狭义相对论速度变换式和动力学基础

合集下载

7,狭义相对论基础资料

7,狭义相对论基础资料

同时的相对性
(中点)
因光速不变(不论对 或 )

看到: 闪光同时到达 A 、B 壁。
看到: 闪光先到达 B 壁,后到达 A 壁。
设: 光到达 A 为事件 1
对 :两事件同时发生,
光到达 B 为事件 2 对 :两事件非同时发生。

“ 同时 ” 是相对的。(与惯性系有关)
用洛仑兹变换式判断两事件在不同惯两事件性的变换系中的时空关系
E
天文台
精密的天文观测表明,双星的像是很清晰的两个光点,没有 发现亮弧现象。而且两种方法测周期的结果一样。这只能用 光速与光源运动状态无关的观点,才能得到圆满的解释。
迈克耳孙-莫雷孙实验
迈克耳孙 莫雷实验 寻找 “以太” 失败实

根据“以太”观点,充满宇宙的
“以太”是一切运动的绝对参考系。 地球 对 以太
相对论的时空关系,难有生活直接体验,要借助洛仑兹变换式谨慎分析。
(事件1)
(事件2)
对: 对:
若已知

根据洛仑兹变换式可求出
下面讨论几种可能遇到的情况:

两事件的空间间隔
两事件的时间间隔
要领
同时 同地
同时 同地
同时 异地 异时 异地
异时 同地 异时 异地
异时 异地
要看具体 条件而定
对于有因果关系的关联事件(如:发送与接收,出生与死亡,栽种与收获等)
(地测B) (地测C)
0.9 0.9
(反 向)
C
(A测B) (A测C)
由洛仑兹速度变换
0.9 0.8 0.8 0.9
0.9 0.8
0.8
0.9
0.357
0.988
(反 向)

大学物理上 第4章 狭义相对论基础

大学物理上 第4章 狭义相对论基础
物理规律 力学规律
1. 爱因斯坦的理论是牛顿理论的发展 2.光速不变否定了绝对时空概念。不存在绝对运动或 .光速不变否定了绝对时空概念。 绝对静止。 绝对静止。
10
§4.3
狭义相对论时空观
4.3.1 同时的相对性 由于光速不变, 由于光速不变,在某一个惯性系中同时发生的两 个事件, 个事件,在另一相对它运动的其它惯性系中并不一定 是同时发生的,这个结论称为“同时的相对性” 是同时发生的,这个结论称为“同时的相对性”。
v x = v′ + u x v y = v′y vz = v′ z
y = y′
x
P
x'
ut
o z
o'
x′
u
x
伽利略速度变换 v′ = vx − u x S ' 系 v′ = v y y v' z = v z
z'
S系
r r r v = v '+u
经典时空中速度满足速度叠加原理。 经典时空中速度满足速度叠加原理。
17
.
慢 双生子佯谬
慢 .
.
1971年,美空军用两组Cs(铯)原子钟作实验。 年 美空军用两组 ( 原子钟作实验。 实验值: 实验值:绕地球一周的运动 钟变慢: 钟变慢:203± 10ns ± 理论值:绕地球一周的运动 理论值: 钟变慢: 184 ± 23 ns 钟变慢: 实验值和理论值在误差 范围内是一致的。 范围内是一致的。 实验验证了孪生子效应确实是存在的。 实验验证了孪生子效应确实是存在的。
9
4.2.2 狭义相对论的基本原理 1.狭义相对性原理:一切物理规律在任何惯性系中 1.狭义相对性原理: 狭义相对性原理 都具有相同的形式。 都具有相同的形式。即:物理定律与惯性系的选择无 对物理定律来说,所有惯性系都是等价的。 关,对物理定律来说,所有惯性系都是等价的。 2.光速不变原理:在所有惯性系中, 2.光速不变原理:在所有惯性系中,光在真空中的 光速不变原理 速率相同,与惯性系之间的相对运动无关,也与光源、 速率相同,与惯性系之间的相对运动无关,也与光源、 观察者的运动无关。 观察者的运动无关。 说明: 说明:

