(完整版)直角三角形单元测试题
《解直角三角形》单元测试题
《解直角三角形》单元测试题一、选择题1. 在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦( ) A. 都扩大2倍 B. 都扩大4倍 C. 没有变化 D. 都缩小一半2. 在Rt △ABC 中,∠C =90°,sinA=54,则cos B 的值等于( ) A .53 B. 54 C. 43 D. 553. 在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B .22C .32D .334. 在Rt ∆ABC 中,∠C =90º,∠A =15º,AB 的垂直平分线与AC 相交于M 点,则CM :MB 等于( )A. 2:3B. 3:2C. 3:1D. 1:3 5. 式子()260tan 145tan 30cos 2---的值是( )A. 232-B. 0C. 32D. 2 6. 等腰三角形底边与底边上的高的比是3:2,则顶角为( ) A .600B. 900C. 1200D. 15007. 在△ABC 中,若()0tan 121cos 2=-+-B A ,则∠C 的度数是( ) A .45° B. 60° C .75°D .105° 8. 河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比3:1,则AC 的长是( ) A .35米 B .10米C .15米D .310米9. 如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60O方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15O方向,此时,灯塔M 与渔船的距离是( ) A.km 27 B.km 214 C.km 7 D.km 1410. 身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝是拉直的),则三人所放的风筝中( )6ABM东(第9题)同学 甲 乙 丙 放出风筝线长 100m 100m 90m 线与地面夹角40º45º60ºA. 甲的最高B. 丙的最高C. 乙的最低D. 丙的最低 11. 如图,一棵大树被台风拦腰刮断,树根到刮断点的长度是,折断部分与地面成的夹角,那么原来树的长度是( )12.为了方便行人推车过某天桥,市政府在10m 高的天桥一侧修建了40m 长的斜道(如图所示).我们可以借助科学计算器求这条斜道倾斜角的度数.具体按键顺序是 ( ).11 12 二、填空题13. 锐角A 满足2 sin(A-150)=3,则∠A = . 14. 已知tan B =3,则sin 2B= . 15. 已知有一山坡水平方向前进了米,就升高了米,那么这个山坡的坡度是 .16.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为 .17. 如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(保留根号)17 18 19 AB C DαA 1l 3l2l4l19. 已知如图,将两根宽度为的纸带交叉叠放,若为已知,则阴影部分面积为________20. 如图,在一段坡度为的山坡上种树,要求株距(即相邻两株树之间的水平距离)为米,那么斜坡上相邻两株树之间的坡面距离为________米 三、解答题 21计算:-120162cos 60-+2-8-tan 30-12+1÷⨯()(1)()22. 如图,在Rt △ABC 中,∠C =90°,AC =12,∠A 的平分线AD =83,求BC ,AB .23. 如图所示,海上有一灯塔P ,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A 点处测得P 在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?24. 如图,某中心广场灯柱被钢缆固定,已知米,且.求钢缆的长度;若米,灯的顶端距离处米,且,则灯的顶端距离地面多少米?25.如图,小华站在河岸上的点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船的俯角是.若小华的眼睛与地面的距离是米,米,平行于所在的直线,迎水坡,坡长米,点、、、、、在同一平面内,则此时小船到岸边的距离的长是多少?(结果保留根号)26. 综合实践课上,张明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸AB 、CD ,河岸AB 上有一排大树,相邻两棵大树之间的距离均为10米.张明先用测角仪在河岸CD 的M 处测得∠α=36°,然后沿河岸走50米到达N 点,测得∠β=72°.请你根据这些数据帮他们算出河宽FR (结果保留两位有效数字). (参考数据:sin 36°≈0.59,cos 36°≈0.81,tan36°≈0.73,sin 72°≈0.95,cos 72°≈0.31,tan72°≈3.08)ABC DEFMNR αβ。
《解直角三角形》章节测试题
《解直角三角形》章节测试题时间100分钟 满分100分 班级 姓名 得分一、 选择题((每题3分,共21分))1. 在∆Rt 中,各边的长度都扩大3倍,则锐角A 的三角函数值( )A 也扩大3倍B 缩小为原来的31 C 都不变 D 有的扩大,有的缩小 2. 如图(1),在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )A 、4cm B 、6cm C 、8cm D 、10cm3.若3tan(a+10°)=3,锐角a 的度数是( ) A 、20°B 、30°C 、35°D 、50°4. 在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A .c=A a sinB .c=Aa cos C .c=a·tanA D .c=a·cotA 5. 当锐角α>60°时,则cosα的取值范围是( )A .21cos 0<<α B.23cos 0<<α C.23cos 21<<α D .22cos 21<<α 6. Rt △ABC 中,∠C=90°,tanA=34,BC=8,则AC 等于( ) A .6 B .332 C .10 D .12 7. 点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(,)B .(-,)C .(-,-)D .(-,-)二、 填空题((每题3分,共48分))8. 在Rt △ABC 中,∠C =90°,a =2,b =3,则sin B = ,tan B = .图(1)9.在△ABC 中,∠C=90°,若cosA=53,则tanB=_____,cotB= , cosB= . 10. 一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为________.11. 在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.12. 在△ABC 中,AB=2,AC=2,∠B=30°,则∠A=______.13. 在Rt △ABC 中,∠C =90°,面积为24cm 2,b=6cm, 则sin A = .14. 在△ABC 中,∠C =90°,cosA=23,AB =8cm ,则△ABC 的面积为______. 15. 2sin30°+2cos60°+3tan45°=_______;=+ 65cos 25cos 22______16. =+ 12cos 12sin 22______; =+ 56sin 34sin 22______.17. 已知锐角α,(1).sin28°=cosα,则α=________, (2).tan28°=cosα,则α=________;(3).cos38°=sinα,则α=________, (4).cot 2432'22''=tan α,则α=____________ .18.sin40 ,sin75 ,tan45 ,cot25 的大小关系是(用""<符号连接)___________________19、若∠A 是锐角,且sinA =cosA ,则∠A 的度数是 .20、在△ABC 中,∠C =90°,如果AB =2,BC =1,那么sinA 的值是 ;21、如图(2),在坡度为1:2的山坡上种树,要求相邻两棵树间的水平距离为6米,斜坡上相邻两树间的坡面距离是 ;22、△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,如果a :b :c =1:3:2,那么∠A :∠B :∠C = ;23、如图(3),∠C =900,∠DBC =300,AB =DB ,那么tanA= ;三、计算(每题3分,共12分)24、---10)21(30sin 2|060cot -|+132+图(2)图(3)25112sin 602cot 30tan 601--+26、0)20093(30tan 160sin 160cos -+++27、 60sin 225tan 25cot 30tan 3-+四、简答题(19分)28、(9分)如图(4),一船在A 处看见灯塔B 在它的南偏西300方向,这时,船和灯塔B 的距离为40海里,然后船向西南方向航行到C 处,这时,望见灯塔B 在它正东方向,那么,船航行了多少海里?图(4)E 29、(10分)如图(5),D 是△ABC 的边AC 上一点,CD =2AD ,AE ⊥BC ,交BC 于点E.若BD =8,sin ∠CBD =43,求AE 的长。
(完整版)湘教版八年级数学下册第一单元《直角三角形》测试
八年级下册第一单元测试时量:90分钟 满分:120分姓名 班级一、选择题(每小题3分,且每题只有一个正确答案,共36分)1. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ) A .270° B .135° C .90° D .315°2. 在Rt △ABC 中,∠C =90°,∠B =30°,斜边AB 的长为2 cm ,则AC 长为( )A .4 cmB .2 cmC .1 cm D. 12cm3. 边长为2的等边三角形的内有一点O ,那么O 到三角形各边的距离之和为( )A .3B .23C .2D .43 4. 如图,在△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离是( ) A .3 B .4C .5D .65. 如图,EA ⊥AB ,BC ⊥AB ,EA =AB =2BC ,D 为AB 中点,有以下结论:①DE =AC ;②DE ⊥AC ;③∠CAB =30°;④∠EAF =∠ADE . 其中正确的结论个数为( )A .1B .2C .3D .46. 如图,已知AD 是△ABC 的BC 边上的高,能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .∠BAC =90°C .BD =ACD .∠B =45°7. 在直角三角形ABC 中,斜边72=AB ,则222AC BC AB ++的值是( )A. 7B. 14C. 21D. 498. 小东想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m 后,发现下端刚好接触地面,则旗杆的高为( )AB9. 如右图,长方形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,OB 的长为半径画弧,交正半轴于一点,则 这个点表示的实数是( ) A.2.5B.22C.3D.510. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A.90° B.60° C.45°D.30°11. 到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点 12. 如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,AD 是∠BAC 的平分线,则CD 的长为( )A.310 B. 38C.311D. 3 二、填空题(每小题4分,共24分)13. 如图,在△ABC 中,∠B =∠C ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为________.14. 腰长为5,一条高为415. 如右图,直线l 为5和11,则b 16. 如图,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°,有以下结论:①AF ⊥BC ;②△ADG ≌△ACF ;③O 为BC 的中点. 其中正确的序号是 . 17. 如右图,△ABC 中,有一点P 在AC 上移动.若AB =AC =5,BC =6,则AP+BP+CP 的最小值为 . 18. 顶角为150°,腰长为20的等腰三角形面积为 . C B三、解答题(共60分)19.(本小题8分)按要求用尺规作图:如图所示,在△ABC 内部,求作一点D ,使得D 点到AB 边和BC 边的距离相等,并且到B 点和C 点距离也相等.(不要求写作法,但必须保留作图痕迹)20.(本小题8分)如右图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,求BD 的长.21.(本小题8分)如图,上午8时,一条轮船从海岛A 出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A 、B 望灯塔C ,测得∠NAC =30°,∠NBC =60°,问以同样的速度继续前行,则上午何时轮船与灯塔C 距离最近.22.(本小题8分)如图,AC ⊥CB ,DB ⊥CB ,AB =DC .求证:∠ABD =∠ACD .B23.(本小题8分)如图所示,AD ∥BC ,AB=BD=BC =2,CD =1,求AC 的长.24.(本小题10分)已知:如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 是BC 边的中点,BF ∥AC ,EF ∥AB ,EF =4 cm . (1)求∠F 的度数; (2)求AB 的长.25.(本小题10分)已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),则当t 为何值时,△PBQ 是直角三角形?A。
