强大导数知识点各种题型归纳方法总结
导数知识点各种题型归纳方法总结
导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
导数题型总结(12种题型)
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
总结导数的知识点归纳
总结导数的知识点归纳一、导数的概念1. 导数的定义导数是描述函数在某一点处的变化率的概念。
如果函数f(x)在点x处可导,那么它的导数表示为f'(x),即函数f(x)在点x处的导数为f'(x)。
导数可以理解为函数曲线在该点处的切线的斜率,它描述了函数在该点附近的变化情况。
2. 函数的可导性函数在某一点可导,意味着该点处函数曲线存在切线,并且切线的斜率存在有限值。
如果函数在某一点处可导,那么该点也称为函数的导数存在的点。
函数在某一点处可导的充分必要条件是该点处函数的左极限和右极限存在且相等。
3. 导数的图像解释函数的导数可以理解为函数曲线在该点处的切线斜率。
当函数曲线上升时,导数为正;当函数曲线下降时,导数为负;当函数曲线水平时,导数为零。
函数曲线的凸凹性可以通过导数的正负来判断。
二、导数的性质1. 可导函数与连续函数可导函数必定是连续函数,但是连续函数不一定可导。
可导函数的导数在其定义域内连续,也就是说,可导函数的导数也是连续函数。
2. 导数的四则运算函数的导数满足四则运算的性质。
设函数f(x)和g(x)在点x处可导,那么它们的和、差、积、商的导数分别为(f+g)' = f' + g',(f-g)' = f'-g',(fg)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。
3. 复合函数的导数复合函数的导数可以通过链式法则来求导。
设函数y=f(u)和u=g(x)都可导,那么复合函数y=f(g(x))的导数为f'(g(x))g'(x)。
4. 高阶导数函数的导数也可以再求导,得到的导数称为原函数的高阶导数。
高阶导数的符号表示一阶导数的凸凹性。
三、导数的计算方法1. 导数的基本求导法则导数的基本求导法则包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数以及反三角函数的导数等。
导数大题题型归纳解题方法
导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。
下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。
2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。
3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。
4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。
以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。
导数知识点总结题型
导数知识点总结题型导数是高中数学中的一个重要概念,是微积分的基础知识之一。
在应用数学领域,导数有着广泛的应用,可以解决许多实际问题。
本文将围绕导数知识点总结题型展开讨论。
一、导数的定义与求法1.1 导数的定义:导数是函数在某一点的变化率或斜率,用极限的概念定义。
设函数 f(x) 在点 x0 处有定义,若该极限存在,那么 f(x) 在 x0 处可导。
1.2 导数的求法:基本方法有函数求导法、参数函数求导法和复合函数求导法。
- 函数求导法:按照变量的求导规则,对每一个部分进行求导。
- 参数函数求导法:将参数的导数求解出来,再对函数进行求导。
- 复合函数求导法:利用链式法则求解复合函数。
二、基本导数公式2.1 基本导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等基本函数的导数公式是求解导数题型的基础。
2.2 高阶导数:若函数 f(x) 的导函数 f'(x) 仍然可导,则称 f'(x) 为 f(x) 的一阶导数。
同理,若 f'(x) 的导函数f''(x) 可导,则称 f''(x) 为 f(x) 的二阶导数。
三、导数的基本性质3.1 可导性与连续性的关系:若函数 f(x) 在某一点可导,则在该点必连续;反之,若函数在某一点不连续,则在该点不可导。
3.2 加减和因子法则:若 f(x) 和 g(x) 都在 x 处可导,则(f(x)±g(x))' = f'(x)±g'(x),(f(x)·g(x))' =f'(x)·g(x)+f(x)·g'(x)。
3.3 乘积和商的法则:若 f(x) 和 g(x) 都在 x 处可导,且g(x) ≠ 0,则 (f(x)/g(x))' = [f'(x)·g(x)-f(x)·g'(x)]/g^2(x)。
(整理)导数应用的题型与解题方法.