高中物理奥林匹克竞赛专题——狭义相对论(共32张ppt)

高中物理奥林匹克竞赛专题——狭义相对论(共32张ppt)

I(xA,yA,zA,tA)
s系 A
. C
s系
.
.
A
C
I(IxB ,yB ,zB ,tB )
B
u
.
B
C
s系 A
.
B
u.
.
.
s系
A
C C B
在 S 系中,两闪电的光信号同时到达 C 而不是 C ,为 不同时事件。(击中 A 先发生)。
爱因斯坦认同为时: 性概念是因参考系而异的,在一个惯性 系中认为同时发生的两个事件,在另一惯性系中看来, 不一定同时发生。同时性具有相对性。
(原时)
yM
M
M
站台系:s 系
c t 2 D
ut 2
u
光信号:
N M N
N
N
N
该两事件为异地事件,
o N1
N2
x 需用两只钟测出其时间
I(x1,t1)
II(x2,t2)
(ct)2D2(ut)2
2
2
间隔Δt=t2-t1 , 为观测时 间
t2D 1
c 1uc22
解得: vx
mrelu m mrel

vx
mrelu m mrel
;
vx
mrelu m mrel
代入洛仑兹速度变换:v x

vx 1
u
uv x c2

mrel
m m
1

u2 c2
结论:在相对论中,质量与时间、长度一样,与惯 性系的选择有关,为相对量。
相对论动量 定义:

v c2
x
一对事件的洛伦兹变换关系
x x vt

大学物理狭义相对论基础全部内容

大学物理狭义相对论基础全部内容

伽利略 变换
洛仑兹 变换
实验检验
绝对时空观
狭义相对论时空观 比 较
相对论动力学基础
广义相对论时空观
学时: 8 (狭义相对论); 自学*广义相对论简介
重点: 狭义相对论的两条基本原理 洛仑兹坐标变换 狭义相对论时空观(“同时”的相对性、钟慢尺缩) 质速关系,质能关系,能量与动量关系
难点: 狭义相对论时空观 *广义相对论的两条基本原理 *时空的几何化,空间弯曲
—— 牛顿
即:时间先于运动存在。没有时间,无法描述运动; 而没有运动,时间照样存在和流逝。
2. 空间:用以表征物质及其运动的广延性
空间测量:刚性尺 国际单位:米
光在真空中 29979241秒58的时间间隔内传播的
距离。
长度的测量:
长度 = 在与长度方向平行的坐标轴上,物体两端 坐标值之差 注意:当物体静止时,两端坐标不一定同时记录;
物理学家感到自豪而满足,两个事例:
在已经基本建成的科学大厦中,后辈物理学家只要 做一些零碎的修补工作就行了。也就是在测量数据的 小数点后面添加几位有效数字而已。
——开尔芬(1899年除夕)
理论物理实际上已经完成了,所有的微分方程都 已经解出,青年人不值得选择一种将来不会有任何 发展的事去做。
——约利致普朗克的信
同学们好!
物理书都充满了复 杂的数学公式。可是 思想及理念,而非公 式,才是每一物理理 论的开端。
--爱因斯坦
《物理学的进化》
阿尔伯特.爱因斯坦(1879 — 1955)
?
第八章 狭义相对论 *广义相对论简介
力学相对性原理 对称性扩展
狭义相对性原理 光速不变原理 对称性扩展 广义相对性原理 等效原理

狭义相对论公式及证明

狭义相对论公式及证明

狭义相对论公式及证明单位符号单位符号坐标: m (x, y, z) 力: N F(f)时间: s t(T) 质量:kg m(M)位移: m r 动量:kg*m/s p(P)速度: m/s v(u) 能量: J E加速度: m/s^2 a 冲量:N*s I长度: m l(L) 动能:J E k路程: m s(S) 势能:J E p角速度: rad/s ω力矩:N*m M角加速度:rad/s^2α功率:W P一:牛顿力学(预备知识)(一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt(2)a=dv/dt, v=v0+∫adt(注:两式中左式为微分形式,右式为积分形式)当v不变时,(1)表示匀速直线运动。