直角三角形边角关系单元综合评价测试题
直角三角形边角关系单元综合评价测试题一、填空题 (每题3分,共27分) 1.cos81°25' = sin . 2.若sin(10)2α-︒=α为 .3.比较大小:sin48°______cos48°. 4.在△ABC ,AB =AC ,AD ⊥BC 于D ,若BC =10,∠BAC =120°,则AD = . 5.已知直角三角形中,较大直角边长为30,此边所对角的余弦值为817,则三角形的周长为 ,面积为 .6.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ,那么sin θ= . 7.在平行四边形ABCD 中,AD ∶AB =1∶2,∠A =60°,AB =4cm ,则四边形面积为 .8.AD 是Rt △ABC 斜边BC 上的高,若 BD =2,DC =8,则tan C 的值为 .9.已知在△ABC 中, 90=∠C ,3cos B =2,AC =52,则AB = . 二、选择题(每题3分,共18分)1.若α是锐角,sin αcos α=p ,则sin α+cos α的值是( )A .1+2pB.C .1-2pD2.若三角形三个内角的比是1∶2∶3,则它们正弦值的比为( )A .1∶B .1∶ 2 C .12D23.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2.A.B .6C. D .124.因为1s i n 302︒=,1sin 2102︒=-,所以s i n 210s i n (18030)︒=︒+︒=-︒;因为s i n 452︒=sin 2252︒=-所以sin 225sin(18045)sin 45︒=︒+︒=-︒,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα︒+=-,由此可知:sin 240︒=( )A .12-B.2- C.2- D.5.如图,两根等高的电线杆的水平距离是50米,某人在杆的底部连结上E 处,测得一根杆顶的仰角是60°,另一根杆顶的仰角为30°,则电线杆顶距地面的高度是( )A .25米B .12.5米C .D .米(第6题图)EDCBA6.在△ABC中,∠A=30°,AC=4,BC=ABC为()A.45°B.60°或120°C.45°或135°D.30°三、解答题(共55分)1.(5分)计算:230116(2)(πtan60)303-⎛⎫--÷-+-︒-︒⎪⎝⎭.2.(6分)在Rt△ABC中,∠C=90°,如果sin A,cos B是方程2210x mx-+=的两实根,求m的值和∠A的度数是多少?3.(6分)如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC 与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程;若不能,请说明理由.B C E4.(7分)某海滨浴场的海岸线可以看作直线l(如图),有两位救生员在岸边的点A同时接到了海中的点B(该点视为定点)的呼救信号后,立即从不同的路径前往救助.其中1号救生员从点A先跑300米到离点B最近的点D,再跳入海中沿直线游到点B救助;2号救生员先从点A跑到点C,再跳入海中沿直线游到点B救助.如果两位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,且∠BAD=45°,∠BCD=60°,请问1号救生员与2号救生员谁先到达点B?5.(8分)在△ABC中∠C=90°,∠A、∠B、∠C对的边分别为a、b、c.(1)若∠A=60°,a+b=3a、b、c及S△ABC;(2)若△ABC的周长为30,面积为30,求a、b、c.6.(7分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km1.41,sin37°≈0.60,cos37°≈0.80)7.(8分)如图,在A B C ∆中,90C ∠=︒,点E 是A C 上一点,ED ⊥AB 于D,cos A =,3cot 4BED CE ∠==,DE 的长.EDC BA8.(8分)如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米.现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4.已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率.甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?HG。
解直角三角形》单元测试卷及答案
《解直角三角形》单元测试卷一、填空题:1、如下图,表示甲、乙两山坡的情况, _____坡更陡。
(填“甲”“乙”)αβ1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。
3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。
4、计算:tan 245°-1= 。
5、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。
6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
8、如图2是固定电线杆的示意图。
已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。
9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。
(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=,3 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos 15°=624+)二、选择题:12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( ) A.42B.43C.4D.6三、解答题:18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°; (2)AC=2,AB=2.20、如图7,在Rt △ABC 中,∠C=90°,AC=8,∠A 的平分线AD=3316,求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm ,面积为33100c m 2,求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC =2m ,滑梯着地点B 与梯架之间的距离BC =4m 。
第一章《直角三角形的边角关系》单元测试题(含答案)
第一章 直角三角形的边角关系一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.在Rt △ABC 中,∠C =90°,AB =2BC ,那么sin A 的值为( )A.12B.22C.32 D .1 2.在△ABC 中,∠C ,∠B 为锐角,且满足⎪⎪⎪⎪sin C -22+(32-cos B )2=0,则∠A 的度数为( )A .100°B .105°C .90°D .60°3.在Rt △ABC 中,∠C =90°,AB =20,cos A =14,则AC 等于( )A .45B .5 C.15 D.1454.在Rt △ABC 中,如果边长都扩大为原来的5倍,那么锐角A 的正弦值、余弦值和正切值( )A .都没有变化B .都扩大为原来的5倍C .都缩小为原来的15D .不能确定5.如图1-Z -1,过点C (-2,5)的直线AB 与坐标轴分别交于A (0,2),B 两点,则tan ∠OAB 的值为( )图1-Z -1A.25B.23C.52D.326.如图1-Z -2①为折叠椅,图②是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32 cm ,∠DOB =100°,那么椅腿AB 的长应设计为(结果精确到0.1 cm ,参考数据:sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)( )图1-Z -2A .38.1 cmB .49.8 cmC .41.6 cmD .45.3 cm 二、填空题(本大题共5小题,每小题4分,共20分) 7.在△ABC 中,∠C =90°,sin A =14,则tan B =________.8.如图1-Z -3,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =________.图1-Z -39.如图1-Z -4,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sin A =35,则菱形ABCD 的周长是________.图1-Z -410.某校研究性学习小组测量学校旗杆AB 的高度,如图1-Z -5,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为________米.图1-Z -511.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为D ,且满足BD ∶CD =2∶1,则△ABC 的面积为________.三、解答题(本大题共5小题,共56分) 12.(8分)计算:24sin45°+cos 230°-12tan60°+2sin60°.13.(10分)如图1-Z -6,在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43.求:(1)BD 的长; (2)sin B 的值.图1-Z -614.(12分)某大坝修建有以下方案:大坝的横断面为等腰梯形,如图1-Z -7,AD ∥BC ,坝高10米,迎水坡面AB 的坡度i =53,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB 的坡度进行修改,修改后的迎水坡面AE 的坡度i =56.(1)求原方案中此大坝迎水坡AB 的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7米,求坝底将会沿AD 方向加宽多少米.图1-Z -715.(12分)“和谐号”高铁列车的小桌板收起时可近似看作与地面垂直,展开小桌板使桌面保持水平,其示意图如图1-Z -8所示.连接OA ,此时OA =75 cm ,CB ⊥AO ,∠AOB =∠ACB =37°,且桌面宽OB 与BC 的长度之和等于OA 的长度.求支架BC 的长度(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).图1-Z -816.(14分)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can).如图1-Z -9①,在△ABC 中,AB =AC ,底角∠B 的邻对记作can B ,这时can B =底边腰=BCAB .容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=________;(2)如图②,已知在△ABC 中,AB =AC ,can B =85,S △ABC =24,求△ABC 的周长.图1-Z -9详解详析1.[解析] A ∵∠C =90°,AB =2BC ,∴sin A =BC AB =12.故选A.2.[解析] B ∵⎪⎪⎪⎪sin C -22+(32-cos B )2=0,∴sin C -22=0,32-cos B =0,则sin C =22,cos B =32,故∠C =45°,∠B =30°,∴∠A =180°-45°-30°=105°.故选B. 3.[答案] B4.[解析] A 三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 5.[解析] B 方法1:设直线AB 的表达式是y =kx +b .根据题意,得⎩⎨⎧-2k +b =5,b =2,解得⎩⎪⎨⎪⎧k =-32,b =2,则直线AB 的表达式是y =-32x +2.在y =-32x +2中令y =0,解得x =43.则点B 的坐标是(43,0),即OB =43.则tan ∠OAB =OB OA =432=23.故选B.方法2:过点C 作CD ⊥y 轴于点D ,∵C (-2,5), ∴CD =2,OD =5.∵A (0,2),∴OA =2, ∴AD =OD -OA =3.在Rt △ACD 中,tan ∠OAB =tan ∠CAD =CD AD =23.故选B.6.[解析] C 连接BD ,由题意得OA =OB =OC =OD .∵∠DOB =100°,∴∠DAO =∠ADO =50°,∠OBD =∠ODB =40°,∴∠ADB =90°.又∵BD =32 cm ,∴AB =BD sin ∠DAO ≈320.77≈41.6(cm).故选C. 7.[答案] 158.[答案] 12[解析] 过点A 作AD ⊥OB ,垂足为D ,如图,在Rt △AOD 中,AD =1,OD =2,则tan ∠AOB =AD OD =12. 9.[答案] 40[解析] ∵DE ⊥AB ,垂足是E ,∴△AED 为直角三角形,则sin A =DE AD ,即35=6AD ,∴AD =10,∴菱形ABCD 的周长为10×4=40.10.[答案] 9[解析] 过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE =CD =6米,AC =DE .设BE =x 米.在Rt △BDE 中,∵∠BED =90°,∠BDE =30°,∴DE =3BE =3x 米,∴AC =DE =3x 米. 在Rt △ABC 中, ∵∠BAC =90°,∠ACB =60°, ∴AB =3AC =3×3x =3x (米). ∵AB -BE =AE ,∴3x -x =6, ∴x =3,∴AB =3×3=9(米), 即旗杆AB 的高度为9米. 11.[答案] 8或24[解析] △ABC 有两种情况:(1)如图①所示,∵BC =6,BD ∶CD =2∶1,∴BD =4.