示,即ABC≌DEF。
二、全等性质的判定为了判断两个三角形是否全等,我们可以利用下列常用的判定方法:1. SSS判定法(边-边-边)如果两个三角形的三条边分别相等,那么它们是全等的。
2. SAS判定法(边-角-边)如果两个三角形的一条边和与其相邻的两个角分别相等,那么它们是全等的。
3. ASA判定法(角-边-角)如果两个三角形的两个角和它们的夹边分别相等,那么它们是全等的。
4. RHS判定法(斜边-直角边-斜边)如果两个直角三角形的斜边和一个直角边分别相等,那么它们是全等的。
通过以上四种判定方法,我们可以准确地判断两个三角形是否全等。
三、全等性质的应用全等性质在解决几何问题中有广泛的应用,以下是一些常见的应用场景:1. 三角形的构造利用全等性质,我们可以根据已知条件构造全等的三角形。
例如,已知两条边和夹角大小,我们可以通过SAS判定法构造出全等的三角形。
2. 证明几何定理在证明几何定理时,我们常常利用全等性质来推导结论。
通过证明两个全等三角形的对应边和对应角相等,可以得到一些重要的几何定理。
3. 求解三角形的未知量当我们已知一些三角形的边长和角度大小时,利用全等性质可以求解出三角形其他未知量,如另外两个角度的大小、三角形的面积等。
4. 判定图形的全等除了三角形,全等性质在判定其他图形的全等时也是十分有用的。
我们可以利用全等性质来判断两个四边形、两个多边形甚至其他更复杂的图形是否全等。
全等三角形及其性质
【要点分析】一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB =∠________=________°.4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若A C AB ''⊥,则BAC ∠的度数是____________.5、如图,已知△ABE ≌△ACD,AB=AC ,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC=( )A 120°B 60°C 50°D 70°6、 △''OA B 是由△OAB 绕点O 逆时针旋转60°得到的,那么△''OA B 与△OAB 是什么关系?若∠AOB=40°,∠B=30°,则∠'A 与'AOB 是多少度?【巩固提升】1.如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.EDCBA A 'B 'BAO2.如图:△ABF≌△DCE,写出相等的线段.3.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.4.如图,△ABC≌△DEF,BF=3,EF=2.求FC的长5.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC= .6.如图,△ABC≌△ADE中,BA⊥AE,∠BAC=30°,AD=5,求BD的长.7.如图,△ABC≌△DEF,△ABC的周长是40cm,AB=10cm,BC=16cm,求△DEF中,边DF的长度.8.如图,在△ABC中,BE,CF分别是AC,AB边上的高线,BE,CF相交于O,连接AO交BC 于D,且△BCF≌△CBE,∠ABC=70°,求∠1和∠2的度数.9.如图,已知△ABC≌△EFC,且CF=5,AC=12,∠EFC=50°,求∠E的度数和AB的长9.10.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?11.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.12.已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,则∠P= 度,DE= cm.13.如图,A、E、F、C在一条直线上,△AED≌△CFB,你能得出哪些结论?(答出5个即可,不需证明)14.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.15.如图△ABC≌△DBC,∠A=110°,则∠D= .16..如图,△AOC≌△BOD,试证明AC∥BD.17.如图,已知△ABD≌△ACE.求证:BE=CD.18.如图,Rt△ABC≌Rt△FDE,AB=8cm,BC=6cm,将△ABC沿射线DE的方向以2cm/秒的速度平移,在平移过程中,是否存在某个时刻t,使△AEF成为等腰三角形,若存在,请求出t值;若不存在,请说明理由.一、选择题1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED. ∠B=∠D2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上C——都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7. 