自动控制基本知识根轨迹法
自动控制原理第5章根轨迹分析法
04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。
自动控制原理 根轨迹法
n
i
|
注意
• 相角方程是决定系统闭环根轨迹的充分 必要条件 • 用相角方程绘制根轨迹; • 模值方程主要用来确定已知根轨迹上某 一点的K*值 • 例4-1,4-2
4.2 根轨迹绘制的基本法则
• 法则1: 根轨迹的分支数:根轨迹在[s]平面上的分支数 等于闭环 特征方程的阶数n,也就是分支数与闭环极点的 数目相同。
q
h
f
l
结论:1 零点、 2 极点、3 根轨迹增益
b0 ( s z1 )(s z 2 ) ( s zm ) G( s) H ( s ) K* a0 ( s p1 )(s p2 ) ( s pn )
• 根轨迹增益:
(s z ) (s p )
• 法则6: 根轨迹的起始角(从极点pk)和终止角(到零点zk) :
起始角:
例2 证2
m n
pk ( 2k 1) ( pk z j ) ( pk pi )
j 1 i 1 i k
终止角:
zk ( 2k 1) ( z k p i ) ( z k z j )
i
nm
0 ( 1) ( 2) 1 30
a
(2k 1)π π π , , π nm 3 3
d1 0.42, d 2 1.58(舍去)
s j
1 1 1 0 d d 1 d 2
1 G(s)H(s) 0即(s 3 3s 2 2s K * ) j 3 3 2 2 j K * 0
s2
0
常规根轨迹的绘制法则(P138) 终止于开环零点或。 1 根轨迹起始于开环极点或, 根轨迹对称实轴 2 根轨迹的条数为特征根的个数, 3 ∣n-m∣条渐近线对称于实轴,均起于实轴上的σa 点,
自动控制第五章根轨迹法资料
8
绘制根轨迹的基本条件
根轨迹的幅值条件:
n
s pj
j 1
负反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
满足此式的根轨迹,称为1800根轨迹;
正反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q)
j 1
i 1
满足此式的根轨迹,称为00根轨迹;
9
绘制根轨迹的基本条件
n
s pi
i 1 m
K1
s zj
j 1
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
➢ 根轨迹的幅值条件不仅取决于系统开环零极点的分 布,同时还取决于开环根轨迹的增益K1。
➢ 根轨迹的相角条件仅仅取决于系统开环零极点的分 布,与开环根轨迹的增益K1无关。
2
第一章根轨迹的基本概念
根轨迹的概念的提出 反馈控制系统的性质取决于闭环传函。只要求解
出闭环系统的根,系统的响应就迎刃而解。但是对于 3阶以上的系统求根比较困难。如果系统中有一个可 变参数时,求根更困难了。
1948年,伊凡思提出了一种确定系统闭环特征根 的图解法——根轨迹法。在已知开环零极点分布的基 础上,当某些参数变化时确定闭环极点的一种简单的 图解方法。
12
第二节 绘制根轨迹的基本规则
当K1 时,① s z j ( j 1 ~ m) ,上式成立。 z j 是开环传递
函数有限值的零点,有m个。故n阶系统有m支根轨迹的终点在
利用这一方法可以分析系统的性能,确定系统应 有的结构和参数。
3
第一节 根轨迹的基本概念
自动控制原理第四章-根轨迹分析法
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
自动控制原理第4章根轨迹法精
m
( zj )
K K*
J 1 n
( pi )
i 1
zj
1
j
(j
1,2,, m);
pi
1 Ti
(i
1,2,, n)
可写出幅值方程与相角方程,即
G(s)H (s) 1
G(s)H(s) 1
开环零点: z1 1.5; z2,3 2 j
(1)实轴(0~1.5)和( 2.5 ~ )有根轨迹。
(2)渐近线n=4 m=3,故只有一条根轨迹趋向无穷远。由实根
轨迹可知 180 。
(3)根轨迹出射角与入射角。
出射角
3
4
p2 ( 2K 1) ( p2 zi ) ( p2 pi )
d= -3.7
s2 4s 1 0
解法2 用公式有
1 1 1
d 1 j 2 d 1 j 2 d 2
解此方程 d1 3.7, d2 0.3
d1在根轨迹上,即为所求的分离点,d2不在根轨迹上舍去。 因为
z1 2, p1,2 1 j 2 n=2,m=1
系统有两条根轨迹,一条消失于零点,另一条趋于负无穷远 在实轴(-2,-∞)区段有根轨迹。 出射角