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD=23BD =83,∴S △ABC =12BC ·AD =12×6×83=8;(2)如图②所示,∵BC =6,BD ∶CD =2∶1,∴BD =12.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD =23BD =8,∴S △ABC =12BC ·AD =12×6×8=24.综上所述,△ABC 的面积为8或24.12.解:原式=24×22+(32)2-12×3+2×32 =14+34-36+ 3 =1+5 36.13.[解析] (1)根据在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43,可以求得AD 的长,从而可以求得BD 的长;(2)由(1)中BD 的长和题目中CD 的长可以求得BC 的长,从而可以求得sin B 的值.解:(1)∵在△ABC 中,CD ⊥AB 于点D ,CD =8,tan A =43,∴tan A =CD AD =43,解得AD =6,∴BD =AB -AD =22-6=16.(2)由(1)知BD =16,∵CD ⊥AB ,CD =8, ∴BC =CD 2+BD 2=82+162=8 5,∴sin B =CD BC =88 5=55.14.[解析] (1)过点B 作BF ⊥AD 于点F ,在直角三角形ABF 中求得AF ,AB 的长; (2)过点E 作EG ⊥AD 于点G ,延长EC 至点M ,延长AD 至点N ,连接MN . 由S △ABE =S 梯形CMND 从而求得DN 的长.解:(1)如图,过点B 作BF ⊥AD 于点F . 在Rt △ABF 中,∵i =BF AF =53,且BF =10米,∴AF =6米,∴AB =102+62=2 34(米).答:原方案中此大坝迎水坡AB 的长为2 34米. (2)如图,过点E 作EG ⊥AD 于点G . 在Rt △AEG 中,∵i =EG AG =56,且EG =BF =10米,易得AG =12米,BE =GF =AG -AF =6米. 延长EC 至点M ,延长AD 至点N ,连接MN .∵方案修改前后,修建大坝所需土石方总体积不变, ∴S △ABE =S 梯形CMND , ∴12·BE ·EG =12(MC +ND )·EG , 即BE =MC +ND ,∴ND =BE -MC =6-2.7=3.3(米). 答:坝底将会沿AD 方向加宽3.3米.15.解:延长CB 交AO 于点D ,∴CD ⊥OA . 设BC =x cm ,则OB =(75-x )cm. 在Rt △OBD 中,∵∠DOB =37°, ∴OD =OB ·cos ∠DOB ≈0.8(75-x )=(60-0.8x )cm ,BD =OB ·sin ∠DOB ≈0.6(75-x )=(45-0.6x )cm ,∴DC =BD +BC ≈(0.4+45x )cm.在Rt △ACD 中,∵∠ACD =37°,∴AD =DC ·tan ∠ACD ≈0.75(0.4x +45)=(0.3x +33.75)cm. ∵OA =AD +OD =75 cm ,∴0.3x +33.75+60-0.8x =75, 解得x ≈37.5, ∴BC ≈37.5 cm ,故支架BC 的长度约为37.5 cm. 16.解:(1) 3(2)过点A 作AE ⊥BC 于点E ,∵can B =85,可设BC =8x ,AB =5x ,则BE =12BC =4x ,∴AE =AB 2-BE 2=3x .∵S △ABC =24, ∴12BC ·AE =12x 2=24, 解得x =2(负值已舍去),故AB =AC =5 2,BC =8 2, ∴△ABC 的周长为AB +AC +BC =5 2+5 2+8 2=18 2.。
解直角三角形测试题及答案
《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
第1章 解直角三角形 浙教版九年级数学下册单元测试题(含答案)
第一章解直角三角形 单元测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是( )A.1,1,√2B.1,1,√3C.1,2,√3D.1,2,32. 如图,△ABC 中,∠B =90∘,BC =2AB ,则cos A =( )A.√52B.12C.2√55D.√553. 如图,在△ABC 中,∠C =90∘,sin A =35,则BC AC 等于( )A.34B.43C.35D.454. 在△ABC 中,∠C =90∘,如果tan A =34,那么sin B 的值等于( ) A.53 B.35 C.54 D.455. cot β=√33,则锐角β等于( )A.0∘B.30∘C.45∘D.60∘6. 如图是一台54英寸的大背投彩电放置在墙角的俯视图.设∠DAO=α,彩电后背AD平行于前沿BC,且与BC的距离为55cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(55+100tanα)cmB.(55+100sinα)cmC.(55+100cosα)cmD.以上答案都不对7. 如果某人沿坡度为1:3的斜坡向上行走a米,那么他上升的高度为()A.√1010a米 B.√10a米 C.a3米 D.3a米8. 如图是一台54英寸的大背投彩电放置在墙角的俯视图(其中ABCD是矩形).设∠ADO=α,彩电后背AD与前沿BC的距离为60cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(60+100sinα)cmB.(60+100cosα)cmC.(60+100tanα)cmD.(60−100sinα)cm9. 某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45∘,再往摩天轮的方向前进50m至D处,测得最高点A的仰角为60∘.问摩天轮的高度AB约是()米(结果精确到1米,参考数据:√2≈1.41,√3≈1.73)A.120B.117C.118D.119二、填空题(本题共计11 小题,每题3 分,共计33分,)10. 如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ;②sinα>sinβ;③cosα>cosβ,正确的结论为________(填序号).11. 如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75∘方向20米处,点C在点A南偏西15∘方向20米处,则点B与点C的距离为________米..AC上有一点E,满足AE:CE= 12. 如图,已知AD是等腰△ABC底边上的高,且tan B=342:3.那么tan∠ADE的值是________.13. 如果在某建筑物的A处测得目标B的俯角为37∘,那么从目标B可以测得这个建筑物的A 处的仰角为________.14. 计算:sin60∘⋅cos30∘−tan45∘=________.15. 如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120∘角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=√3米,则路灯的灯柱BC高度应该设计为________米.(计算结果保留根号).16. 茗茗在坡度为1:√3的坡面上走了100m,则茗茗上升了________m.17. 如图,我国一渔政船在A处,发现正东方向B处有一可疑船只,正以16海里/小时速度向西北方向航行,我渔政船立即往北偏东60∘方向航行,1.5小时后,在C处截获可疑船只,则我渔政船的航行路程AC=________海里(结果保留根号).18. 在Rt△ABC中,∠C=90∘,sin A=1,那么cos A=________.219. 如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则sin A=________.20. 动手操作:今有一副三角板(如图1),中间各有一个直径为4cm的圆洞,现将三角形a的30∘角的那一头插入三角板b的圆洞内(如图2),则三角板a通过三角板b的圆洞的那一部分的最大面积为________cm2(不计三角板的厚度).三、解答题(本题共计6 小题,共计60分,)−√3⋅tan30∘.21. 计算:cos245∘+cos302sin60+122. 已知电线杆AB直立于地面,它的影子恰好照在土坡的坡面CD和地面BC上.如果CD与地面成45∘,∠A=60∘,CD=4√2米,BC=(4√3−4)米,求电线杆AB的长.23. 某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45∘,底端D点的仰角为30∘,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为60∘(如图②所示),求大楼部分楼体CD的高度为多少米?24. 在旧城改造中,要拆除一烟囱AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶端C测得A点的仰角为45∘,到B点的俯角为30∘,问离B点30米远的保护文物是否在危险区内?(√3约等于1.732)25. 如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60∘方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?26. 我区在修筑渭河堤防工程时,欲拆除河岸边的一根电线杆AB.如图,已知距电线杆AB 水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡度为1:0.5,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30∘,D、E之间的宽是2米,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将DE段封止?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:A、若三边为1,1,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以A选项错误;B、由1,1,√3能构成,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“实验三角形”,所以B选项正确;C、若三边为1,2,√3,由于12+(√3)2=22,则此三边构成直角三角形,最小角为30∘,所以这个三角形不是“实验三角形”,所以C选项错误;D、由1,2,3不能构成三角形,所以D选项错误.故选B.2.【答案】D【解答】∵∠B=90∘,BC=2AB,∴AC=√AB2+BC2=√AB2+(2AB)2=√5AB,∴cos A=ABAC =√5AB=√55.3.【答案】A【解答】解:∵sin A=35,设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴tan A=BCAC =ab=3x4x=34,故选A.4.【答案】D【解答】解:由tan A=34,可设∠A的对边是3k,∠A的邻边是4k.则根据勾股定理,斜边是5k.∴sin B=4.故选D.5.【答案】D【解答】解:∵cotβ=√33,β为锐角,∴β=60∘.故选D.6.【答案】B【解答】解:设OE、AD相交于F,则EF=55,在直角三角形AFO中,∵∠DAO=α,AO=100cm,∴OF=100sinα,∵EF=55,∴OE=55+100sinαOE=55+100sinα.故选B.7.【答案】A【解答】解:如图:根据题意得:AC=a,i=1:3,∴i=AECE =13.设AE=x米,则CE=3x米,∴AC=√AE2+CE2=√10x(米),∴√10x=a,解得:x=√1010a,∴AE=√1010a米.即他上升的高度为√1010a米.故选A.8.【答案】B【解答】解:∵△AOD是直角三角形,∴∠OAD+∠ODA=90∘,∵△AOF是直角三角形,∴∠OAD+∠AOF=90∘,∴∠AOF=∠ADO=α,在Rt△AOF中,OF=AO⋅cosα=100cosα,∵EF=CD=60cm,∴OE=EF+OF=(60+100cosα)cm.故选B.9.【答案】C【解答】解:在Rt△ABC中,由∠C=45∘,得AB=BC,在Rt△ABD中,∵tan∠ADB=tan60∘=ABBD,∴BD=ABtan60∘=√3=√33AB,又∵CD=50m,∴BC−BD=50,即AB−√33AB=50,解得:AB≈118.即摩天轮的高度AB约是118米.故选:C.二、填空题(本题共计11 小题,每题 3 分,共计33分)10.【答案】①②【解答】解:根据图形得:∠α>∠β,∴tanα>tanβ,sinα>sinβ,cosα<cosβ.∴①②正确.故答案为①②.11.【答案】20√2【解答】解:根据题意得:∠BAC=90∘,AB=AC=20米,在R t△ABC中,BC=√AC2+AB2=√202+202=20√2,故答案是:20√2.12.【答案】89【解答】解:作EF⊥AD于F,如图,∵△ABC为等腰三角形,AD为高,∴∠B=∠C,∴tan C=34=ADDC设AD=3t,DC=4t,∴AC=√AD2+CD2=5t,而AE:CE=2:3,∴AE=2t,∵EF // CD,∴△AEF∽△ACD,∴EFCD =AFAD=AEAC,即EF4t=AF3t=2t5t,∴AF=65t,EF=85t,∴FD=AD−AF=95t,在Rt△DEF中,tan∠FDE=EFFD =85t95t=89∴tan∠ADE=89.故答案为89.13.【答案】37∘【解答】解:如图,∵某建筑物的A处测得目标B的俯角为37∘,∴目标B可以测得这个建筑物的A处的仰角为37∘,故答案为:37∘14.【答案】−1 4【解答】解:sin60∘⋅cos30∘−tan45∘=√32⋅√32−1=−14.故答案为:−14.15.8√3【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90∘,∠P=30∘,OB=10米,CD=√3米,∴在直角△CPD中,DP=DC⋅tan60∘=3米,PC=CD÷sin30∘=2√3(米),∵∠P=∠P,∠PDC=∠B=90∘,∴△PDC∽△PBO,∴PDPB =CDOB,∴PB=PD⋅OBCD =3×10√3=10√3(米),∴BC=PB−PC=10√3−2√3=8√3(米).