如图,在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,______<______<_______(填边).FE DCBA8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14.已知:如图,△ABC ≌△DEF ,且B ,E ,C ,F 四点在一条直线上,∠A =85°,∠B =60°,AB =8,EH =2. (1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.() (2分钟)一. 选择题1. 下列说法正确的是( )A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的三角形C. 全等三角形的周长和面积都相等T ——回顾小结D. 所有的等边三角形都全等2. 如图所示,若△ABC ≌△DEF ,则∠E 等于( )AB C D EF30°50°第2题A. 30°B. 50°C. 60°D. 100°3. (2006年黑龙江)如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°4. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 85. 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( )12ABCD第5题A. ∠1=∠2B. AC =CAC. ∠B =∠DD. AC =BC6. 如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( )ABCD C'第6题A. △ADCB. △BDC ´C. △ADC ´D. 不存在7. 下图中,全等的图形有( )第7题A BCD E 第3题A. 2组B. 3组C. 4组D. 5组 8. △ABC 与△DFE 是全等三角形,A 与D 对应,B 与F 对应,则按标有字母的线段计算,图中相等的线段有( )第8题A BCDE FA. 1组B. 2组C. 3组D. 4组二. 填空题9. 已知△ABC ≌△DEF ,AB =DE ,BC =EF ,则AC 的对应边是__________,∠ACB 的对应角是__________.10. 如图所示,把△ABC 沿直线BC 翻折180°到△DBC ,那么△ABC 和△DBC______全等图形(填“是”或“不是”);若△ABC 的面积为2,那么△BDC 的面积为__________.A BCD第10题 11. 如图所示,△ABE ≌△ACD ,∠B =70°,∠AEB =75°,则∠CAE =__________°.ABC DE 第11题 12. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D的对应角是__________,图中相等的线段有__________.AB CDO第12题13. 如图所示,△APB 与△CPD 全等.A B C D P 第13题(1)相等的边是:AB =CD ,__________,__________; (2)相等的角是:∠A =∠C ,__________,__________; (3)△APB 如何变换得到△CPD ?________________________________________. 14. 下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.A BCD EF三. 解答题15. 如图所示,已知△ABD ≌△ACE ,∠B =∠C ,试指出这两个三角形的对应边和对应角.ABCDEO16. 如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?AB CD EF17. 如图所示,△ABC ≌△AEC ,B 和E 是对应顶点,∠B =30°,∠ACB =85°,求△AEC 各内角的度数.ABCE18. (实际应用题)如图所示,用同样粗细,同种材料的金属构制两个全等三角形,△ABC和△DEF,已知∠B=∠E,∠C=∠F,AC的质量为25克,EF的质量为30克,求金属丝AB的质量的取值范围.AB CDE F19. (探究题)如图所示,△ABC绕顶点A顺时针旋转,若∠B=40°,∠C=30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A在同一直线上?(原△ABC是指开始位置)(2)再继续旋转多少度时,点C、A、C'在同一直线上?A BC B'C'20. (阅读与探究)如图(1)所示,把△ABC沿直线BC移动线段BC那样长的距离可以变到△ECD的位置;如图(2)所示,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图(3)所示,以点A为中心,把△ABC旋转180°,可以变到△AED的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换.问题:如图(4),△ABC≌△DEF,B和E、C和F是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.ABC DE(1)AB CD(2)AB CD E(3)AB C(4)DE F。