导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。
整个过程可简记为分解——求导——回代。
熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。
高中数学导数知识总结+导数七大题型答题技巧
高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
高考导数题型及解题方法总结
高考压轴题:导数题型及解题方法一.切线问题题型1求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例已知函数f(x)=x 3﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)题型3求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )二.单调性问题题型1求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。
分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。
导数知识点归纳总结高三
导数知识点归纳总结高三一、导数的定义和基本概念导数的定义:设函数f(x)在点x0的某个邻域内有定义,如果极限①若存在,称函数f(x)在点x0处可导,该极限值称为函数f(x)在点x0处的导数,记作f'(x0)。
②若极限不存在,称函数f(x)在点x0不可导。
基本性质:①导数存在的必要条件是函数在该点连续;② f(x)在x0(闭区间内)可导,则f(x)在x0(闭区间内)连续;二、常见函数的导数1. 幂函数幂函数f(x) = xn,其中n为常数,x为自变量。
导数有如下规律:① f'(x) = nx^(n-1);2. 指数函数和对数函数指数函数f(x) = a^x (a>0,a≠1),对数函数f(x)=loga(x) (a>0,a≠1,x>0)。
导数有如下规律:① (a^x)' = a^x * ln(a);② (loga(x))' = 1 / (x * ln(a));3. 三角函数和反三角函数三角函数包括sin(x),cos(x),tan(x),cot(x),sec(x),csc(x),反三角函数包括arcsin(x),arccos(x),arctan(x),arccot(x),arcsec(x),arccsc(x)。
导数有如下规律:三角函数的导数:① (sin(x))' = cos(x);② (cos(x))' = -sin(x);③ (tan(x))' = sec^2(x);④ (cot(x))' = -csc^2(x);⑤ (sec(x))' = sec(x) * tan(x);⑥ (csc(x))' = -csc(x) * cot(x);反三角函数的导数:⑦ (arcsin(x))' = 1 / sqrt(1-x^2);⑧ (arccos(x))' = -1 / sqrt(1-x^2);⑨ (arctan(x))' = 1 / (1+x^2);⑩ (arccot(x))' = -1 / (1+x^2);⑪ (arcsec(x))' = 1 / (x * sqrt(x^2-1));⑫ (arccsc(x))' = -1 / (x * sqrt(x^2-1));4. 反函数的导数若y = f(x)是函数f(x)在区间I上的可逆函数,导数可表示为:①若f'(x0)≠0,则(g(f(x)))' = g'(y0) * f'(x0);②若f'(x0)=0且g'(y0)≠0,则(g(f(x)))'在x=x0时取不到导数;③若f'(x0)=0且g'(y0)=0,要结合极限来研究(g(f(x)))'的存在性。
导数知识点及题型总结
导数知识点及题型总结导数是微积分中的重要概念,它是描述函数变化速率的一种数学工具。
在现代数学和科学中,导数广泛应用于各个领域,如物理学、工程学、经济学等。
本文将对导数的基本知识点和常见的题型进行总结。
一、导数的定义导数的定义是函数在某一点处的变化率。
对于函数y=f(x),如果函数在x点处的导数存在,那么它的导数可以用极限的概念来定义:\[f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}\]其中f'(x)表示函数f(x)在点x处的导数。
这个定义可以直观地理解为函数在x点处的切线的斜率。
二、导数的性质1. 导数的基本性质导数满足加法性、乘法性和常数因子的规则。
具体来说,如果函数f(x)和g(x)都在x点处可导,那么它们的和函数、积函数和常数倍函数也在x点处可导,并分别有如下公式:\[ (f+g)'(x) = f'(x) + g'(x) \]\[ (f\cdot g)'(x) = f(x)g'(x) + g(x)f'(x) \]\[ (cf)'(x) = cf'(x) \]这些性质对于导数的计算和应用都非常重要。
2. 导数的几何意义导数的几何意义是函数在某一点的导数即为该点处切线的斜率。
因此,导数可以描述函数在不同点的局部变化情况。
当导数为正时,表示函数在该点处递增;当导数为负时,表示函数在该点处递减;当导数为零时,表示函数在该点处取得极值。
三、导数的计算1. 基本函数的导数常见的基本函数如幂函数、指数函数、对数函数、三角函数等都有相应的导数公式。
例如:\[ (x^n)' = nx^{n-1} \]\[ (e^x)' = e^x \]\[ (\ln x)' = \frac{1}{x} \]\[ (\sin x)' = \cos x \]\[ (\cos x)' = -\sin x \]这些导数公式可以直接应用于函数的求导计算。
导数知识点各种题型归纳方法总结
Word 资料【导数基础知识及各种题型归纳方法总结】第3页共22页◎【导数基础知识及各种题型归纳方法总结】第4页共22页值和f(a) 、f(b)中最大的一个。
最小值为极小值和f(a) 、f(b)中最小的一个。
2.函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值)3、注意:极大值不一定比极小值大。
如1()f x xx=+的极大值为2-,极小值为2。