故答案为:8√3.16.【答案】50【解答】解:根据题意画图:AB=100,tan B=ACBC =1√3,设AC=x,BC=√3x,则x2+(√3x)2=1002,解得x=50,答:茗茗上升了50m.故答案为:50.17.24√2【解答】解:如图,作CD⊥AB于点D,垂足为D,∵在直角三角形BCD中,BC=16×1.5=24海里,∠CBD=45∘,∴CD=BC⋅sin45∘=24×√22=12√2海里,∴在直角三角形ACD中,AC=CDsin30∘=12√2×2=24√2海里,故答案为:24√2.18.【答案】√32【解答】∵在Rt△ABC中,∠C=90∘,sin A=12,∴∠A=30∘,∴cos A=√32.19.【答案】35【解答】解:如图所示:作CD⊥AB,则DC=3,AC=5,故sin A=DCAC =35.故答案为:35.20.【答案】 14.9【解答】解:如图,BC =4,∠BAC =30∘,作AD ⊥BC 于点D ,当点D 是BC 的中点时,△ABC 的面积最大,此时由中垂线的性质知,AB =AC ,∠B =75∘,S △ABC =12BC ⋅BD tan 75∘=12×4×2×3.732≈14.9cm 2.-----------------------故答案为:14.9三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.【解答】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.22.【答案】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.【解答】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.23.【答案】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.【解答】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.24.【答案】文物在危险区内.解:在Rt△AEC中,∠ACE=45∘,则CE=EA,∵DB=CE=21m,∴DB=EA=21m,在Rt△CEB中,∠BCE=30∘,则tan30∘=BE,即BE=EC tan30∘,EC=7√3m,∴BE=21×√33∴AB=AE+EB=(21+7√3)m,∵AB=(21+7√3)>30,∴文物在危险区内.【解答】此题暂无解答25.【答案】“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2√3)小时.【解答】解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90∘−60∘=30∘,AP=40海里,PD=√3AD=40√3海里.∴AD=12在Rt△BDP中,PD=40√3海里,∠B=45∘,∴BD=PD=40√3海里,∴AB=AD+BD=(40+40√3)海里,=2+2√3(小“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为40+40√320时).26.【答案】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.【解答】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.。
《三角形》单元测试题(含答案)
《三角形》单元测试题(含答案) D等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
5、任意一个三角形都具备六个元素,即三条边和三个内角。
都具有三边关系和三内角之和为1800的性质。
6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。
四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、Array中线和高线。
2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。
3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(2)三角形有三条中线,它们相交于三角形内一点。
4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
(2)任意三角形都有三条高线,它们所在的直线相交于一点。
五、全等图形1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
3、全等图形的面积或周长均相等。
4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。
5、全等图形在平移、旋转、折叠过程中仍然全等。
6、全等图形中的对应角和对应线段都分别相等。
六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。
2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。
九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)
九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)一.选择题(共10小题,满分30分)1.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.B.C.D.2.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半3.在直角坐标系中,P是第一象限内的点,OP与x轴正半轴的夹角α的正切值是,则cos α的值是()A.B.C.D.4.计算sin45°的值等于()A.B.C.D.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.6.在Rt△ABC中,∠C=90°,若sin A=,则cos B的值是()A.B.C.D.7.已知tan A=0.85,用计算器求∠A的大小,下列按键顺序正确的是()A.B.C.D.8.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是()A.B.C.D.9.在△ABC中,已知∠C=90°,AC=4,sin A=,那么BC边的长是()A.2B.8 C.4D.1210.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0二.填空题(共10小题,满分30分)11.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的余弦值.12.若α为锐角,且,则m的取值范围是.13.用科学计算器计算: tan16°15′≈(结果精确到0.01)14.如果3sinα=+1,则∠α=.(精确到0.1度)15.计算:sin225°+cos225°﹣tan60°=.16.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A 的值为.17.在Rt△ABC中,∠C=90°,如果AC=4,sin B=,那么AB=.18.已知∠A是锐角,且tan A=2,那么cos A=.19.已知∠A+∠B=90°,若,则cos B=.20.化简=.三.解答题(共7小题,满分60分)21.如图,在Rt△ABC中,∠C=90°,BC=6,tan A=.求AB的长和sin B的值.22.已知cos45°=,求cos21°+cos22°+…+cos289°的值.23.计算下列各题:(1);(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.24.在△ABC中,∠C=90°,BC=3,AB=5,求sin A,cos B,tan A的值.25.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.26.如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos A的值.27.如图,已知∠ABC和射线BD上一点P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m,试比较PE、PF的大小;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β.试判断PE、PF的大小,并给出证明.参考答案与解析一.选择题1.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tan A==.故选:B.2.解:根据锐角三角函数的定义,知各边的长度都扩大2倍,那么锐角A的大小不变,所以其正切值不变.故选:C.3.解:如图:过点P作PE⊥x轴于点E,∵tanα=,∴设PE=4x,OE=3x,在Rt△OPE中,由勾股定理得OP=,∴cosα=.故选:C.4.解:sin45°=故选:C.5.解:∵∠C=90°,AB=5,BC=3,∴AC===4,∴tan A==,故选:D.6.解:Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cos B=sin A=,故选:C.7.解:根据计算器功能键,先按反三角2ndF,再按正切值.故选:A.8.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.9.解:由sin A==,不妨设BC=2k,则AB=3k,由勾股定理得,AC2+BC2=AB2,即(4)2+(2k)2=(3k)2,解得k=4(取正值),所以BC=2k=8,故选:B.10.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.二.填空题(共10小题,满分30分)11.解:过P作PA⊥OA,∵P点坐标为(5,12),∴OA=5,PA=12,由勾股定理得,OP===13.∴cosα==.故答案为:.12.解:∵0<cosα<1,∴0<<1,解得,故答案为:.13.解: tan16°15′≈0.71,故答案为:0.71.14.解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.15.解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.16.解:在Rt△ABC中,∠C=90°,c=3a,∴b===2a,∴tan A===,故答案为:.17.解:∵sin B=,∴AB===6.故答案是:6.18.解:设∠A所在的直角三角形为△ABC,∠C=90°,∠A、∠B、∠C所得的边为a,b,c,∵tan A=2,即=2,设b=k,则a=2k,∴c==k,∴cos A==,故答案为:.19.解:由∠A+∠B=90°,若,得cos B=,故答案为:.20.解:∵tan30°=<1,∴原式=1﹣tan30°=1﹣=.三.解答题(共7小题,满分60分)21.解:∵在Rt△ABC中,∠C=90°,BC=6,tan A==,∴AC=12,∴AB===6,∴sin B===.22.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245 =(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.23.解:(1)=(2×﹣)+=2﹣+=2;(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.=×﹣×+()2+()2=﹣1++=.24.解:∵在△ABC中,∠C=90°,BC=3,AB=5,根据勾股定理可得:AC=4,∴sin A=,cos B==,tan A==.25.解:作PC⊥x轴于C.∵tanα=,OC=6∴PC=8.则OP=10.则sinα=.26.(1)证明:法一、连接AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.法二、连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AB=AC,∴∠OCD=∠B,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.(2)解:由(1)知OD∥AE,∴∠FOD=∠FAE,∠FDO=∠FEA,∴△FOD∽△FAE,∴,∴,∴,解得FC=2,∴AF=6,∴Rt△AEF中,cos∠FAE====.27.解:(1)在Rt△BPE中,sin∠EBP==sin40°在Rt△BPF中,sin∠FBP==sin20°又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα,sin∠FBP==sinβ又∵α>β∴sinα>sinβ∴PE>PF.。
鲁教版-数学-九年级上册-第二章 直角三角形的边角关系单元测试