全等三角形的性质及判定
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS)(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS)(4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是()A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形例题2:如图1,折叠长方形,使顶点与边上的点重合,如果AD=7,DM=5,∠DAM=39°,则=____,=____,= .【仿练1】如图2,已知,,,那么与相等的角是.【仿练2】如图3,,则AB=,∠E=_.若∠BAE=120°,∠BAD=40°,则∠BAC=.、图4EDCBA图2 图3MDN BC图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF∵CM 是△的中线∴_____________()∴____________________ ∴__________() 或 ∵AC=EF∴____________________ ∴__________() AB=AB ()FECACMBA在△ABC和△DEFxx∵∴△ABC≌△DEF()例1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?例2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠CB.AB=ADC.AD∥BCD.AB∥CD2、如图所示,在△ABCxx,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSSB.SASC.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
1、三角形全等概念与性质
教学内容一、知识点梳理全等三角形的概念与性质二、例题讲解例1、如图ABC ∆是轴对称图形,AD 垂直平分BC ,AB DE ⊥于E ,AC DF ⊥于F ,写出图中所有的全等三角形。
例2、如图,已知,,,οο2510=∠=∠=∠∆≅∆D B CAD ADE ABC ,ο120=∠EAB 延长BC 交AD 于点F ,交DE 于点G ,求DFB ∠和DGB ∠的度数。
例3、如图,已知,DBF ACE ∆≅∆点A 、B 、C 、D 在同一直线上,且.28,,====BC AD BF CE DF AE , (1)求AC 的长;一、全等三角形概念1、能够 的两个图形叫全等形。
2、两个三角形是全等形,我们就说它们是 。
3、两个全等三角形经过运动后一定 ,相互重合的点叫做 ,相互重合的角叫做 ,相互重合的边叫做 。
二、全等三角形性质4、全等三角形对应边 ,对应角 。
(2)求证:CE//BF.例4、作图(1)已知:ο35=∠A ,斜边,4cm AB =画直角ABC ∆;(2)已知,AB=3.5cm ,BC=4cm ,BC 边上的中线AD=3cm ,画ABC ∆ (3)已知ο80=∠A ,A ∠的平分线AD=2cm,AB=3cm,画ABC ∆三、课堂练习1、图形的三种基本运动是 、 、 ;2、如图,已知,,,6115,===∆≅∆EC BC AB DEF ABC 则CF= ;3、如图,已知DEF ABC ∆≅∆,求图中z y x 、、的值;4、如图,已知DCB ABC ∆≅∆,如果,45,72οο=∠=∠ACB ACB 求D ∠与ABD ∠的度数。
第二部分一、知识点梳理三角形全等的判定 判定方法1: 判定方法2: 判定方法3: 判定方法4:二、例题讲解例1、已知:如图AB=DC ,AE=DF ,CE=FB. 试说明AF=DE 的理由。
例2、如图,已知AF=AB ,AE=AC ,CAE BAF ∠=∠,试说明EDC EAC ∠=∠.例3、已知如图:ABC ∆中,AD 是中线,AB=13,AC=7, 求:(1)线段DC 的取值范围; (2)中线AD 的取值范围。
全等三角形的概念与性质
的拐杖,三是做床,四是做挑物的担,五是做水桶,不能再一二三四地数了,竹的用处几乎是无穷的,从穿到吃,比如竹鞋,比如竹衫,比如雨帽,竹笋之好吃就更不用说。竹子可以说是最完美的植物,松树可以盖房子做家具,但就是不能用来大吃特吃,虽然松籽是可以吃的,的松仁小肚就
很好吃,但松树却不能被人们戴在头上穿在脚上。梅花除了看也几乎没有别的用,兰就更不用说。松竹梅兰,竹应该排在老大。之所以说竹是最完美的植物,因为人们的吃喝拉撒睡所要用到的东西乃至胡琴和笛它都能包圆儿,只此一点,把它排到第一,我想没人会有什么意见。 ? ?二 ?闲着
探索:从以上的图形和概念中能得出全等三角形的哪些性质?