注意:当x=x0时,函数有极值⇒f/(x0)=0。
但是,f/(x0)=0不能得到当x=x0时,函数有极值;判断极值,还需结合函数的单调性说明。
题型一、求极值与最值题型二、导数的极值与最值的应用(不等式恒成立问题,讨论方程的根的个数问题)题型四、导数图象与原函数图象关系导函数(看正负)原函数(看升降增减)'()f x的符号()f x单调性'()f x与x轴的交点且交点两侧异号()f x极值'()f x的增减性()f x的每一点的切线斜率的变化趋势(()f x的图象的增减幅度)'()f x增()f x的每一点的切线斜率增大(()f x的图象的变化幅度快)'()f x减()f x的每一点的切线斜率减小(()f x的图象的变化幅度慢)【题型针对训练】1. 已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R单调递增,求a的取值围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.2.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=32时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.(请你欣赏)3.当0>x,证明不等式xxxx<+<+)1ln(1.证明:xxxxf+-+=1)1ln()(,xxxg-+=)1ln()(,则2)1()(xxxf+=',当0>x时。
导数教案 知识点+十大题型
求实数,a b 的值;(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.题型四:利用导数研究函数的图象1.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( )(A ) (B ) (C ) (D )2.函数的图像为14313+-=x x y ( )3.方程内根的个数为在)2,0(076223=+-x x ( )A 、0B 、1C 、2D 、3题型五:利用单调性、极值、最值情况,求参数取值范围1.设函数.10,3231)(223<<+-+-=a b x a ax x x f (1)求函数)(x f 的单调区间、极值.(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.题型六:利用导数研究方程的根1.已知平面向量a =(3,-1). b =(21,23). (1)若存在不同时为零的实数k 和t ,使x =a +(t2-3)b ,y =-k a +t b ,x ⊥y , 试求函数关系式k=f(t) ;(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况.x y o 4-4 2 4 -4 2-2 -2 x y o 4 -4 2 4 -4 2 -2 -2 x y y 4 -4 2 4-4 2 -2-2 66 6 6 y x -4 -2o 4 2 2 4题型七:导数与不等式的综合1.设ax x x f a -=>3)(,0函数在),1[+∞上是单调函数.(1)求实数a 的取值范围;(2)设0x ≥1,)(x f ≥1,且00))((x x f f =,求证:00)(x x f =.2.已知a 为实数,函数23()()()2f x x x a =++ (1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围(2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间(Ⅱ)证明对任意的12(1,0)x x ∈-、,不等式125|()()|16f x f x -<恒成立题型八:导数在实际中的应用1.请您设计一个帐篷。
导数的大题题型及解题技巧
导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。
下面介绍一些解题技巧。
1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。
常见的函数有多项式函数、指数函数、对数函数、三角函数等。
2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。
注意求导的顺序和方法。
3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。
常见的参数方程有直角坐标系和极坐标系。
4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。
然后利用求导公式进行计算,最后求得导数。
5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。
例如,奇偶性、周期性、对称性等。
6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。
例如,物体的位移、速度和加速度。
以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。
导数题型及解题方法归纳
导数题型及解题方法归纳一、导数概述导数是微积分学中的一个重要概念,它描述了函数在某一点的变化率。
具体来说,导数表示函数在某一点的切线斜率。
导数不仅在微积分中有重要应用,而且在物理、经济等领域也有广泛的应用。
二、导数的定义1. 函数f(x)在x=a处可导的充分必要条件是:$$\lim_{x \to a} \frac{f(x)-f(a)}{x-a}$$存在,若该极限存在,则称其为函数f(x)在x=a处的导数,记作$f'(a)$或$\frac{df}{dx}(a)$。
2. 函数f(x)在区间I上可导的充分必要条件是:对于I上任意一点$x_0$,极限$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$存在。
3. 函数f(x)在区间I上可导,则称函数f(x)在I上为可导函数。
若函数f(x)在区间I上每个点都可导,则称函数f(x)在I上为光滑函数。