第二章直角三角形的边角关系单元测试一.单选题(共10题;共30分)1.sin45°的值等于( )A. B. C. D.2.如图,已知直角三角形ABC中,斜边AB的长为m,∠B=40°,则直角边BC的长是()A. msin40°B. mcos40°C. mtan40°D.3.如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的值是()A. B. C. D.4.正方形网格中,如图放置,则的值为()A. B. C. D. 25.用计算器验证,下列等式中正确的是()A. si n18°24′+sin35°26′=sin54°B. sin65°54′-sin35°54′=sin30°C. 2sin15°30′=sin31°D. sin70°18′-sin12°18′=sin47°42′6.四个规模不同的滑梯A ,B ,C ,D ,它们的滑板长(平直的)分别为300m ,250m ,200m ,200m;滑板与地面所成的角度分别为30°,45°,45°,60°,则关于四个滑梯的高度正确说法()A. A的最高B. B的最高C. C的最高D. D的最高7.(2015•巴彦淖尔)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是()A. 20海里B. 40海里C. 20海里D. 40海里8.若cosα=,则锐角α的大致范围是()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 0°<α<90°9.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C.D.10.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A. 1,2,3B. 1,1,C. 1,1,D. 1,2,二.填空题(共8题;共24分)11.如图,当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为1.25m,则玲玲的身高约为________ m.(精确到0. 01m)(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).12.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度是________ 米.(结果保留根号)13.如果α是锐角,且tanα=cot20°,那么α=________度.14.小虎同学在计算a+2cos60°时,因为粗心把“+”看成“﹣”,结果得2006,那么计算a+2cos60°的正确结果应为________15.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.16.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是________17.(2016•荆州)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为________米(参考数据:ta n78°12′≈4.8).18.cos240°+cos2α=1,则锐角α=________度.三.解答题(共6题;共42分)19.(2015•泸州)如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A 的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).20.如图,某人在一栋高层建筑顶部C处测得山坡坡脚A处的俯角为60°,又测得山坡上一棵小树树干与坡面交界P处的俯角为45°,已知OA=50米,山坡坡度为12(即tan∠PAB=12,其中PB⊥AB ),且O、A、B在同一条直线上.(1)求此高层建筑的高度OC.(结果保留根号形式.);(2)求坡脚A处到小树树干与坡面交界P处的坡面距离AP的长度. (人的高度及测量仪器高度忽略不计,结果保留3个有效数字.)21.已知,如图Rt△ABC中,AB=8,BC=6,求sin∠A和tan∠A.22.如图,为了测量河宽,在河的一边沿岸边选取B、C两点,在对岸岸边选择点A.测得∠B=45°,∠C=60°,BC=30米.求这条河的宽度(这里指点A到直线BC的距离).(结果精确到1米,参考数据2≈1.4,3≈1.7)23.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD 与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,t an68°≈2.48)24.小明想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.(结果保留三位有效数字,参考数据:2 ≈1.414;3 ≈1.732.)答案解析一.单选题1.【答案】B【考点】特殊角的三角函数值【解析】【分析】根据即可求解.【解答】.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.【答案】B【考点】解直角三角形【解析】【分析】根据锐角三角函数的定义解答即可.【解答】∵cos40°=,∴BC=AB•cos40°=mcos40°.故选B.【点评】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.【答案】B【考点】锐角三角函数的定义【解析】【分析】根据锐角三角函数的概念直接解答即可.【解答】∵Rt△ABC中,∠C=90°,AB=5,AC=2,∴cosA==.故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.4.【答案】A【考点】锐角三角函数的定义【解析】【分析】作EF⊥OB,则求cos∠AOB的值的问题就可以转化为直角三角形边的比的问题.如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=.=故选A.【点评】本题通过构造直角三角形,利用勾股定理和锐角三角函数的定义求解.5.【答案】D【考点】计算器—三角函数【解析】【解答】利用计算器分别计算出各个三角函数的数值,进行分别检验.正确的是sin70°18′-sin12°18′=sin47°42′ .故选D.【分析】本题考查三角函数的加减法运算.6.【答案】B【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】A.的高度为:300×sin30°=150(米).B.的高度为:250×sin45°=125 ≈176.75(米).C.的高度为:200×sin45°=100 ≈141.4(米).D.的高度为:200×sin60°=100 ≈173.2(米).所以B的最高.故选:B.【分析】利用所给角的正弦值求出每个滑板的高度,比较即可.7.【答案】C【考点】解直角三角形的应用-方向角问题【解析】【解答】根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=40海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=40×sin60°=40×=20(海里).故选:C.【分析】根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD即可解答.8.【答案】C【考点】锐角三角函数的增减性【解析】【解答】解:∵cos30°=,cos45°=,cos60°=,且<<,∴cos45°<cosα<cos60°,∴锐角α的范围是:45°<α<60°.故选C.【分析】理解几个特殊角的度数以及余弦值,根据余弦函数随角度的增大而减小即可作出判断.9.【答案】A【考点】锐角三角函数的定义【解析】【解答】解:sin∠A= ,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.10.【答案】D【考点】解直角三角形【解析】【解答】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是= ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【分析】A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.二.填空题11.【答案】1.79【考点】解直角三角形的应用【解析】【解答】玲玲的身高=影长×tan55°=1.25×1.428≈1.79(m)。
三角形单元测试题及答案
三角形单元测试题及答案一、选择题(每题2分,共20分)1. 三角形的内角和等于多少度?A. 90度B. 180度C. 360度D. 720度答案:B2. 等边三角形的三个内角各是多少度?A. 45度B. 60度C. 90度D. 120度答案:B3. 直角三角形的两个锐角之和等于多少度?A. 45度B. 90度C. 135度D. 180度答案:B4. 一个三角形的两边长分别为3cm和4cm,第三边长至少是多少cm?A. 1cmB. 2cmC. 3cmD. 4cm答案:A5. 以下哪个选项不是三角形的分类?A. 等边三角形B. 等腰三角形C. 直角三角形D. 四边形答案:D6. 一个三角形的两边长分别为5cm和12cm,第三边长的范围是多少?A. 7cm到17cmB. 5cm到12cmC. 12cm到17cmD. 5cm到17cm答案:A7. 以下哪个选项不是三角形的外角性质?A. 等于两个不相邻内角的和B. 等于相邻内角的补角C. 大于90度D. 等于180度减去相邻内角答案:C8. 一个三角形的三个内角分别是50度、60度和70度,这个三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:A9. 一个三角形的周长是24cm,其中一边长为8cm,另外两边之和至少是多少cm?A. 8cmB. 16cmC. 24cmD. 32cm答案:B10. 以下哪个选项是三角形的稳定性?A. 容易变形B. 不容易变形C. 容易旋转D. 容易平移答案:B二、填空题(每题2分,共20分)1. 一个三角形的三个内角分别是30度、60度和______度。
答案:90度2. 在一个等腰三角形中,如果底角是50度,那么顶角是______度。
答案:80度3. 一个三角形的两边长分别为3cm和5cm,第三边的长至少是______cm。
答案:2cm4. 一个三角形的周长是18cm,其中一边长为6cm,另外两边之和至少是______cm。
第十一章-三角形》单元测试卷含答案(共5套)
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
单元测试卷 第1章 直角三角形(基础卷)
单元测试卷第1章直角三角形(基础卷)总分数 100分时长:90分钟题型单选题填空题简答题题量10 8 5总分30 24 46一、选择题(共10题 ,总计30分)1.(3分)如图所示,∠C=90°,∠D=90°,B为CD上一点,且AB⊥BE,则图中相等的锐角有()A. 2对B. 3对C. 4对D. 1对2.(3分)如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论中错误的是()A. PC=PDB. OD=OCC. ∠DPO=∠CPOD. PC=OC3.(3分)如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M所表示的实数为()A. 2B.C.D.4.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为()A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km5.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 14C. 7D. 7或256.(3分)下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个7.(3分)如图,若BE⊥CD,BE=DE,BC=DA,则∠CFD()A. 大于90°B. 等于90°C. 小于90°D. 不确定8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D. 39.(3分)如图,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定10.(3分)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S2>S3B. S1+S2=S3C. S1+S2<S3D. 无法确定二、填空题(共8题 ,总计24分)11.(3分)如图所示,已知△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AB、AC于点E、D,若AC=12 cm,则AD=____1____cm.12.(3分)将一根长为15 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是____1____.13.(3分)在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=____1____.14.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____1____.15.(3分)如图,点M、A、N在一条直线上,△ABC为等腰三角形,AB=AC,BM⊥MN,CN⊥MN,垂足分别为M、N,且BM=AN,则MN与BM、CN之间的数量关系为____1____.16.(3分)如图,已知△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,CE和BD交于点O,AO的延长线交BC于点F,则图中全等三角形的对数是____1____.17.(3分)如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△ABO:S△BCO:S△CAO=____1____.18.(3分)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于____1____.三、解答题(共5题 ,总计46分)19.(8分)已知,如图,四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,且∠A=90°,求四边形ABCD的面积.20.(10分)如下图所示,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF,求证:AB=AC.21.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求CD的长;(2)求AB的长.22.(8分)“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m处的C点,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?23.(10分)如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F.(1)求证:OE垂直平分CD;(2)若∠AOB=60°,请你探究OE、EF之间的数量关系,并证明你的结论.