两个三角形的三组对应边相等、三组对应角相等。
例: 已知△ABC≌△DEF,∠A = 60°,∠B = 70°,AB= 2cm
求DE、 ∠D、∠F的值 。
A
D
解:因为 △ABC≌△DEF (已知)
所以 AB = DE (全等三角形的对应边相等)
B
后来就是画竹子,别人画竹子是先画竹杆,后画叶子,我却是偏要先画叶子,然后再相机行事地补上竹杆。、 ? 真正见到竹子是在成都的杜甫草堂,我们一行人是白天到的草堂,行李甫解就先去吃饭,饭一吃过人也差不多醉了,天也就黑了。那天恰好是中秋,到了晚上月亮躲在云里死也不
肯出来,我们一行人里偏有风雅之士,便想起这是杜甫草堂来了,便要去看草堂,那天我们恰恰都住在草堂里,往西去,好像是连门票都不要,一伙子人就都拥进了园子,竟找到了那草堂,并在草堂里点起了两支红蜡烛,一伙子人把那通草堂里的碑看了又看,知道了写碑的人是清代的果亲王。
? 我常常想,如果可能,在什么地方盖两三间竹楼,能在里边听风听雨便是一大快事。最好是,竹楼的南窗可以看远山之岚气,竹楼之北窗可以细读后山上那细细的一
全等三角形知识点
全等三角形知识点1.全等三角形的定义:两个三角形ABC和DEF,如果边AB和边DE对应相等,边AC和边DF对应相等,且∠BAC和∠EDF对应相等,那么称三角形ABC与三角形DEF全等。
2.全等三角形的性质:(1)全等三角形的任意两边对应的角也相等,即∠ABC=∠DEF,∠ACB=∠DFE。
(2)全等三角形的任意两角对应的边也相等,即AB=DE,AC=DF。
(3)全等三角形的任意一边对应的两角也相等,即∠B=∠E,∠C=∠F。
(4)全等三角形的相等角的对边也相等,即BC=EF。
(5)全等三角形的相等边的对角也相等,即∠A=∠D。
3.全等三角形的判定方法:(1)SSS判定法:若两个三角形的三边分别对应相等,则两个三角形全等。
(2)SAS判定法:若两个三角形的两边和夹角对应相等,则两个三角形全等。
(3)ASA判定法:若两个三角形的两角和夹边对应相等,则两个三角形全等。
(4)AAS判定法:若两个三角形的两角和非夹边对应相等,则两个三角形全等。
4.全等三角形的推论:(1)全等三角形的对应边的中点连线平行且等于对应边的中点连线。
(2)全等三角形的对应角的角平分线相交于一点且平分角相等。
(3)全等三角形的高线和中线分别平行(且等于),中点线和中线相等。
(4)全等三角形的内角和相等。
(5)全等三角形的周长相等。
(6)全等三角形的面积相等。
5.全等三角形的应用:(1)在计算中,通过判断两个三角形是否全等,可以求出其他未知量。
(2)在建筑和工程设计中,通过全等三角形的性质可以测量和确定物体的高度和距离。
(3)在制图和绘画中,可以利用全等三角形的性质来进行放缩和比例调整。
(4)在几何证明中,全等三角形是基础的推理和证明工具,常用于证明其他几何命题。
全等三角形是几何学中重要的基本概念,掌握全等三角形的性质和判定方法对于理解研究几何学具有重要意义。
在学习和应用中,需要注意掌握全等三角形的各种推论,灵活运用全等三角形的性质解决问题。
人教版数学八年级上册 全等三角形的概念和性质
全等三角形的概念和性质(基础)【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB =∠________=________°.4、(2014秋•青山区期中)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数..举一反三: 【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在位置,A 点落在位置,若,则的度数是____________.【巩固练习】一、选择题1. 如图,△ABC ≌△ECD ,AB 和EC 是对应边,C 和D 是对应顶点,则下列结论中错误的是( )A. AB =CEB. ∠A =∠EC. AC =DED. ∠B =∠D2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6,AC =4,BC =5,则AD 的长为( )A. 4B. 5C. 6D. 以上都不对3. 下列说法中正确的有( )①形状相同的两个图形是全等图形 ②对应角相等的两个三角形是全等三角形 ③全等三角形的面积相等 ④若△ABC ≌△DEF ,△DEF ≌△MNP ,△ABC ≌△MNP.B 'A 'AC A B ''⊥BAC∠cm cm cm cm cmcmA.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC ≌△A ′B ′C ,∠ACB=90°,∠A ′CB=20°,则∠BCB ′的度数为( )A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( )A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC 、BD 分别为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23,BC =4,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.cm cm11.已知△ABC ≌△,若△ABC 的面积为10 ,则△的面积为________ ,若△的周长为16,则△ABC 的周长为________.12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A 和D 、B 和E 是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.'''A B C 2cm '''A B C 2cm '''A B C cmcm。
全等三角形的概念与性质PPT课件
结合2,3两题,说说你是怎样寻找这些对应元素的。 ⑴写出图中相等的线段,相等的角;
相等
全等三角形的对应角有什么关系? 记作: ∆ABC≌∆A1B1C1
相等
全等三角形的性质
全等三角形的对应边相等,对应角相等。
∵△ABC≌ △DFE(已知) ∴ AB=DF, BC=FE, AC=DE ( 全等三角形的对应边相等 ) ∴ ∠ A= ∠ D, ∠ B= ∠ F , ∠ C= ∠ E
(1) △ ABE ≌ △ ACF
(2)△ BCE ≌ △ CBF (3)△ BOF ≌ △ COE
5. △ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗? 请与同伴交流并写出来.