当a不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动。

(2)牛二:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=dp/dt(3)牛三:作用力与反作与力等大反向作用在同一直线上。

(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r2,G=6.67259*10-11m3/(kg*s2)动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化)机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。

同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。

)二:狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。

狭义相对论的动力学

狭义相对论的动力学

⑥ v > c时, m为虚数而无实际意义. 这阐明:真空中 旳光速c是一切物体运动速率旳极限.
2 动量与速度旳关系
p mv m0 v 1 v2 / c2
相对论中,质点所受旳力定义为:F
dp dt
d dt
mv
经典力学中,质点受力旳定义:
F
dp dt
m
d dt
v
显然,两者不再等效,因而用加速度表达旳牛顿 第二定律在相对论力学中不再成立.
A
B
2. 设有宇宙飞船A和B,固有长度均为l0 = 100m,沿 同一方向匀速飞行,在飞船B上观察到飞船A旳船头、
船尾经过飞船B船头旳时间间隔为0.6×10-7s,则飞船
B相对于飞船A旳速度是

解: 在B 船中观察A船旳长度
l l0 1 v c2
在B 船船头观察A船船头船尾飞过旳时间间隔
0
l v
• 爱因斯坦建立旳质能关系式被以为是一种具有划时
代意义旳理论公式,原子能旳利用使人类进入原子
时代。
E m0c2
这个关系式中 c2 旳数值很大,以至微小旳质量变化, 就相应着巨大旳能量变化。
在原子核裂变反应中,1g 235U裂变释放旳结合 能约 8.2 1010 J 。
在原子核聚变反应中,1g 氘和氚聚变释放旳结 合能大约是上述裂变反应释放能量旳3.5倍。
A
A 0.4kg B 0.8kg C 12×10-7kg D 1/12 ×10-7kg
m0c2 36 1015 J
m0
36 1015 9 1016
0.4kg
3. 一种立方体旳静质量为 m0,体积为 V0,当它相 对某惯性系S沿一边长方向以 v匀速运动时,静止在 S 中旳观察者测得其密度为多少?

狭义相对论动力学

狭义相对论动力学
14
例: 设一质子以速度 v 0.80c 运动。 求其总
能量、动能和动量。
解 质子的静能 E0 m0c2 938MeV
E mc2
m0c2 1 v2
c2
938 (1 0.82 )1 2
MeV
1563MeV
Ek E m0c2 625MeV p mv m0v 6.68 1019 kg m s1
微子等。
4
5)实验证明质速关系是正确的。
比如,测量电子质量的试验。
10 让电子在加速器中加速, 8
测电子的荷质比e/m发现该 6
值随速度增大而减小。
4
21
6P) 相m对v论 的动m量0v:
0 0.2 0.4 0.6 0.8 1.0
1 (v / c)2
此时,动量守恒定律在洛仑兹变换 下形式保持不变。
vx
vx 1
u
vxu c2
m1
v10 1
x u v10 xu
c2
m2
v20 1
x u v20 xu
c2
m1
v1x 1
u
v1x u c2
m2
v2x u
1
v2 x u c2
m1v10 x m2v20 x m1v1x m2v2 x S'系中动量不再守恒?! 1
动量守恒定律和能量守恒定律应该是自然界的 普遍规律。
13
五、能量和动量的关系
E mc2 m0c2 1 v2 c2
p mv m0v 1 v2 c2
(mc2 )2 (m0c2 )2 m2v2c2
E 2 E02 p2c2
E pc
E0 m0c2
极端相对论近似 E E0 , E pc
光子 m0 0, v c p E c mc