单元测试卷第1章直角三角形(基础卷)参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)如图所示,∠C=90°,∠D=90°,B为CD上一点,且AB⊥BE,则图中相等的锐角有()A. 2对B. 3对C. 4对D. 1对【解析】略【答案】A2.(3分)如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论中错误的是()A. PC=PDB. OD=OCC. ∠DPO=∠CPOD. PC=OC【解析】略【答案】D3.(3分)如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M所表示的实数为()A. 2B.C.D.【解析】略【答案】C4.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为()A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km【解析】略【答案】D5.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 14C. 7D. 7或25【解析】略【答案】D6.(3分)下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【解析】略【答案】D7.(3分)如图,若BE⊥CD,BE=DE,BC=DA,则∠CFD()A. 大于90°B. 等于90°C. 小于90°D. 不确定【解析】略【答案】B8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D. 3【解析】略【答案】B9.(3分)如图,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定【解析】略【答案】A10.(3分)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S2>S3B. S1+S2=S3C. S1+S2<S3D. 无法确定【解析】略【答案】B二、填空题(共8题 ,总计24分)11.(3分)如图所示,已知△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AB、AC于点E、D,若AC=12 cm,则AD=____1____cm.【解析】略【答案】412.(3分)将一根长为15 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是____1____.【解析】【答案】2 cm≤h≤3 cm13.(3分)在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=____1____.【解析】【答案】414.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____1____.【解析】略【答案】215.(3分)如图,点M、A、N在一条直线上,△ABC为等腰三角形,AB=AC,BM⊥MN,CN⊥MN,垂足分别为M、N,且BM=AN,则MN与BM、CN之间的数量关系为____1____.【解析】略【答案】MN=BM+CN16.(3分)如图,已知△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,CE和BD交于点O,AO的延长线交BC于点F,则图中全等三角形的对数是____1____.【解析】【答案】7对17.(3分)如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△ABO:S△BCO:S△CAO=____1____.【解析】略【答案】6:5:318.(3分)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于____1____.【解析】略【答案】6三、解答题(共5题 ,总计46分)19.(8分)已知,如图,四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,且∠A=90°,求四边形ABCD的面积.【解析】36 cm2提示:连接BD.【答案】36 cm220.(10分)如下图所示,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF,求证:AB=AC.【解析】略【答案】证明:∵CE⊥AB,DF⊥BC,∴∠BEC=∠CFD=90°.又CD=BC,CE=DF,∴Rt△BEC≌Rt△CFD(HL),∴∠FCD=∠ABC,又∠FCD=∠ACB,∴∠ABC=∠ACB,∴AB=AC21.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求CD的长;(2)求AB的长.【解析】略【答案】(1)CD=12(2)AB=2522.(8分)“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m处的C点,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?【解析】解:由题意知AC=30 m,AB=50 m.∵AC⊥BC,∴BC2=AB2-AC2=502-302=402.∴BC=40 m.∴v=20(m/s)=72(km/h).∵72 km/h>70 km/h,∴这辆小汽车超速【答案】超速23.(10分)如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F.(1)求证:OE垂直平分CD;(2)若∠AOB=60°,请你探究OE、EF之间的数量关系,并证明你的结论.【解析】略【答案】(1)证明:∵E是∠AOB平分线上一点,EC⊥OB,ED⊥OA,∴EC=ED.在Rt△EDO和Rt△ECO中,∵DE=CE,OE为公共边,∴Rt△DEO≌Rt△CEO,∴OD=OC,∴△ODC是等腰三角形,又∵OF为∠DOC的平分线,∴OE垂直平分CD.(2)OE=4EF.证明:∵OE垂直平分CD,∴∠DFE=90°,∠AOE=30°∵ED⊥OA,∴∠ODE=∠DFO=90°,∴2DE=OE,∠DEO=60°,∴∠FDE=30°,∴2EF=DE.∴OE=4EF.。
第24章 解直角三角形单元测试卷及参考答案
图(1)图(2)第24章 解直角三角形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 如图(1)所示,在△ABC 中,︒=∠90B ,AB BC 2=,则A cos 等于 【 】 (A )25 (B )21 (C )552 (D )552. 如图(2)所示,在Rt △ABC 中,︒=∠90BAC ,BC AD ⊥于点D ,如果α=∠ABC ,那么下列结论 错误的是 【 】 (A )αsin ACBC =(B )αtan ⋅=AD CD (C )αcos ⋅=AB BD (D )αcos ⋅=AD AC3. 如图(3)所示,在菱形ABCD 中,AB DE ⊥,2,53cos ==BE A ,则DBE ∠tan 的值是 【 】图(3)(A )21(B )2 (C )25 (D )554. 在Rt △ABC 中,︒=∠90C ,已知54sin =A ,则A cos 的值为 【 】 (A )54(B )1 (C )53 (D )525. 如图(4)所示,△ABC 的顶点是正方形网格的格点,则A sin 的值为 【 】图(4)CBA(A )21(B )55 (C )1010 (D )5526. 如图(5)所示,已知︒=∠60AOB ,点P 在边OA 上,,12=OP 点M 、N 在边OB 上,PN PM =,若2=MN ,则OM 等于 【 】A B图(5)N OPM(A )3 (B )4 (C )5 (D )67. 如图(6)所示,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若,5,4==BC AB 则AFE ∠tan 的值为 【 】图(6)D(A )54 (B )53 (C )43 (D )358. 如图(7)所示,在Rt △ABC 中,︒=∠90C ,︒=∠30A ,E 为AB 上一点,且1:4:=EB AE ,AC EF ⊥于点F ,连结FB ,则CFB ∠tan 的值等于【 】(A )33 (B )332 (C )335 (D )35 图(7)图(8)9. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度,如图(8)所示,旗杆P A 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得α=∠C PB '(C B '为水平线),测角仪D B '的高度为1米,则旗杆P A 的高度为 【 】(A )αsin 11-米 (B )αsin 11+米(C )αcos 11-米 (D )αcos 11+米10. 如图(9)所示,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成︒120角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 的高度应该设计为 【 】A图(9)O DBC(A )()2211-米 (B )()22311-米 (C )()3211-米 (D )()4311-米二、填空题(每小题3分,共15分)11. 如图(10)所示,在△ABC 中,12,==BC AC AB ,BD 为高,M 为AB 的中点,且5=DM ,则△ABC 的面积为_________.图(10)图(11)MNBCAD12. 在△ABC 中,如果B A ∠∠、满足021cos 1tan 2=⎪⎭⎫⎝⎛-+-B A ,那么=∠C _________.13. 如图(11)所示,正方形ABCD 的边长为4,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则=∠ABM tan _________.14. 一般地,当βα,为任意角时,()βα+sin 与()βα-sin 的值可以用下面的公式求得:()βαβαβαsin cos cos sin sin +=+,()βαβαβαsin cos cos sin sin -=-.例如:()4622223222145sin 30cos 45cos 30sin 4530sin 75sin +=⨯+⨯=︒︒+︒︒=︒+︒=︒类似地,可以求得=︒15sin __________.15. 如图(12)所示,已知点()0,35A ,直线b x y +=)0(>b 与y 轴交于点B ,连结AB ,若︒=75α,则=b _________.图(12)三、解答题(共75分)16. 计算:(每小题5分,共20分)(1)︒+︒45cos 360sin 2; (2)130sin 560cos 3-︒︒;(3)︒-︒-︒45tan 230cos 1245sin 22; (4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当1=AC时,求BF的长.tan=∠ABD,3 Array图(13)19.(12分)如图(14)所示,在矩形ABCD中,点E是BC边上的点,AEAE⊥=,,垂足为点F,连结DE.BCDF(1)求证:DFAB=;(2)若,6=ABAD求EDF10=,tan的值.∠Array图(14)20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?图(15)21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题: (1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值.图 1BCA图 2BAC图 3C第24章 解直角三角形单元测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 48 12. ︒75 13.3114. 426- 15. 5 三、解答题(共75分)16. 计算:(每小题5分,共20分) (1)︒+︒45cos 360sin 2;解:原式223232⨯+⨯= 62626=+=(2)130sin 560cos 3-︒︒;解:原式1215213-⨯⨯=1= (3)︒-︒-︒45tan 230cos 1245sin 22; 解:原式223322222-⨯-⨯=292321-=--=(4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.解:原式21231232212⨯--⨯⨯=41324321343131-=-+=--=17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .解:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x()()()()1111122-=-++⋅+=x x x x x x x x ……………………………………6分当2130sin =︒=x 时……………………………………7分 原式112121-=-=. ……………………………………8分 18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD 与BE 相交于点F . (1)求证:△ACD ∽△BFD ;(2)当1tan =∠ABD ,3=AC 时,求BF 的长.图(13)(1)证明:∵AC BE BC AD ⊥⊥, ∴︒=∠+∠︒=∠+∠902,901C C ……………………………………1分 ∴21∠=∠……………………………………2分 ∵︒=∠=∠90BDF ADC ,21∠=∠∴△ACD ∽△BFD ;……………………………………5分 (2)在Rt △ABD 中 ∵1tan =∠ABD ∴1=BDAD……………………………………7分 ∵△ACD ∽△BFD∴13,1===BFBD AD BF AC ∴3=BF .……………………………………9分 19.(12分)如图(14)所示,在矩形ABCD 中,点E是BC边上的点,AE DF BC AE ⊥=,,垂足为点F ,连结DE .(1)求证:DF AB =;(2)若,6,10==AB AD 求EDF ∠tan 的值.