A
D
B
C E
F
感谢观看
O B
③ D
结合2,3两题,说说你是怎样寻找这些对 应元素的。 (1)对应角所对的边是对应边;对应边 所对的角是对应角。
(2)有公共边的,公共边是对应边;有 公共角的,公共角是对应角。
(3)相等的边是
1、如图△ ABD ≌ △CDB,若AB=4,AD=5,BD=6,则BC=
全等三角形的对应边有什么关系? 图对指结即 A●(∴写对CA中应出合∠重出应=BAB三 角 下 2合 全 角=,EA3D角所列的等所D两F形对全顶三对=,题B∠的的等点角的C,C位边三叫形边=说AF置是角对的是EE说),是对形应符对A你怎应的顶号应C是=样边对点表边D怎变应示..E样化边,并寻的和指找?对出这应它些角们对的应对元应素顶的点。、对应边、对应角。
其它的对应边有:______ A
E
对应角有:__________
∠BAD=∠CAE吗?为什么?
全等三角形 知识点总结
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
教材补充 全等三角形概念及性质
§11.全等三角形11.1全等三角形1.基本概念在我们周围,经常可以看到形状、大小完全相同的图形.这类图形在几何中有特殊的意义。
把一块三角板按在纸板上,画下图形,照图形裁下来的纸板和三角板形状、大小完全一样吗?把三角板和裁得的纸板放在一起能够完全重合吗?从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?由此可知,形状、大小相同的图形放在一起能够完全重合。
所以,能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
互相重合的顶点叫作对应顶点A↔D B↔E C↔F互相重合的边叫作对应边AB↔DE BC↔EF AC↔DF互相重合的角叫作对应角∠A↔∠D ∠B↔∠E ∠C↔∠F“全等”用符号“≌”来表示,读作“全等于”记作:△ABC≌△DEF读作:△ABC全等于△DEF注意:记两个三角形全等时要求把对应顶点的字母写在对应的位置上。
作用:准确找出全等三角形的对应边和对应角。
可知:平移、翻折、旋转,形状、大小都不变2.全等三角形的性质全等三角形的对应边有什么关系?对应角有什么关系呢?全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
因为:△ABC≌△DEF所以:AB=DE,BC=EF,AC=DF,即(全等三角形的对应边相等)∠A=∠D,∠B=∠E,∠C=∠F,即(全等三角形的对应角相等)再次强调:在表示全等三角形边、角相等时对应顶点写在对应位置上3.例题精讲例1:找一找(1)若△AOC≌△BOD,对应边是,对应角是;(2)若△ABD≌△ACD,对应边是,对应角是;(3)若△ABC≌△CDA,对应边是,对应角是;(1)(2)(3)例2:如图,已知△ABC≌△ADE,∠C=∠E,BC=DE,其它的对应边有:_____________ ;对应角有:_____________例3:1、找出图中的全等三角形,并指出它们的对应边与对应角?如图,△ABD≌△ACE,若∠B=25°,BD=6㎝,AD=4㎝,你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么?例4:已知△ABC≌△DEF,A与D、B与E分别是对应顶点,∠A=52°,∠B=67°,BC=15㎝。
全等三角形概念及其性质
全等三角形概念及其性质知识精要1.全等形能够重合的两个图形叫做全等形2.全等三角形(1)两个三角形是全等形,就说它们是全等三角形。
(2)两个全等三角形,经过运动后一定能够重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。
注:(1)全等三角形并一定是两个图形之间的关系,还可能是多个图形之间的关系。
(2)全等图形也可以看作是把图形翻折,旋转、平移等变换而得到的图形,与原图形相比,它们只是位置发生了变化,而形状、大小都没有变;反过来说,两个全等图形经过这样的变换一定能够重合。
3.确定三角形形状和大小的三个元素有四种情况(1)两角及夹边(2)两边及其夹角(3)三边(4)两角及其中一角的对边注:知道两边及其中一边的对角时,一般不能确定三角形的形状,大小。