狭义相对论基本变换公式

狭义相对论基本变换公式

t 2 d 2 (vt)2 2 d2 (vt)2 2d 1 (v )2 ( t )2
c
c
c
c t
t t'
1
v2 c2
( t )2 t
t
t
1
v2 c2
我们对于同一个过程算出的时间不一样都是因为认定了光速相对于你我都是c,这样算出的 时间就是不一样的,加入我们认为光速相对于你我不是c是不是就能算出一样的时间来呢, 嗯,的确是的,但是光速在不同参考系中是不会变的,这受到了迈克尔逊莫雷实验以及后
v
v 1 v2 c2
1 v2 c2
这里有一个需要注意的问题:那就是通过尺缩效应容易得到空间坐标之间的变换关系,之 后,根据光速不变原理可以直接得到时间的关系,也算是第二种推导方法吧,那就是对于 一束光x2+y2+z2=c2t2,在第S'系中的坐标应该是x'2+y'2+z'2=c2t'2,既然光线的传播方程 具有这足这个关系,那么光速就不是不变的了,与假设矛盾,因此要这样求解。
运动参考系的空间坐标 在初始时刻,两个坐标系的原点重合,O=O',此时认为t=t'=0,将 钟对准。假如在另一个时刻将时空定格,空间中的一点在S系中是(x,y,z,t),在S'系中是 (x',y',z',t'),我们的目标是测量出这两个坐标系之间的变换关系,根据引言可知, y=y',z=z',这个是不变的,否则就违背了惯性系速度方向不变的假设。下面求x方向的坐 标变换关系。
x x ' vt 1 (v)2 c
根据这个长度的关系我们可以推导出时间的关系:
t 1 (x x

《大学物理》学习指南

《大学物理》学习指南

《大学物理》学习指南《大学物理》是理工科及医学类学生的一门公共基础课,该课程内容多,课时少,建议学生课前预习,上课认真听讲,理解物理概念、掌握物理定理和定律,学会分析物理过程,课后适当做些习题,以巩固物理知识。

为了学生更好学好《大学物理》,给出了每章的基本要求及学习指导。

第一章 质点力学一、基本要求1.掌握描述质点运动状态的方法,掌握参照系、位移、速度、加速度、角速度和角加速度的概念。

2.掌握牛顿运动定律。

理解惯性系和非惯性系、保守力和非保守力的概念。

3.掌握动量守恒定律、动能定理、角动量守恒定律。

4.理解力、力矩、动量、动能、功、角动量的概念。

二、学习指导1.运动方程: r = r (t )=x (t )i +y (t )j +z (t )k 2.速度:平均速度 v =t ∆∆r 速度 v =t d d r平均速率 v =t ∆∆s 速率 dtdsv =3.加速度:平均加速度 a =t ∆∆v 加速度 a =t d d v =22d d tr4.圆周运动角速度t d d θω==Rv角加速度 t t d d d d 2θωβ== 切向加速度 βτR tva ==d d 法向加速度 a n =22ωR R v = 5.牛顿运动定律 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,直至其他物体所施的力迫使它改变这种运动状态为止.牛顿第二定律:物体受到作用力时所获加速度的大小与物体所受合外力的大小成正比,与物体质量成反比,加速度a 的方向与合外力F 的方向相同。

即dtPd a m F ρρρ==牛顿第三定律:力总是成对出现的。

当物体A 以力F 1作用于物体B 时,物体B 也必定以力F 2作用于物体A ,F 1和F 2总是大小相等,方向相反,作用在一条直线上。

6.惯性系和非惯性系:牛顿运动定律成立的参考系称为惯性系。

牛顿运动定律不成立参考系称为非惯性系。

7.变力的功 )(dz F dy F dx F r d F W z y x ++=⋅=⎰⎰ρρ 保守力的功 pb pa p ab E E E W -=∆-= 8.动能定理 k k k E E E W ∆=-=129.功能原理 W 外+W 非保守内力=E -E 010.机械能守恒定律 ∆E k =-∆E p (条件W 外+W 非保守内力=0)11.冲量 ⎰=21t t dt F I ρρ12.动量定理 p v m v m I ρρρρ∆=-=12质点系的动量定理 p 系统末态-p 系统初态=∆p13.动量守恒定律 p =∑=n i 1p i =恒矢量 (条件 0=∑ii F ρ)14.力矩、角动量 F r M ρρρ⨯= P r L ρρρ⨯=15.角动量定理 1221L L dt M t t ρρρ-=⎰16.角动量守恒 恒矢量=∑i L ρ (条件0=∑ii M ρ第二章 刚体力学一、基本要求1.掌握描述刚体定轴转动运动状态的方法,掌握角速度和角加速度的概念。