4.1根轨迹与根轨迹方程
什么是时域分析? 指控制系统在一定的输入下,根据输出量的时
域表达式,分析系统的稳定性、瞬态和稳态性能。
4.1.1 根轨迹 4.1.2 根轨迹方程
4.1.1 根轨迹
[根轨迹定义]:系统开环传递函数增益K(或某一参数)由零到 无穷大变化时,闭环系统特征根在S平面上移动的轨迹。
例:如图所示二阶系统,
自动控制原理第四章--根轨迹法
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
(自动控制)第四章:根轨迹法
动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0
k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。
自动控制原理根轨迹法总结
自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。
它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。
【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。
-主要用于分析系统稳定性和设计控制器参数。
2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。
-利用角度判据和幅值判据确定根轨迹。
【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。
-极点在左半平面表示系统稳定,右半平面表示不稳定。
2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。
-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。
【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。
-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。
【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。
-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。
【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。
-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。
编制人:_____________________
日期:_____________________。
根轨迹法(自动控制原理)
❖ 线性时不变系统的动态性能主要取决于闭环系统 特征方程的根(闭环极点),所以控制系统的动 态设计,关键就是合理地配置闭环极点。调整开 环增益是改变闭环极点的常用办法。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它 不直接求解特征方程,而用图解法来确定系统的闭 环特征根。
所谓根轨迹,就是系统的某个参数连续变化时, 闭环特征根在复平面上画出的轨迹。如果这个参 数是开环增益,在根轨迹上就可以根据已知的开 环增益找到相应的闭环特征根;也可以根据期望 的闭环特征根确定开环增益。
闭环特征方程为:
1G (s)H (s)0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
G(s)H(s)1
这就是根轨迹的基本条件。
❖ 满足根轨迹上点的基本条件,又可分别表示为,
幅值条件:
G(s)H(s) 1
相角条件: G ( s ) H ( s ) ( 2 k 1 ) 18 k 0 , 0 1 ,2 ,
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
规则6:根轨迹的分离点
❖ 当从K零变到无穷大时,根轨迹可能出现先会合后分离, 这样的点称分离点。分离点对应重闭环极点。
根轨迹法(自动控制原理)
i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。
自动控制原理根轨迹法知识点总结
自动控制原理根轨迹法知识点总结自动控制原理中的根轨迹法是一种常用的分析和设计控制系统的方法。