4.全等三角形的性质1、全等三角形的对应边相等,对应角相等。
2、全等三角形的周长和面积相等【例题与应用】1、图形的三种基本运动是翻折、旋转和平移.2、根据所给图形的信息,完成下列填空:(要求对应顶点字母写在对应的位置上)∆;(1)如图(1),△ABC≌DEF∆;(2)如图(2),△ABC≌DBC∆;(3)如图(3),△AOB≌DOC3、如图,已知△ABC≌△DEF,求图中x,y,z的值.解:060x =00220202z z z y =+==4、如图,在方格中各画一个与所给三角形全等的三角形,并用全等符号表示.5、如图,已知△ABD ≌△ACE ,AD =3cm ,BD =1cm ,BC =6cm ,求△ADE 的周长. 解:ABD ∆ ≌ACE ∆ 3AD AE cm ∴==1BD EC cm ==(全等三角形,对应边相等)6114DE BC BD EC cm ∴=--=--=33410ADE C AD AE DE ∆∴=++=+==6、如图,已知△ACF ≌△DBE ,∠E =∠F ,AD =9cm ,BC =5cm ,求AB 的长. 解:ACF ∆ ≌DBE ∆AC DBAB BC DC BC∴=∴+-+即11()(95)222AB CD AD BC cm ==-=⨯-= 7、画△ABC ,使∠A =60°,∠B =40°,AB =4.5cm.解:确定三角形的形状和大小,若两个三角形形状,大小完全相等,则称为全等三角形,因此为判定三角形全等的方法。
第三讲 全等三角形的概念和性质
第三讲 全等三角形的概念和性质 【知识梳理】一、全等三角形的概念能够完全重合的两个图形叫做全等图形; 能够完全重合的两个三角形叫做全等三角形。
“全等”用符号’≌”表示,读作“全等于”。
当两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
全等三角形主要是指形状、大小相同的两个三角形,与位置无关系,将一个三角形经过平移、翻折、旋转后,得到的三角形与原三角形全等。
二、全等三角形的性质1、全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.全等三角形对应边上的高 ,对应边上的中线 ,对应角的平分线也 。
两个全等三角形的面积 周长 。
【例1】如右图中△ABC 和△DEF 全等,记作 ,其中点A 和点 ,点B 和点 ,点 和点D 是对应点, 边AB 和 , 和ED ,AC 和 是对应边;【例2】分别指出下列三组全等三角形的对应点和对应边:分析:1、平移型你能写出上面全等三角形的对应边和对应角吗?2、旋转型你能写出上面全等三角形的对应边和对应角吗?A'ABCE'D'DEFACBDOEDCBAEDCBAEDCBAEDCBA EDC BAFEDCBA③轴对称型3、翻折轴对称型你能写出上面全等三角形的对应边和对应角吗?4、大山型5、组合型(平移+旋转)你能写出上面全等三角形的对应边和对应角吗?题型三:利用全等三角形的性质求线段的长度或角的度数【例1】如图,ΔABD ≌ΔCDB ,且AB 、CD 是对应边;下面四个结论中不正确的是:( )A 、ΔABD 和ΔCDB 的面积相等 B 、ΔABD 和ΔCDB 的周长相等C 、∠A+∠ABD =∠C+∠CBD D 、AD//BC ,且AD = BC【例2】如图,△EFG ≌△NMH ,∠F 和∠M 是对应角,在△EFG 中,FG 是最长边.在△NMH中,MH 是最长边.EF=2.1cm ,EH=1.1cm ,HN=3.3cm. ⑴写出其他对应边和对应角; ⑵求线段NM 和线段HG 的长度;【例3】如图1-8,△ABE 和△ADC 是△ABC 分别沿着AB,AC 翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,求∠α的度数。
全等三角形的概念和性质
A
E
C
解:对应边: AC与CD, AB与CE 对应角: ∠A与∠DCE, ∠D与∠ACB
练习:填空
边
AB与DF
边
AC与DE
边
BC与EF
角 ∠A与∠D
角 ∠B与∠F
角 ∠ACB与∠DEF
练习:填空
边 AM=BM 边 MC=MD 边 AC=BD 角 ∠A=∠B 角 ∠C=∠D 角 ∠AMC=∠BMD
3、 △ BOF ≌ △ COE
对应角是: ∠BOZF和∠COE, ∠BFO 和∠CEO, ∠ FOB和∠EOC.