三、常见的求导法则1. 常数法则:若c为常数,则$(c)'=0$。
2. 幂法则:若$f(x)=x^n$,其中n为正整数,则$f'(x)=nx^{n-1}$。
3. 和差法则:若$f(x)=u(x)+v(x)$,则$f'(x)=u'(x)+v'(x)$。
4. 积法则:若$f(x)=u(x)v(x)$,则$f'(x)=u'(x)v(x)+u(x)v'(x)$。
5. 商法则:若$f(x)=\frac{u(x)}{v(x)}$,其中$v(x)\neq0$,则$$f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$$6. 复合函数求导法则:若$y=f(u), u=g(x)$,则$$\frac{dy}{dx}=\frac{dy}{du} \cdot \frac{du}{dx}=f'(u) \cdot g'(x)$$四、高阶导数1. 函数f的一阶导数为$f'$,二阶导数为$(f')'$或$f''$。
导数常见题型与解题方法总结
导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。
2.变更主元:已知谁的范围就把谁作为主元。
3.根分布。
4.判别式法:结合图像分析。
5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。
基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。
2.画两图或列表。
3.由图表可知。
另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。
例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。
已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。
解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。
当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。
根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。
由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。
因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。
高中导数七大题型解题技巧
高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。
•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。
2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。
3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。
•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。
4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。
•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。
5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。
•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。
6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。
•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。
7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。
•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。
以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。
导数专题的题型总结
导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
导数题型及解题方法归纳
导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。
给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。
导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。
二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。
一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。
- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。
- 指数函数的导数:(e x )′=e x 。
- 对数函数的导数:(lnx )′=1x 。
- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。
一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。
- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。
3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。
高阶导数可以通过多次使用导数公式和求导法则求解。
4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。
隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。
三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。
2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。
导数题的十大解题技巧
导数题的十大解题技巧导数题的十大解题技巧一、熟练掌握导数的定义1、函数的导数:函数y=f(x)的导数,记作f′(x),表示函数y=f(x)在点x处的切线斜率。
2、数列的导数:数列y的极限导数,记作y′,表示数列y中趋势的变化率。
二、准确掌握导数的计算1、用法则:将函数代入法则(如指数函数法则,三角函数法则等)所给表达式中,可得出函数的导数;2、变量分离:将函数用变量分离法(如商式分解法,多项式分解法等)分解,再用法则进行求导;3、链式法则:将函数中的连续函数拆分,用累加法或链式法则进行求导;4、转换关系:将函数中的变量用等价关系(如t=sax,x=a/t)进行转换,使变量适合法则,再求导;5、隐函数法:将函数中的变量用隐函数(如x=f(t))进行表达,再求导;6、偏导法:将函数中的变量用偏导数(如y/t)表达,再求导。
三、理解利用导数性质1、函数的导数是函数表示的变化率;2、导数的正负性有助于判断函数的单调性;3、函数的极值点可判断导数的符号;4、函数尖峰和凹处的判断;5、导数判断函数的模式;6、可以用导数的特性求函数的拐点;7、用导数可以求函数的泰勒级数;8、可以用导数的递推来求函数的定义域;9、可以用导数求一些曲线的面积。
四、利用科学计算器快速完成计算1、熟悉科学计算器的使用功能,即可完成导数的运算;2、可按法则准确求函数的导数;3、可以快速判断函数的极值、拐点等;4、对于复杂函数,可以简化计算,提高效率。
五、熟悉求导方程的解法1、建立方程,移项,量化,变形,以达到最简形状;2、变换为通解方程,求其特解;3、使用科学计算器计算求得函数的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的定义:1.(1).函数y = f (x)在x =x °处的导数:f '(X 。
)=y'|xm=怛口x ° %x) - f (x °) 函数八f(x)的导数:f '(x) = y' = 1巩f (x 冈- f (x)2•利用定义求导数的步骤①求函数的增量:.沖二f (X 。
• Ax) - f(x 。
):②求平均变化率:竺二f(x 。
:x)- f (X 0) L X L X③取极限得导数:f '(x 。
)二lim y 3 A x(下面内容必记)导数的运算:(1) 基本初等函数的导数公式及常用导数运算公式 :mm i① C ,O(C 为常数):②(x n )'= nx n ,;(丄)、(x 』)’一 nx 』」;(n x m )' =(x\' = m x_x n③(sinx)'=cosx ;④(cosx)' - -sin x ⑤(e x )'=e x⑥(a x )'=a x |na(a 0,且a = 1);1 1⑦(ln x)'; ⑧(log a x)'(a 0,且 a =1)x xln a法则1: [f(x) _g(x)]' = f '(x) _g'(x) ; (口诀:和与差的导数等于导数的和与差).法则2: [f(x) g(x)]^ f '(x) g(x) f (x) g'(x)(口诀:前导后不导相乘,后导前不导相乘,中间是正号)法则3:[f 阳」(X)嵌)二 2(X ) g '(X )(g(x)=0) g(x) [g(x)] (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)(2)复合函数y 二f (g(x))的导数求法:①换元,令u =g(x),则y = f(u)②分别求导再相乘y'=〔g(x) 】'」f (u)】'③回代u =g(x) 题型一、导数定义的理解 题型二:导数运算1、已知 f x = x 2 • 2x - sin 二,贝U f 0 二 __________ 1. 求瞬时速度:物体在时刻t 0时的瞬时速度 V 就是物体运动规律 即有 V °。
2. V = s /(t)表示即时速度。
a=v /(t)表示加速度。
四. 导数的几何意义:函数f x 在X 0处导数的几何意义,曲线y = f x 在点Px 0, f x °处切线的斜率是k =「x 0。
于是相应的切线方程是:y - y ° = f X 0 x -x ° 。
题型三.用导数求曲线的切线 注意两种情况:(1 )曲线y 二f x 在点PX o ,fX o处切线:性质:k 切线=f X o 。
相应的切线方程是:y -y 。
二 f X 。
x -x 。
(2)曲线y = f x 过点P X o ,y 。
处切线:先设切点,切点为Q(a,b),则斜率k= f'(a),切点Q(a,b)在曲线 y =f x 上,切点Q(a,b)在切线y-y o =「a x-x 。
上,切点Q(a,b)坐标代入方程得关于 a,b 的方程组,解方 程组来确定切点,最后求斜率k= f'(a),确定切线方程。
例题在曲线y=x 3+3x 2+6x-10的切线中,求斜率最小的切线方程;解析:(1)k =y'|x 2。
=3x 02 • 6x 0 •6=3(x 0 1)2 3 当 x o =-1 时,k 有最小值 3,导数的基础知识⑵.A 10B 13三?导数的物理意义C -16D.19S 二f t 在t “0时的导数「t ° ,此时P的坐标为(-1,-14)故所求切线的方程为3x-y-1仁0五.函数的单调性:设函数y = f(x)在某个区间内可导,(1)f'(x)・0= f(x)该区间内为增函数;(2)f'(x) ::0= f(x)该区间内为减函数;注意:当f'(x)在某个区间内个别点处为零,在其余点处为正(或负)时,f (x)在这个区间上仍是递增(或递减) 的。