它通过在复平面上绘制系统的根轨迹,并结合数学分析的方法,可以帮助我们了解系统的稳定性及动态特性,并设计出合适的控制器来实现所需的性能要求。
本文将对根轨迹法的原理和关键知识点进行总结。
一、根轨迹法的基本原理根轨迹法是通过分析系统的开环传递函数来确定系统的极点和零点在复平面上的分布情况。
根轨迹是由系统的特征方程的解所决定的,即特征方程的根随参数的变化而移动,形成了一条曲线,这条曲线即为根轨迹。
根轨迹的形状和分布反映了系统的稳定性、动态响应及频率特性。
根轨迹法的基本步骤如下:1. 给定系统的开环传递函数:G(s)H(s),其中G(s)为系统的传递函数,H(s)为控制器的传递函数。
2. 将开环传递函数表示为极点-零点的形式:G(s)H(s) = K·(s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm),其中K为传递函数的增益,zi和pi为传递函数的零点和极点。
3. 根据传递函数的特征方程:1+G(s)H(s)=0,得到特征方程:1+K·(s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm) = 0。
4. 以复平面为基准,根据特征方程的根(极点和零点),画出根轨迹。
5. 根据根轨迹的形状和分布,分析系统的稳定性和动态响应,设计合适的控制器参数。
二、根轨迹法的关键知识点1. 极点和零点:极点和零点是传递函数的根,它们对系统的稳定性和动态响应有着重要影响。
极点是使得特征方程为零的点,零点是使得传递函数的分子为零的点。
2. 稳定性判据:系统的稳定性和根轨迹的位置有直接关系。
当系统的极点全部位于左半平面时,系统是稳定的;若存在极点位于右半平面,则系统是不稳定的。
3. 根轨迹与动态响应:根轨迹的形状和分布反映了系统的动态响应。
根轨迹与阻尼比、自然频率等参数有关,可以通过观察根轨迹的形状来判断系统的超调量、振荡频率等动态性能指标。
自动控制原理--根轨迹法
1. 参数根轨迹
以非开环增益为可变参数绘制的根轨 迹为参数根轨迹,以区别以开环增益K*为 可变参数的常规根轨迹。
绘制参数根轨迹的法则与绘制常规根 轨迹的完全相同。只要在绘制参数根轨迹 之前,引入等效单位反馈系统和等效传递 函数概念,则常规根轨迹的所有绘制法则, 均适用于参数根轨迹的绘制。
4
为此,需要对闭环特征方程 1 G(s)H(s) 0 做如下等效变换,变成下面形式:
1 s(5s 1)
C(s)
1
C(s)
5
s(5s 1)
1 Td s
10
11
例:
设单位反馈系统的开环传递函数为
G(s)
K
s(s 1)(Ta s 1)
其中开环增益 K 可自行选定。分析时间常数 Ta 对 系统性能的影响。
解:闭环特征方程
s(s 1)(Ta s 1) K 0 1 Ta s 2 (s 1) 0
s(s 1) K
[s(s 1) K ] Ta s 2 (s 1) 0
G1 (s)
Ta s 2 (s 1) s(s 1) K
12
等效开环极点:
p1,2
1 2
1 K 4
注:若分母多项式为高次时,无法解析求解等效开环极 点,则运用根轨迹法求解。如本例,求解分母特征根的 根轨迹方程为:
G(s)H(s) 5(1 Ta s) 以 Ta 为 变 量 绘 制 s(5s 1) 参数根轨迹。
解: 1 G(s)H(s) 0
(5s 1)s 5(1 Ta s) 0 5s2 s 5 5Tas 0
7
5s2 s 5 5Tas 0
同除 5s2 s 5
第八章 根轨迹法
p3 -2
p2 -1
σα
0
p1
故三条根轨迹趋向无穷远处,其渐近线与实 -60° 轴交点的坐标为 (0) +(1) +(2) (0) σα = =1 3 (2k + 1)π 取 k = 0, α = 60° α = 渐近线与实轴正方向的夹角 3 k = 1, α = 180° k = 1, α = 60° 三条渐近线如图所示。
自动控制原理
利用以上原则求例 8-1 的根轨迹图: 已知开环极点为0,-2。首先应用幅角条件,即
(∠s + ∠(s + 2)) = ±180°(2k + 1)
用试探的方法可找出满足上述条件的 s 点。 由幅角条件分析可知,实轴上根轨迹位于(-2,0)区间,实 轴之外根轨迹为0,-2两点的中垂线。 用幅值条件可算出根轨迹上各点对应的 K* 值。 如对(-1+j) 点,有 K = s i s + 2 / 2 = ( 2i 2)/ 2 = 1 得 K* = 2
自动控制原理
五、根轨迹的渐近线
* 如果开环零点数 m 小于开环极点数 n,则K → ∞ 时,趋向无 穷远处的根轨迹共有 (n-m) 条,这些根轨迹趋向于无穷远处的方向 角可由渐近线决定。