大学物理相对论复习资料

大学物理相对论复习资料

⼤学物理相对论复习资料狭义相对论基本内容⼀、狭义相对论的基本原理1. 迈克⽿逊实验迈克⽿逊莫雷实验的⽬的是测定地球相对以太的速度,实验结果:地球相对以太的速度为零,当时的物理理论不能解释该实验结果。

2. 爱因斯坦狭义相对论的基本假设相对性原理:物理学定律在所有的惯性系中形势都是相同的,即⼀切惯性系都是等价的。

光速不变原理:在所有的惯性系中,真空中(⾃由空间)光速具有相同的量值c 。

⼆、狭义相对论时空观1. 洛仑兹变换⼀个事件在惯性系S 中的时空坐标为(x, y, z, t),在沿x 轴以速度v 匀速运动的另⼀惯性系S '中的时空坐标为()x ,y ,z ,t ''''(0t t '==时刻两惯性系原点重合且相应轴重合),则该事件的时空坐标的变换关系称为洛仑兹变换:=-===-2'('''(x x vt y y z z v t t x c或?=+=??==+??2('''('x x vt y y z z v t t x c2. 同时是相对的两个事件在⼀个惯性系中同时同地发⽣,在⼀切惯性系中该两事件必同时同地发⽣;两个事件在⼀个惯性系中不同地点同时发⽣,在其它惯性系中该两事件不⼀定同时发⽣。

3. 时钟变慢(时间变缓)在⼀个惯性系中同⼀地点先后发⽣的两事件,在该惯性系静⽌的时钟测得的时间间隔为固有时间0τ,在另⼀相对该惯性系以速度v 匀速运动的时钟测得的时间间隔为t ?,两者的关系为?γττ==0t 。

4. 尺缩短(长度收缩)观测者与尺相对静⽌时测得尺长称固有长度0L ,观测者沿尺长⽅向以速度v 匀速运动时测得尺长为L ,两者关系为=L L 观察者垂直于尺长⽅向以速度v 匀速运动时测得尺长为L ',0L L '=。

5. 狭义相对论时空观与经典时空观的⽐较当v c 时在x ≯ct 的时空范围内洛仑兹变换转化为伽利略变换,经典时空观是上述条件下狭义相对论时空观的极限。

高中物理《狭义相对论的其他结论 广义相对论简介》

高中物理《狭义相对论的其他结论   广义相对论简介》

第3节狭义相对论的其他结论第4节广义相对论简介1.知道相对论速度变换公式、相对论质量和质能方程。

2.了解广义相对性原理和等效原理。

3.初步了解广义相对论的几个主要结论以及主要观测证据。

一、狭义相对论的其他结论1.相对论速度变换公式:设高速行驶的火车的对地速度为v,车上的人以速度u′沿着火车前进的方向相对火车运动,那么人相对地面的速度□01u=u′+v1+u′vc2,若人和车的运动方向相反,式中u′取□02负值。