对应边是:OF和OE, OB和OC, BF和CE.
练习
如图, △ABC≌△AED, AB是△ABC
思考:把一个三角形平移、旋转、翻折,变换前后的 两个三角形全等吗?
A
M
E
D
A
B
FC
N
A
B
C
A
B
C
B
E
D
D
C
归纳总结
全等变化 一个图形经过平移、翻折、旋转后, 位置 变化了, 但 形状 和 大小 都没有改变,即平移、翻折、 旋转前后的两个图形 全等 .
全等三角形的性质 全等三角形的对应边相等,对应角相等
解: (1)对应边有 EF和NM, FG和MH, EG和NH; 对应角有∠E和∠N, ∠F和∠M, ∠EGF和∠NHM.
(2)∵ △EFG≌△NMH, ∴NM=EF=2.1, EG=NH=3.3 ∴HG=EG –EH=3.3-1.1=2.2
(3)结论:EF∥NM 证明: ∵ △EFG≌△NMH, ∴ ∠E=∠N. ∴ EF∥NM.
练习
1. 如图,△ABC≌ △ADE, 若∠D=∠B, D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试举出一些日常生活中所见到的 形状、大小相同的两个图形。
如果把这些
(1)
图形叠合起
来,会怎样
(2)
呢?完全重合
(3)
能够完全重合的两个图形称为全等形 全等图形的形状和大小都相同
做一做
把三角板分别按在两块足够大的纸板上,截 下两个三角形。
这样的两个三角形能 完全重合吗?
能够完全重合的两个 三角形称为全等三角形
全等形,全等三角形 的概念;
1.本节课我们学习了哪些内容?
全等三角形的些性质;
找全等三角形的对应 边,对应角的规律.
2.全等三角形有那些性质?
(1)全等三角形的对 应边相等;
(2)全等三角形的对 应角相等;
拓展与延伸
• 下图是一个等边三角形,你能把它分成两个 全等三角形吗?你能把它分成三个全等三角 形吗?四个呢?
B
E
•
∠B=∠E,
•
∠BCA=∠EFD A
D
C
F
• 对应边所对的角是对应角.
例题解答
• 例2、已知△ABC≌△ADE, ∠B=∠D, ∠C=∠E, ∠BAC=∠DAE. 写出所有对应边相 等的式子.
A
• 解:AB=AD
•
AC=AE
•
BC=DE
B D
E C
• 对应角所对的边是对应边.
随堂练习
• 1、如图,已知△ABC≌△ADE,∠C=∠E, BC=DE,其它的对应边有: _________________,对应角有: ____________________. A
D
E
A
B
C
1.如图,矩形ABCD沿AM折叠,使D点落在BC
பைடு நூலகம்
上的N点处,如果AD=7cm,DM=5cm,
∠DAM=39°,则AN=___cm, NM=___cm,
∠NAB=___.