渐近线与实轴交点坐标公式 该式的分子是开环极点之和减零点之 和,分母是开环极点数减零点数。
∑ p ∑z
σα =
i =1 i j =1
∏ (s z )
由根轨迹方程知,
m
∏ (s p )
j =1 i
i =1 n
i
=
1 K*
K * → ∞ 时,s – zi = 0
所以,根轨迹终止于开环零点。 又,若 n>m ,则 s →∞ 时,上式可写成 即有 (n-m) 条根轨迹趋向于无穷远处。
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
自动控制原理根轨迹知识点总结
自动控制原理根轨迹知识点总结自动控制原理是控制工程学科的基础课程之一,涉及了丰富而复杂的理论和实践知识。
在其中,根轨迹法是一种重要的分析和设计方法,用于评估系统的稳定性和性能,并确定控制器的参数。
本文将对根轨迹法相关的知识点进行总结。
一、根轨迹法的基本原理根轨迹法是通过分析系统的开环传递函数来评估其稳定性和性能。
它利用复变函数的性质,在复平面上绘制系统特征方程的根轨迹,从而可视化地表示系统的特性。
根轨迹法的基本原理可以概括为以下几点:1. 特征方程的根特征方程是描述系统行为的方程,其根即为系统的极点。
极点的位置和数量决定了系统的稳定性、震荡性以及响应速度等特性。
2. 根轨迹的绘制规则根轨迹的绘制可以根据主要的规则来进行。
其中,当系统增益的变化导致根轨迹相交或穿过虚轴时,会出现特殊情况,例如系统的稳定性改变或出现振荡。
3. 根轨迹与系统性能通过观察根轨迹的形状、分布和相互关系,可以初步评估系统的稳定性和性能。
例如,根轨迹离虚轴越远,系统的稳定性越好;根轨迹的角度反映了系统的相位裕度;根轨迹的频率响应则反映了系统的增益裕度。
二、根轨迹法的应用根轨迹法广泛应用于自动控制系统的分析和设计中。
它可以帮助工程师们理解和改善系统的性能,确保系统稳定可靠。
以下是根轨迹法的几个重要应用方面:1. 系统的稳定性分析通过绘制根轨迹,可以判断系统是否稳定。
如果所有的根轨迹都位于虚轴的左侧,则系统稳定;如果有根轨迹位于虚轴右侧,则系统不稳定。
2. 控制器的设计在根轨迹上,可以通过调整控制器的增益和相位来实现对系统性能的优化。
通过仔细观察根轨迹的形状和位置,可以选择合适的控制器参数,以满足系统的性能要求。
3. 震荡问题的解决根轨迹法可以用于解决系统震荡或不稳定的问题。
通过调整系统的增益和相位,可以使根轨迹远离虚轴,并确保系统的稳定性。
三、注意事项与实践技巧在应用根轨迹法进行系统分析和设计时,需要注意以下几点,以确保结果的准确性和可靠性:1. 选择合适的模型系统的数学模型对根轨迹法的应用至关重要。
自动控制原理第四章 根 轨 迹 法
K=2.5
-2
>0.5时,特征根为共轭复根,欠阻尼系 统,响应为衰减振荡;可根据性能要求
K
设置闭环极点。
当特征方程>2阶时无法求解,如何绘制根轨迹图?
4-2. 绘制根轨迹的基本依据和条件
特征方程为: 1+G(s)H(s)=0
即: G(s)H(s)= -1
R(s)
Y(s)
G(s)
-
H(s)
G( s )H( s ) 1
4-1. 根轨迹基本概念
根轨迹的定义:
开环传递函数的某一参数从0变到∞时,闭环系 统特征方程式的根在s平面上的变化轨迹。
R(s)
-
E(s) G1(s)
D1(s) G 2(s)
H(s)
Y(s) D2(s)
如
G1( s )G2 ( s )H ( s )
Kg s( s 1 )( s 2 )
常规根轨迹
求解:设 Gk ( s ) KgG1( s ),则对于1 KgG1( s ) 0,有
dK g ds
d [G11( s )] ds
0 (Kg在根轨迹的分离点上取极值)
或 dG1( s ) 0 (特征式满足 d( s ) 0)
ds
ds
注:只须用其中之一,且只是必要条件
续前例:求分离点上的坐标。
幅值条件
G( s )H( s ) 180( 2k 1 ), k 0,1,2,
相角条件
零极点表达形式下的幅值条件和相角条件:
m
n
K g (s zi )
(s pi )
G(s)H(s)
i1 n
1 ,或
Kg
i1 m
,
(s pi )
(s zi )
自动控制原理第四章
∑(−P ) − ∑(−Zi ) j σα = n−m (0 − 3 + (−1 + j) + (−1 − j) − (−1 )) = 3 (−2 −1 −1 ) −4 = = = −1.33 3 3
[规则 ] : 起始 出射)角与终止 入射)角的计算公式为 6 ( ( : m ∠(s + Z ) − n ∠(s + p ) θ ∑j i i p = (2L +1)π + ∑ i=1 j =1,i ≠ s=− p n m θz = (2L +1)π − ∑∠(s + Zi ) − ∑∠(s + pi ) s=− z i =1 i=1,i≠ j