2.相对论质量(1)经典力学中物体的质量是□03不变的,一定的力作用在物体上,产生一定的□04加速度,经过足够长的时间后,物体可以达到任意的速度。

(2)相对论中物体的质量随物体速度的增加而□05增大。

物体以速度v运动时的质量m与静止时的质量m0之间的关系是:□06m=m01-⎝⎛⎭⎪⎫vc2。

3.质能方程:□07E=mc,式中E是物体具有的能量,m是物体的质量。

二、广义相对论简介1.广义相对论的基本原理(1)广义相对性原理:在□01任何参考系中,物理规律都是相同的。

(2)等效原理:一个均匀的引力场与一个做□02匀加速运动的参考系等价。

2.广义相对论的几个结论(1)光线弯曲:物体的□03引力使光线弯曲。

(2)引力红移:引力场的存在使得空间不同位置的□04时间进程出现差别,引力越强,时间进程越慢,从而使矮星表面原子发光频率□05偏低,看起来偏红。

判一判(1)物体的质量发生变化时,能量一定发生变化。

()(2)质量是物体的固有属性,因此在任何情况下都不会发生改变。

()(3)只有运动物体才具有能量,静止物体没有能量。

()提示:(1)√(2)×(3)×想一想(1)如果物体高速运动,速度的变换公式是什么?提示:设参考系O′相对参考系O以速度v运动,某物体以速度u′沿着参考系O′前进的方向运动,则在参考系O中观测到它的速度u=u′+v1+u′vc2。

(2)物体的运动质量和静止质量谁更大一些?提示:相对论质量公式m=m01-⎝⎛⎭⎪⎫vc2,v越大,则m越大,并且m≥m0,即运动质量比静止质量更大一些。

第十三章 狭义相对论基础

第十三章 狭义相对论基础

近代物理学基础第十三章 狭义相对论基础 §13-1伽利略变换与经典力学时空观一.伽利略变换1. 时空坐标变换=t 时,'O ,O 重合, utx 'x -=,t 't =2. 速度变换uv 'v x x -=,yy v 'v =,zz v 'v =3.加速度对伽利略变换保持不变a'a =二. 牛顿力学运动学的特点(绝对时空观)1. 时间间隔的测量是绝对的,即两事件的时间间隔在不同的惯性系中是相同的;2. 空间间隔的测量是绝对的,即:两点的空间间隔在一同的惯性系中是相同的。

三. 牛顿力学动力学的特点1.m 与v 无关,'m m=;2.'a a =;3. )'a 'm 'F ,ma F ('F F===4. 伽利略相对性原理:力学规律对一切惯性系都是等价的。

(1632年,船舱内实验)§13-2 迈克尔逊-莫雷实验一. 问题的提出1. Maxwell eqs 对伽利略变换不协变uS'S O'O xz'x 'z y 'y18001099821-⋅⨯==sm .c εμuc 'c ±=2. 以太之迷以太:传播电磁波的弹性媒质;以太参照系:和宇宙框架连接的绝对静止参照系01εμ=c 是相对于以太的二. 迈克尔逊-莫雷实验(1887)1. 实验目的:寻找绝对参照系-以太参照系 2. 指导思想及实验方法: ① 承认以太参照系存在;② 初步近似:太阳参照系-以太参照系; ③ 速度变换满足伽利略变换; 计算结果:40.N≈∆3. 实验精度及结果精度:0.01; 结果:0=N ∆!* 推导:* 迈克尔逊-莫雷实验的零结果,使同时代的科学家目瞪口呆,震惊不已。

* 物理学晴朗的天空中漂来了一朵乌云!(1987年还有人做,精度提高了50倍)三. 实验的意义:1. 否定了以太参照系的存在,暗示-电磁学规律对不同参照系有相同形式; 2. 否定了经典速度变换法则,揭示-光速不变。

相对论动力学 广义相对论简介 相对论3

相对论动力学 广义相对论简介 相对论3
v = 8.4 t
作 v2 ~ Ek 曲线
贝托齐电子极限速率实验(1962)
⎛ ⎛ E ⎜ 1−⎜ 1+ + k ⎞ 2= ⎟ v ⎜ m c2 ⎟ ⎜ ⎜ ⎝ 0 ⎠ ⎝
−2 ⎞

⎟ c2 ⎟ ⎟ ⎠
实验结果: 电子极限速度等于真空中的光速
2、质能关系
E k = mc 2 − m0 c 2
爱因斯坦认为:E0 = m0 c2 为 静止能量
x
dE k = mv d v + v d m
2
由m=
m0 1− v / c
2 2
m (c −v )= m c
2 2 2
2 2 0
2 mc dm − 2 mv dm − 2 m vdv = 0
2 2 2
mv d v = (c − v ) d m
2 2
代入dEk表达式中
d Ek = c d m
2
由于物体从静止开始运动,两边积分
v
at
m

r a
an
r r r dm r F = m ( a n n + a tτ ) + v dt
r r r dm F = ma + v dt
dm r r r = ma n n + ma tτ + v τ dt
at
m