(3) f (x)在该区间内单调递增=f'(x)-0在该区间内恒成立;(4) f (x)在该区间内单调递减=f '(x) 0在该区间内恒成立;题型一、利用导数证明(或判断)函数f(x)在某一区间上单调性:步骤:(1)求导数y=f(x)(2) 判断导函数,二f(X)在区间上的符号(3) 下结论①f'(x) • 0= f (x)该区间内为增函数;② f '(x) :::0= f (x)该区间内为减函数;题型二、利用导数求单调区间求函数y = f(x)单调区间的步骤为:(1)分析y = f (x)的定义域;(2)求导数y = f (x)(3)解不等式f(x)・0,解集在定义域内的部分为增区间(4)解不等式f(x) :::0,解集在定义域内的部分为减区间题型三、利用单调性求参数的取值(转化为恒成立问题)思路一.(1) f(x)在该区间内单调递增 =f'(x)_0在该区间内恒成立;(2) f (x)在该区间内单调递减二f'(x)^0在该区间内恒成立;思路二•先求出函数在定义域上的单调增或减区间,则已知中限定的单调增或减区间是定义域上的单调增或减区间的子集。
注意:若函数f (x)在(a, c)上为减函数,在(c, b)上为增函数,则x=c两侧使函数「(x)变号,即x=c为函数的一个极值点,所以f '(c) =0In x例题•若函数f (x) ,若a = f (3), b = f (4), c = f (5)则()xA. a< b < cB. c < b < aC. c < a < bD. b < a < c六、函数的极值与其导数的关系:1•①极值的定义:设函数f (x)在点X°附近有定义,且若对X°附近的所有的点都有f( X)::: f (0K )(或f (x) f (x0),则称f(x°)为函数的一个极大(或小)值,X0为极大(或极小)值点。
②可导数f(x)在极值点X0处的导数为0 (即f'(x°)=0 ),但函数f (X)在某点X0处的导数为0,并不一定函数3f (X)在该处取得极值(如f (X) =X在X0 =0处的导数为0 ,但f (X)没有极值)。
③求极值的步骤:第一步:求导数f '(X);第二步:求方程f'(x) =0的所有实根;第三步:列表考察在每个根X0附近,从左到右,导数f '(X)的符号如何变化,若f '(X)的符号由正变负,则f(X0)是极大值;若f'(X)的符号由负变正,则f(x0)是极小值;若f '(X)的符号不变,则f (X0)不是极值,X0不是极值点。
2、函数的最值:①最值的定义:若函数在定义域D内存x0,使得对任意的X^D ,都有f(x)辽f(x°),(或f(x)_ f(x°))则称f(X o)为函数的最大(小)值,记作y max = f(xJ (或y min = f(X。
))②如果函数y = f(x)在闭区间[a,b]上的图象是一条连续不间断的曲线,则该函数在闭区间[a,b]上必有最大值和最小值。
③求可导函数f (x)在闭区间[a,b]上的最值方法:第一步;求f (x)在区间[a,b]内的极值;第二步:比较f (x)的极值与f (a)、f (b)的大小:第三步:下结论:最大的为最大值,最小的为最小值。
注意:1、极值与最值关系:函数的最值是比较整个定义域区间的函数值得出的,函数的最大值和最小值点可以在极值点、不可导点、区间的端点处取得。
极值工最值。
函数f(x)在区间[a,b]上的最大值为极大值和f(a)、f(b)中最大的一个。
最小值为极小值和f(a)、f(b)中最小的一个。
2. 函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值)13、注意:极大值不一定比极小值大。
如f(x)=x •—的极大值为-2 ,极小值为2。
x注意:当x=x 0时,函数有极值 =f〈X0)= 0。
但是,#他)=0不能得到当x=x o时,函数有极值; 判断极值,还需结合函数的单调性说明。
题型一、求极值与最值题型二、导数的极值与最值的应用题型四、导数图象与原函数图象关系导函数原函数f '(x )的符号f(x)单调性f '(x )与x轴的交点且交点两侧异号 f (x)极值f '(x )的增减性 f (x)的每一点的切线斜率的变化趋势(f(X)的图象的增减幅度)f '(x)的增f(x)的每一点的切线斜率增大(f (X)的图象的变化幅度快)f '(x)减 f (X)的每一点的切线斜率减小(f (X)的图象的变化幅度慢)例1.已知f(x)=e X-ax-1.(1)求f(x)的单调增区间; (2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-g, 0:上单调递减,在]0 , + g)上单调递增?若存在,求出a的值;若不存在,说明理由•解:f(x)=e X-N (1)若a < 0 , f (x)=e X-a恒成立,即f(x)在R 上递增 |若a>0,e x-a > 0, x阮a,x > lna.的单调递增区间为(Ina,+ E)(2)v fx)在R内单调递增,•••广(x) >0 在R上恒成立|•••e x-a > 0,即a <e x在R 上恒成立,/■3< (e x) min , 又Ve x>0 , /,a<0,(3)由题意知,x=0为f(x)的极小值点.•⑹=0,即e0-a=0, • a=1.例2.已知函数f(x)=x 3+ax2+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+仁0 ,若x=-时,y=f(x )有极值.(1)求 3a,b,c的值;(2)求y=f(x )在[-3 , 1:上的最大值和最小值解(1)由f(x)=x 3+ax2+bx+c,得 f (x) =3x 2_*"2aX+b.当x=1时,切线I的斜率为3,可得2a+b二0当x=-时,y=f(x)有极值,则 f - =0,可得4a+3b-i-4=03炉丿由①②解得a=2,b=-4.由于切点的横坐标为X二l.-fll)二4”/l+a+b+c=4...c=5.(2)由(1)可得 f(x)=x 3+2X 2-4X +5,.f. (x) =3x 2+4X - 令 f (x) =0,得 x=-2,x=-(3当x 变化时,y,y 的取值及变化如下表x -3 (-3,-2) -2 ,32 3?1 1 3,1/y+- 0+单调递增单调递减95 单调递增 y 8134/2 7/•f y=f x )在 [-3 , 1: 上的最大值为13 ,最小值为95.27例3.当x0, 证明不等式x ln(1X):::x .1 xxv证明:f(x)=ln(x 1), g(x)=ln(x 1)-x ,则 f (x)2,1 +x(1 十 x)当 x 0时。