3 2
令s = jω有: (jω) + 5( jω) + 4 jω + k = 0
3 2
− jω − 5ω + 4 jω + k = 0
3 2 2 j(4ω −ω3 ) = 0 ω(4 −ω ) = 0 ω = 0或± 2 2 2 K − 5ω = 0 K = 5ω = 5× 4 = 20 * ∴ω = ±2, K = 20
幅值条件方程(模相等):
∏ ∏
j =1 i =1 n
m
(s + zi ) (s + pj )
=1
相角条件方程(相角相等):
G(s)H (s) = ±(2k +1)π
∑∠(s + z ) − ∑∠(s + p ) = ±(2k +1)π
i =1 i j =1 j
m
n
第三节 根轨迹绘制规则
[规则 根轨迹与实轴对称 规则1]根轨迹与实轴对称 规则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J.Z. Xiao, CEIE, HBU
k = 0 , ± 1, ± 2 L
模条件 角条件
5
将根轨迹方程写成零迹、增极益点表示的矢量方程为:
开环增益
m
∏ (τi s 1)
m
(s z i)
G(s) H (s) = K i =1 n
= K * i =1 n
(T js 1)
(s p j )
j =1
j =1
J.Z. Xiao, CEIE, HBU
15
基于根轨迹的分离点或汇合点实质上都是特征方程式的 重根。设
G(s) H (s) = K N (s) = 1 D(s)
闭环系统特征方程: F ( s ) = D ( s )+ K * N ( s)= 0
F ( s ) = D ( s )+ K * N ( s)= 0 F ( s ) = D ( s )+ K * N ( s)= 0
闭系环即特可征以方画程出的下阶半数s 平n,也面就的是根分轨支迹数部与分 闭环极点的
n
m
*
j =1
i =1
数n,则有(n-m)条根轨迹终止于无穷远处(的零
点)。
J.Z. Xiao, CEIE, HBU
10
证明:
n
m
(s p j) K * (s z ) =i 0
j =1
i =1
根轨迹的起点是指根轨迹增益K*=0的根轨迹点
s n m(1 an-1 bm 1 )= K * e j ( 2 k 1)π s
k = 0,1,2,L, n m 1
两侧开(n-m)次方
s(1 a n-1
bm
1
1)n
1 j ( 2 k 1)
m= K * n me n m
s
(1 a n-1
bm
1
1)n
m= 1+
1
an-1
bm 1
1
s
nm s
2!(n
(1 m) n
!根据根轨迹在实轴上的分布,前者不属于根轨迹,故舍
去。所以后者为根轨迹的分离点。
J.Z. Xiao, CEIE, HBU
17
法则7: 根轨迹在复极点的出射角和复零点的入射角
m
n
∑ θ pk = ( 2 k 1)π + ∠ ( p k z j )
( p k p i)
j =1
n
∑ θ zk = (2k 1)π + ∠( zk
m
1)(a n-1 s
bm
1
)
2
L
当s->∞时,上式可近似为
(1 a n-1
bm
1
1 )n
m = 1+
1
a n-1
bm 1
s
nm s
s+ a n-1
bm
1 j ( 2 k 1)
1= K * n me n m
nm
m
n
m
(bm 1 = an 1 =
zi
i =1 n
p j)
pj s- j =1
n
zi
i =1
m
1 j ( 2 k 1)π
= K * n me n m
j =1
J.Z. Xiao, CEIE, HBU
即得渐近线的坐标与夹角。
14
规则6: 根轨迹的分离点、汇合点与分离角
定义一:两条或两条以上根轨迹分支在 s平面上(通常为 实轴)的交点称为根轨迹的 分离点或汇合点 ;
定义二:分离角定义为进入分离点的切线方向与离开分 离点切线方向之间的夹角。
第四章 根轨迹法
反馈控制系统的运动特征取决于其闭环传递函 数:极点、比例系数、零极点分布等。
1948年,伊凡思(W.R.Evans)根据反馈控制系 统的开环传递函数与其闭环特征方程间的内在 关系,确定闭环特征方程特征根的一种图解方 法——根轨迹法。 将开环系统中的参数与闭环极点间的关系通过
直观的方法确定出来,便于对系统稳定和综合 性能的分析。
R(s)
解:易知闭环系统特征s 1)(s 2)
F (s) = D(s)+K * N(s)= s(s 1)(s 2) = 0