Ft
r v
r a
r F
r dm r r F = man n + ( mat + v )τ dt r r v
−u S
0
v′ = − u A
A
m′ A
v′ = u B
0′
B
x′
M′

4.2相对论动力学基础

4.2相对论动力学基础

m
v
C
v0
o
t
vt v0 at
根据相对论的速度变换公式可知任何物体的运动
速度均不可能超过光的速度, 此矛盾如何解决 ?
§4.5 相对论动力学基础 在经典力学中质量是不变的,和 物体的运动无关,在相对论中质量 是否是不变的呢? 4.5.1 相对论质量和动量 1.质速关系
M分裂成两块
K:分裂前 M:v 0
当 v按1)照相狭对c义论相时动对量论原pp理和m洛1vm伦0兹v m变2 0换v的m要0求v mv
2)相对论质量 m m0
m
1 2 m0
m(v) 在不同惯性系中大小不同 . o
Cv
静质量 m0 :物体相对于惯性系静止时的质量 .
静质量 m0 :物体相对于惯性系静止时的质量 .
m 1 m0 1 ( v )2
远方观察者
的光线所组成,而这些光线并不
看到物体相对于它静止
是同时自物体发出的.
的形状略有转动.
相对论的动量和能量
一、动量与速度的关系 二、狭义相对论力学的基本方程 三、质量与能量的关系
牛顿定律与光速极限的矛盾
物体在恒力作用下的运动
F
dp
d(mv)
dt dt
经典力学中物体的质量
与运动无关
a
F
3 8
v4 c4
相对论总能量:
E mc2
质能关系(mass-energy relation): 反映质量与能量的不可分割性,
Ek
1 2
m0 v 2
3 8
m0
v4 c4
任何物体系统,可以由质量或 者能量来表征其数量.
v c时
Ek
1 2
m0 v 2

狭义相对论公式及证明

狭义相对论公式及证明

狭义相对论公式及证明(2)a=dv/dt, v=vO+ / adt(注:两式中左式为微分形式,右式为积分形式 )当v 不变时,(1)表示匀速直线运动。

当a 不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动。

(2) 牛二:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=d p/dt (3) 牛三:作用力与反作与力等大反向作用在同一直线上。

(4) 万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r 2,G=6.67259*10 -11m 3/(kg*s 2) 动量定理:1= / Fdt=p-2)1(合外力的冲量等于动量的变化) 动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=f Fds=E k2-E k1(合外力的功等于动能的变化)机械能守恒:只有重力做功时, (注:牛顿力学的核心是牛二:F=ma ,它是运动学与动力学的桥梁, 我们的目的是知道物体的运动规律,即求解运动方程 r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求 之。