图(14)(1)证明:∵四边形ABCD 是矩形 ∴BC AD BC AD ABE =︒=∠,//,90 ……………………………………1分 ∴AEB DAF ∠=∠ ∵AE DF ⊥∴︒=∠=∠90ABE DFA ∵BC AE = ∴DA BC AE == 在△ABE 和△DF A 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DA AE DAF AEB DFA ABE ∴△ABE ≌△DF A (AAS )……………………………………5分 ∴DF AB =;(2)由(1)可知:△ABE ≌△DF A ∴6==DF AB……………………………………6分 ∵10=AD ∴10=AE在Rt △ABE 中,由勾股定理得:86102222=-=-=AB AE BE……………………………………9分 ∴8=FA∴2=-=FA AE EF……………………………………10分 ∴3162tan ===∠DF EF EDF . ……………………………………12分 20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?解:由题意可知:42,=⊥AD BC AD m……………………………………1分 在Rt △ABD 中 ∵ADBDBAD =∠tan ∴3342=BD ∴314=BD m……………………………………6分 在Rt △ACD 中 ∵ADCDCAD =∠tan ∴360tan 42=︒=CD∴342=CD m……………………………………11分 ∴356=+=CD BD BC m……………………………………12分 答:这栋楼的高度为356m.21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值. 解:(1)1;……………………………………3分 (2)作AB CD ⊥.图 2∵CA CB =,AB CD ⊥ ∴AB BD 21=……………………………………4分∵sad C 56=∴56=BC AB 设x AB 6=,则x BC 5=∴x BD 3=在Rt △BCD 中,由勾股定理得:()()xx x BD BC CD 4352222=-=-=……………………………………5分 ∴3434tan ===x x BD CD B . ……………………………………6分 (3)延长AC 至E ,使AE AB =. ……………………………………8分图 3∵54sin =A ∴54=AB BC 设x AB x BC 5,4== ∴x AE 5=在Rt △ABC 中,由勾股定理得:()()xx x BC AB AC 3452222=-=-=……………………………………9分 ∴x AC AE CE 2=-= 在Rt △BCE 中,由勾股定理得:()()xx x CE BC BE 52242222=+=+=∴sad A 552552===x x AB BE .(12分)图 2 mm。
解直角三角形单元测试题含答案
解直角三角形单元测试题一、选择题:1、在△ABC中,若三边BC、CA、AB满足 BC:CA:AB=5:12:13,则sinA的值是( )A. B. C. D.2、已知∠A为锐角,且sinA≤,则()°≤A≤60°°≤A <90°°<A ≤30°°≤A≤90°3、在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()B. C. D.4、已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.5、如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45° B.1 C. D.无法确定6、如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.7、如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC的周长比为()A.1:2 B.1:3 C.1:4 D.1:98、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4 m,测得仰角为60°.已知小敏同学身高(AB)为 m,则这棵树的高度约为(结果精确到 m,≈( )A. m B. m C. m D. m9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )米米米 D. 24米12、如图,在高度是90米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD是()(结果可以保留根号)A.30(3+)米 B.45(2+)米C.30(1+3)米 D.45(1+)米二、填空题:13、求值:sin60°•tan30°= .14、如图,∠1的正切值等于.15、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.16、如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.17、如图,小岛在港口的南偏东45°方向、距离港口81海里处.甲船从出发,沿方向以9海里/h的速度驶向港口;乙船从港口出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为h.(结果保留根号)18、如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.三、计算题:19、.20、计算:21、已知顶点为A(2,一1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,O);(1)求这条抛物线的表达式;(2)连接AB、BD、DA,求cos∠ABD的大小;(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.22、如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.23、如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.24、先化简,再求代数式的值÷(﹣),其中a=2cos30°﹣tan45°,b=2sin30°.25、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到)(参考数据:≈,≈)26、南沙群岛是我国的固有领土,现在我南海渔民要在南沙群岛某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为防止某国的巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.27、如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:,AB 的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到米).(参考数据:sin42°≈,cos42°≈,tan42°≈)参考答案1、C2、C3、A4、A5、C6、B7、B8、D9、D10、A11、B12、A13、答案为:.14、答案为:.15、答案为:216、答案为:3617、答案为:18、答案为:2,19、.20、=1+2-(+1)-+2=221、解:(1)∵顶点为A(2,﹣1)的抛物线经过点C(1,0),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(1,0)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),令x=0,y=3, ∴B(0,3)∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BD A=90°,∴(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).22、解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.23、(1)过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°.∴在Rt△ACE中,CE=AC·cosC=1.∴AE=CE=1.在Rt△ABE中,tanB=,即=,∴BE=3AE=3.∴BC=BE+CE=4.(2)∵AD是△ABC的中线,∴CD=BC=2.∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°.∴sin∠ADC=.24、解:原式=÷=×=,当a=2cos30°﹣tan45°=2×﹣1=﹣1,b=2sin30°=2×=1时,原式===.25、解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣≈(m).答:障碍物B,C两点间的距离约为.∠ACB=45°,在Rt△ADC中,CD=AD=x,在Rt△ADB中∵=tan30°,∴BD=AD=x,∵BC=CD+BD=x+x=20(1+),即x+x=20(1+),解之得x=20,∴AC=AD=20.∴A、C之间的距离为20海里.27、解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×≈米,∴BC≈米.答:二楼的层高BC约为米.。
第一章 解直角三角形单元测试卷(标准难度 含答案)
浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
三角形单元测试题及答案
三角形单元测试题及答案1. 选择题:- 下列哪个选项不是三角形的内角和?A. 180°A. 360°B. 540°C. 720°D. 1080°- 答案:B2. 填空题:- 在一个三角形中,如果一个角是直角,那么这个三角形叫做______三角形。
- 答案:直角3. 判断题:- 如果一个三角形的两边长度分别为3和4,那么第三边的长度可以是1。
(正确/错误)- 答案:错误4. 简答题:- 解释什么是等边三角形,并给出一个等边三角形的边长为6时,其面积的计算方法。
- 答案:等边三角形是三条边都相等的三角形。
边长为6的等边三角形面积可以通过公式 \( A = \frac{\sqrt{3}}{4} \times a^2 \)计算,其中 \( a \) 是边长。
代入 \( a = 6 \) 得到面积 \( A =\frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} \) 平方单位。
5. 计算题:- 已知三角形ABC,其中AB=5,AC=7,BC=6,求三角形ABC的面积。
- 答案:使用海伦公式,首先计算半周长 \( s = \frac{5 + 7 + 6}{2} = 9 \),然后面积 \( A = \sqrt{s(s-5)(s-7)(s-6)} =\sqrt{9 \times 4 \times 2 \times 3} = 6\sqrt{6} \) 平方单位。
6. 应用题:- 在一个直角三角形中,斜边的长度是13,一条直角边的长度是5,求另一条直角边的长度。
- 答案:根据勾股定理,设另一条直角边为 \( x \),有 \( 5^2+ x^2 = 13^2 \),解得 \( x = \sqrt{169 - 25} = 12 \)。
7. 证明题:- 证明:等腰三角形的底角相等。
- 答案:设等腰三角形为ABC,AB=AC,根据等边对等角原理,因为AB=AC,所以∠B=∠C,即等腰三角形的底角相等。
直角三角形的边角关系单元测试
B《直角三角形的边角关系》单元测试题一、选择题,(每题4分,共40分)1.如图,点P (3,4)是∠α的边OA 上的一点,则sin α=( )A .35B .45C .34D .432. 在Rt △ABC 中,∠C = 90°,tanA = 13,则sinB =( )A.23 C .724 D3.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( )A.40°B.30°C.20°D.10°4.在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( )A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化5.等腰三角形的底角为30°,底边长为 )A .4 B. C .2 D.6. 如图,梯形护坡石坝的斜坡AB 的坡度是i =1:3,坝高BC 为2米,则斜坡AB 的长 ( )D.6米7.已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( ) A .13 B .12 C .1 D .168.若α、β都是锐角,下列说法正确的是( )A .若sin α= cos β,则α=β=45°B .若sin α=cos β,则α+β=90°C .若sin α>cos β,则α>β D. 若sin α<cos β,则α<β9.已知30°<α<60°,下列各式正确的是( ) A. ; B. ; C. ; D.10.如果α是锐角,且53cos =α,则)90cos(α-的值为( ) A .53 B .43 C .54 D .51 二、解答题11.在Rt △ABC 中,∠C =900,AC =12,BC =15。
(8分)(1)求AB 的长; (2)求sinA 、cosA 的值;(3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小12.(每题4分,共16分)(1)3 cos30°+2sin45° (2) ︒+︒-︒+︒+︒30cos 60tan 45tan 60sin 230sin 22(3)︒-︒︒+︒45tan 30cos 260cos 30sin (4)︒-︒+︒-30tan 30tan 30tan 21213.如图为住宅区内的两幢楼,它们的高AB =CD =30m ,两楼间的距离AC =24m ,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高? (12分)14.海岛A 的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在点B 处测得海岛A 位于北偏东60°,航行12海里后到达点C 处,又测得海岛A 位于北偏东30°。