A
7cm
D
B
N
5 cm
M
C
2. 写出全等三角形的符号表示,并指出 它们的对应顶点、对应边、对应角。
A B A
O
C
B
D
D C
相等
全等三角形的性质
全等三角形的对应边相等,对应角相等。
∵△ABC≌ △DFE(已知) ∴ AB=DF, BC=FE, AC=DE ( 全等三角形的对应边相等 ) ∴ ∠ A= ∠ D, ∠ B= ∠ F , ∠ C= ∠ E
( 全等三角形的对应角相等 )
找一找
A
D
1、若△AOC≌△BOD,对应
①
化的?
BN
M
S
一个图形经过平移,翻折,
O
②
旋转后,位置变化了,但
形状,大小都没有改变, N A 即平移,翻折,旋转前后
T C
的图形全等。
O B
③ D
A PC M
2.说出图中的对应边、对
①
应角。
BN
M
S
3.用两个全等的三角形,
O
摆一摆,要求:有公共顶
点或有公共边,并说出
N
相等的边及相等的角.
A
②
T C
∠B = 45°, DC = 2 .
3
A 3E B
如图△ ABM ≌ △ ACN, ∠B和∠C是对应 角,AB和AC是对应边,那么,BN和CM相等 吗?为什么?
A
B
M
N
C
例题解答
• 例1、△ABC≌△DEF,AB=DE,AC=DF, BC=EF. 写出所有对应角相等的式子.
• 解:∠A=∠EDF,
A1 记两个全等三角形时, A1
通常把表示对应
顶点的字母写在
对应的位置上.
B1
C1
B1
C1
能够完全重合的两个三角形称为全等三角形
●重合的顶点叫对应顶点 ●重合的边叫对应边 记作: ∆ABC≌∆A1B1C1 ●重合的角叫对应角 读作:∆ABC全等于∆ A1B1C1
A PC M
1.图中三角形的位置是怎样变
3.如图,已知△ABC≌△ADE,∠C=∠E,BC=DE,
其它的对应边有:______ A
E
对应角有:__________
∠BAD=∠CAE吗?为什么?
BD
C
解:相等.
∵△ABC≌△ADE(已知)
∴∠ BAC= ∠ DAE(全等三角形对应角相等)
∴∠ BAC - ∠ DAC= ∠ DAE - ∠ DAC(等式性质)
E
B
D
C
随堂练习
• 2、如图,已知△ABC≌ △ADE,若∠D= ∠B,∠C= ∠AED,则∠DAE=___________; ∠DAB=___________.
A
D
B
E
C
随堂练习
• 3、如图△ABD≌△CDB,若AB=4,AD=5, BD=6,求△CDB的周长.
A
D
B
C
随堂练习
• 4、如图△ABD≌△EBC,AB=3cm, AC=8cm,求DE的长.
O B
③ D
结合2,3两题,说说你是怎样寻找这些对 应元素的。 (1)对应角所对的边是对应边;对应边 所对的角是对应角。
(2)有公共边的,公共边是对应边;有 公共角的,公共角是对应角。
(3)相等的边是对应边;相等的角是对 应角。
△ABC≌△DEF
A
D
B
CE
F
全等三角形的对应边有什么关系?
相等
全等三角形的对应角有什么关系?
即∠ BAD= ∠ CAE
4.指出下列全等三角形的对应边和对应角
(1) △ ABE ≌ △ ACF
(2)△ BCE ≌ △ CBF (3)△ BOF ≌ △ COE
5. △ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗? 请与同伴交流并写出来.
A
D
B
C E
F
小结
边是
,对应角是
;
O
C
B
A
2、若△ABD≌△ACD,对应边
是 ,对应角是 ;
B
D
C
3、若△ABC≌△CDA,对应 A
D
边是 ,对应角是
;
B
C
1、如图△ ABD ≌ △CDB,若AB=4,AD=5, BD=6,则BC= 5 ,CD= 4 。
A
D
2、如右图B ,已知△ABD≌△ACCE,
5D
C
且∠C=45°,AC = 5,AE = 3,则