同样,若知运动方程r=r(t),可根据运动学基本公式求 a ,再由牛二可知物体的受力情况。

) 狭义相对论力学:(注:丫 =1/sqr(1u 2/c 2), 3 =u/u,为惯性系速度。

) (一) 基本原理:(1)相对性原理:所有惯性系都是等价的。

(2) 光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出证明)(二) 洛仑兹坐标变换:X= Y (xut)Y=yZ=z单位符号单位符号 坐标:m (x, y, z)力:N F(f) 时间: s t(T)质量:kg m(M)位移:m r 动量:kg*m/s p(P) 速度:m/s v(u) 能量:J E 加速度: m/sA2 a 冲量:N*s I 长度:m l(L) 动能:JE k 路程:m s(S)势能:J E p 角速度:rad/s 3 力矩:N*m M 角加速度:rad/s^2 a 功率:W P牛顿力学(预备知识)(一):质点运动学基本公式: (1)v=dr/dt, r=r 0+ / rdtE ki +E pi =E k2+E p2T= 丫(tux/c2)(三)速度变换:V (x) = (v (x)-u)/(1-V (x) u/c2)V(y)=V(y)/( Y-vi(x)u/C2))V(z)=V(z)/( Y-vi(x)u/C2))(四)尺缩效应:△ L= △ l/或dL=dl/ 丫(五)钟慢效应:△ t= △ T或dt=d T / 丫(六)光的多普勒效应:v a)=sqr((1- 3 )/(1+ H) v(光源与探测器在一条直线上运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v x u vx u 1 2 v x c vy u2 vy 1 2 u c 1 2 v x c
v u z vz 1 2 u c 1 2 vx c
2
例:设想一飞船以0.80c 的速度在地球上空飞行, 如果这时从飞船上沿速度方向发射一物体,物体 相对飞船速度为0.90c 。 问:从地面上看,物体速度多大?
还取决于
与牛力形式相同 但

惯性的量度
一般情况下 不是惯性的量度
例 分析垂直进入均匀磁场中的带电粒子运动情况
已知:磁感强度为 >0

分析:
圆周运动
实验验证 与 关系的理论基础 1908年德国布歇勒做出了质量与速度的关系
有力地支持了相对论
由能量守恒 >
损失的能量转换成静能
三.相对论的动量能量关系式
由 两边平方得
光子 又
*9 相对论动量能量变换
用类比方 法推导 由E P关系 ?

说明
是洛仑兹不变量
由E P关系 由时空变 换 对比相 应的量
是洛仑兹不变量
是洛仑兹不变量
即 等
类比 洛仑兹坐标 变换 得出 动量 能量 变换
2
二. 相对论能量
运动时的能量
静止时的能量 除动能以外的能量
讨论

任何宏观静止的物体具有能量
相对论质量是能量的量度
重要的实际应用
孤立系统中 即
例太阳由于热核反应而辐射能量 质量亏损

两全同粒子以相同的速率相向运动,碰后复合
求:复合粒子的速度和质量 解:设复合粒子质量为M 速度为 碰撞过程,动量守恒
s
S u 0.80c
0.90c
解: 选飞船参考系为 S 系
地面参考系为 S 系
S
S
u v
x
x x v 0 . 90 c u 0.80c x v 0 . 90 c 0 . 80 c x u vx 0.99c u 1 0 . 80 0 . 90 1 2 vx c
相对论速度变换 定义 由洛仑兹 坐标变换
dx vx u 2 dt u 1 2 c
dx vx dt
dx v x dt
u 1 v x 2 dt c 2 dt u 1 2 c
上面两式之比
vx u v x u 1 2 vx c
由洛仑兹变换知
dy dy dt dt dt dt

类比
狭义相对论动力学基础 高速运动时动力学概念如何? 基本出发点:
基本规律在洛仑兹变换下形式不变;
低速时回到牛力
一.质速关系式
物体的 静止质量。 相对于观察 者以速度 运动时的质 量。
4 3 2 1 0 0.2 0.4 0.6 0.8 1.0
二. 狭义相对论运动方程


两式联立得
ቤተ መጻሕፍቲ ባይዱ
讨论
不仅取决于
实验装置
---镭源
产生均匀磁场的线圈
产生均匀电场的平行板电容器
---感光底片
P
实验物理学 家是伟大的
相对论性能量
一.相对论动能
动能定理应该是合理的
设计质点从静止,通过力作功,使动能增加。


两边求微分:
动能
<< 讨论
合理否?
<<
<<
与经典动能形式完全不同 若电子速度为
1 v 1 2 c2 1v 1 2 2 c2 1v 1 2 c2
dy
dt
u 1 v x 2 dt c dt u2 1 2 c
由上两式得
vy u2 vy 1 2 u c 1 2 vx c vz u v 1 2 z u c 1 2 vx c
2
同样得
洛仑兹速度变换式
正变换 逆变换
vx u v x u 1 2 vx c 2 vy u vy 1 2 u c 1 2 vx c vz u2 v 1 2 z u c 1 2 vx c
相关文档
最新文档