dF ( s ) = dD ( s ) K dN ( s )
ds
ds
ds
=3s26s2=0
解方程为:
Im 2 1 0 Re
s1 = 1.577
s2 = 0.423
同理:
入射角=∑[各开环极点指向该零点的矢量的方向角] -∑[其它各开环零点指向本零点的矢量的方向角]+反向
J.Z. Xiao, CEIE, HBU
18
法则8: 根轨迹与虚轴的交点
方法一:应用劳斯判据
当特征方程式存在有一对纯虚根时,应令劳斯表第一 列中包含K * 的项为零,即可确定根轨迹与虚轴交点处 的K *值。利用劳斯表中s2 行的系数构成辅助方程,必 可解出纯虚根的数值。这一数值即对应于根轨迹与虚 轴交点处的 值。
β1 − (α1 + α 2 + α 3 ) = (2k 1)π
β1 z1
L2 α1
σ P1
此点处的开环根轨迹增益
L4
K * = s1 s1 p2 s1 p3 = L2 L3 L4
s z1
L1
α3 P3
幅值条件和相角条件图示
J.Z. Xiao, CEIE, HBU
8
例 利用相角条件绘制图4-1所示系统的根轨迹。系统的 开环传递函数仍为
n
(s p j ) = 0
j =1
根轨迹的终点则是指根轨迹增益K*
s = p j , j = 1,2L n
∞的根轨迹点。
1n
m
* (s p j ) (s zi ) = 0
K j =1
i =1
令
s= 1 q
11
1
1
1
K * ( q p1 )( q p2 )L( pqn ) ( zq1 )(
等式两端同时乘以qn,可得
m
( zi ) K = K * i =1
n
( pj)
j =1
m
K* ( s
j =1
n
zj ) = 1 = e j ( 2 k 1)π (k = 0, ± 1, ± 2, L)
( s pi)
i =1
模值方程和相角方程分别为:
m
K* | s
j =1
n
n
zj|
|s
*
=i 1
=1,K = m
pi | m
系统的闭环传递函数:
R(s) -
G (s) H (s)
C(s)
(s) = G(s) 1 G(s) H (s)
闭环特征方程即根轨迹方程为G(s)H(s)= –1
G(s)H (s) e arg[G ( s ) H ( s )] = 1 e j ( 2 k 1)π
G(s) H (s) = 1
arg[G (s) H ( s)] = (2k 1)
i =1
i =1 i k
m
pi )
j =1
( zk z j )
θ3
jω
S1 P34
设S1在根轨迹上,则
j k P2
θ2
φ1
z1
θ1
P1 0
σ
φ1-(θ1+θ 2+θ 3+θ 4)=± (2k 1)π
θ4
3= 1-( 1+ 2+ 4)m (2k 1) P4
出射角=∑[各开环零点指向该极点的矢量的方向角] -∑[其它各开环极点指向本极点的矢量的方向角]+反向
根轨迹是指开环系统某个参数由0变化到∞,闭环特征根在s平面上 移动的轨迹。
(1)系统为结构稳定系统。无论K为何值,其特征根始终位于复 平面的左半平面。
(2)当0<K<0.25时,二阶系统的两个特征根为位于左半面的两个
,
实根,系统处于过阻尼状态。当K>0.25时,两个特征根为位
于左半面的一对共轭复根,系统处于欠阻尼状态。当K=0.25
n
m
p
z
σ = j =1
i =1
nm
ϕ= j
i
k
=
0,1,2(,2L,kn
1)π
m
1
nm
m
(s
* i =1 n
(s
j =1
zi) G(*s) Hs m(s) =bmK1 s m 1 L b1 s=Kb0
p j)
s n an 1 s n 1 L a1 s a0
m
(bm 1 =
zi
i =1
n
an 1 =
p j)
j =1
同除分子 G(s) H (s) =
K*
nm
s (an-1 bm 1 )s n
s
= m 1+L
sn
K* m (an-1 bm 1 )s n
m1
由根轨迹方程
s n m (a n-1 bm 1 )s n m 1=-K *
J.Z. Xiao, CEIE, HBU
13
s n m(1 an-1 bm 1 )= K * s
G(s)H(s)= K s ( s 1)
• 确定实轴上的根轨迹
正实轴 实轴上原点与-1点之间 -1点左边
• 在实轴外任取一点 s1位于(-1, 0)的垂直平分线
• 用模条件确定系数K的值
根轨迹上点 ( 0.5 j 0) 所对应的 K 值 K = 0.5 0.5 1 = 0.25 根轨迹上点 ( 0.5 ± j 0.5)
当需要确定根轨迹上各点的K*值时,才使用幅 值条件。
J.Z. Xiao, CEIE, HBU
7
例:系统的开环传递函数为