第一章 直角三角形的边角关系(单元测试)(解析版)
第一章 直角三角形的边角关系单元测试参考答案与试题解析一、单选题1.(2020·哈尔滨德强学校)在△ABC 中,若, )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【答案】A【解析】试题解析:∵cos A tan B ,∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .2.(2019·福建三明市·九年级月考)在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sinB =23B .cos B =23C .tan B =23D .tan B =32【答案】C【解析】∵∠C =90°,AC =2,BC =3,∴,∴sinB=AC AB ==,cosB=BC AB ==,tanB=AC 2BC 3=,故选C.3.(2020·济南历下区明德中学九年级期中)如图所示,菱形ABCD 的周长为20cm ,DE AB ^,垂足为E ,35DE AD =,则下列结论正确的有( )①3DE cm =;②1BE cm =;③菱形的面积为215cm ;④BD =.A .1个B .2个C .3个D .4个【答案】C【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案.【详解】解:Q 菱形ABCD 的周长为20cm ,5cm AD \=,35DE AD =Q ,3cm(DE \=①正确),4cm AE \==,5cm AB =Q ,541cm(BE \=-=②正确),\菱形的面积25315cm (AB DE =´=´=③正确),3cm DE =Q ,1cm BE =,BD \==④不正确),故选:C .【点睛】本题考查菱形的性质、勾股定理等内容,掌握菱形的性质是解题的关键.4.(2019·辽宁抚顺市·九年级月考)在△ABC 中(2cosA-)2+|1-tanB|=0,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】D【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A 、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC 一定是等腰直角三角形,故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.(2020·山东枣庄市·九年级期末)若α为锐角,且()sin10a °-=,则α等于( )A .80°B .70°C .60°D .50°【答案】B【解析】【分析】根据sin 60°=得出α的值.【详解】解:∵sin 60°=∴α-10°=60°,即α=70°.故选:B .【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.6.(2019·全国九年级单元测试)已知∠A 为锐角,且tan A ,则∠A 的取值范围是( )A .0°<∠A <30°B .30°<∠A <45°C .45°<∠A <60°D .60°<∠A <90°【答案】C【解析】【分析】通过tan30°、tan45°、tan60°这些特殊角度的正切值来判断随角度变化正切值的变化规律,再通过具体数值确定其大致范围.【详解】解:tan30°,tan45°=1,tan60°,则可知正切值随角增大而增大,由145°<∠A <60°.故选择C .【点睛】熟悉特殊角的正切值以及由此判断正切函数随角度变化的变化规律是解题关键.7的值是( )A .1-B -1C -1D .1【答案】A【解析】11=-=故本题应选A.点睛:00a a a a a ³ì=í-<î,, .8.(2019·全国九年级单元测试)=( )A .B .C .D .1【答案】D【解析】【分析】由于tan30°=,故1-tan30°>0,再对根号里的各项利用完全平方公式变形,从而可以计算出答案.【详解】解:∵tan30°=,∴ 1-tan30°>0,原式=+tan30°=|1-tan30°|+tan30°=1-tan30°+tan30°=1.故选:D .【点睛】本题考查了特殊角的三角函数值、完全平方公式.以及二次根式的性质与化简,本题的关键有两步:第一步判断tan30°-1的正负;第二步熟练运用=|a|进行化简,同时也要掌握绝对值的代数意义.9.(2019·福建三明市·九年级月考)如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于()A B C D.2 3【答案】C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则AB===,sin ABCÐ== .故本题应选C.10.(2020·福建莆田市·九年级一模)小明沿着坡角为30°的山坡向上走,他走了1000m,则他升高了( )A.B.500m C.D.1000m【答案】B【解析】【分析】根据坡角的概念,直角三角形中30°所对直角边等于斜边一半的性质计算即可.【详解】解:设他升高了xm,∵山坡的坡角为30°,∴x=12×1000=500(m),故选:B.【点睛】本题考查的是解直角三角形的应用:坡度坡角问题,属于简单题,掌握坡角的概念是解题的关键.二、填空题11.(2020·四川攀枝花市·九年级期末)△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.【答案】7 5【解析】∵在△ABC 中,∠C=90°,4tan 3A =,∴可设BC=4k ,AC=3k ,∴由勾股定理可得AB=5k ,∴sinA=4455BC k AB k ==,cosA=3355AC k AB k ==,∴sinA+cosA=437555+=.故答案为75.12.(2020·全国九年级单元测试)如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m 到达A 处,在A 处观测C 地的俯角为30°,则B 、C 两地之间的距离为__________m.【答案】【分析】利用题意得到∠C=30°,AB=100,然后根据30°的正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=A B B C,∴BC=0100tan 30=0100tan 30(m ).故答案为【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.13.(2020·阜康市第三中学九年级其他模拟)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为_____.【答案】3 4【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,再根据等边对等角可得∠A=∠ACD,然后利用锐角的正切值等于对边比邻边列式计算即可得解.【详解】解:∵∠ACB=90°,CD是AB边上的中线,∴AD=CD,∴∠A=∠ACD,∴tan∠ACD=tan∠A=BCAC=68=34.故答案为:34.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半的性质,锐角三角函数的定义,熟记性质并求出∠A=∠ACD是解题的关键.14.(2020·江苏淮安市·淮安六中八年级期中)有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一个树的树梢,则小鸟至少飞行_________________米【答案】10【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】解:如图,设大树高为12AB m =,小树高为6CD m =,过C 点作CE AB ^于E ,则四边形EBDC 是矩形,连接AC ,6EB m \=,8EC m =,1266()AE AB EB m =-=-=,在Rt AEC D 中,10()AC m ==.故小鸟至少飞行10m .故答案为:10.【点睛】本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.15.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5 m ,则大树的高度为_______m(结果保留根号).【答案】5+【分析】作CE ⊥AB 于点E ,则△BCE 和△BCD 都是直角三角形,即可求得CE ,BE 的长,然后在Rt △ACE 中利用三角函数求得AE 的长,进而求得AB 的长,即为大树的高度.【详解】如图,过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,BE =CD =5m ,CE =tan 30BE o=(m ),在Rt △ACE 中,AE =CE·tan 45°=(m ),AB =BE +AE =5+m ).【点睛】本题考查解直角三角形的应用-仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.16.(2019·全国九年级单元测试)小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.【答案】50【分析】根据斜坡的坡比为1:2.4,可得BC :AC=1:2.4,设BC=x ,AC=2.4x ,根据勾股定理求出AB ,然后根据题意可知AB=130米,求出x 的值,继而可求得BC 的值.【详解】解:如图所示:∵坡比为1:2.4,∴BC :AC=1:2.4,设BC=x ,AC=2.4x ,则,∵AB=130米,∴x=50,则BC=x=50(米).故答案为50.【点睛】此题主要考查了坡度的定义和勾股定理,根据勾股定理把AB 用x 表示出来并求出是解题的关键.三、解答题17.计算:(1)(-1)2-2cos 30°+(-2017)0;(2)3tan 302tan 60cos 60°-°°+4sin 60°.【答案】(1) 2;(2) 0.【解析】试题分析:(1)先求出式子每一项的值,然后相加即可.(2)先计算每一个特殊角的三角函数值,然后代入式子求值即可.试题解析:(1) 原式=1-1=11=2;(2)+=-=0.18.(2019·福建三明市·九年级月考)如图,在△ABC 中,BD ⊥AC ,AB =6,AC =,∠A =30°.(1)求BD 和AD 的长;(2)求tan C 的值.【答案】(1) BD =3,AD =;(2) tan C.【解析】(1)∵BD ⊥AC ,∴∠ADB =∠BDC =90°.在Rt △ADB 中,AB =6,∠A =30°,∴BD =AB·sin30°=3,∴·cos30AD AB =°=.(2)CD AC AD =-=-=,在Rt △BDC 中,tan BD C CD Ð===19.(2020·辽宁盘锦市·)如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).【答案】米【分析】过C 作CD ⊥AB 于D ,交海面于点E ,设BD=x ,利用锐角三角函数的定义用x 表示出BD 及CD 的长,由CE=CD+DE 即可得出结论.【详解】解:过C 作CD ⊥AB 于D ,交海面于点E ,设BD=x , ∵∠CBD=60°,∴tan ∠CBD=CD BD∴. ∵AB=2000, ∴AD=x+2000,∵∠CAD=45° ∴tan ∠CAD=CD AD=1,x=x+2000,解得, ∴+1000)∴.答:黑匣子C 点距离海面的深度为米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.20.如图,AB 是长为5m ,倾斜角为37°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数).(参考数据:3sin 375°»,3tan 374°»,9sin 6510°»,15tan 657°»)【答案】大楼CE 的高度约为14m .【分析】如图(见解析),先在Rt ABF V 中,利用正弦三角函数可求出BF 的长,再在Rt CDB V 中,利用正切三角函数可求出CD 的长,然后根据线段的和差即可得.【详解】如图,作BF AE ^于点F ,则BF DE=由题意得:5,BD AB m BD CE ==^,37,65BAF CBD Ð=°Ð=°在Rt ABF V 中,sin BF BAF AB Ð=则3sin 3753()5BF AB m =×°»´=在Rt CDB V 中,tan CD CBD BDÐ=则15tan 65511()7C mD BD °»»=×´则31114()CE DE CD BF CD m =+=+»+=答:大楼CE 的高度约为14m .【点睛】本题考查了解直角三角形的应用,通过作辅助线,构造直角三角形是解题关键.21.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1AB=10米,AE=15米.(i=1坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1»1.414,1.732)【答案】(1)点B 距水平面AE 的高度BH 为5米.(2)宣传牌CD 高约2.7米.【分析】(1)过B 作DE 的垂线,设垂足为G .分别在Rt △ABH 中,通过解直角三角形求出BH 、AH.(2)在△ADE 解直角三角形求出DE 的长,进而可求出EH 即BG 的长,在Rt △CBG 中,∠CBG=45°,则CG=BG ,由此可求出CG 的长然后根据CD=CG+GE ﹣DE 即可求出宣传牌的高度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4
4米3米
湘教版八年级数学下册《直角三角形》单元测试题
姓名 得分:
一、填空题(每小题2分,共30分)
1、直角三角形中一个锐角为30°,斜边和最小的边的和为12cm,则斜边长为 .
2、等腰直角三角形的斜边长为3,则它的面积为 .
3.如图,一棵大树在一次强台风中于离地面3米处折断倒下,倒下
树尖部分与树根距离为4米,这棵大树原来的高度为__________米。
4、△ABC 中各角的度数之比如下,能够说明△ABC 是直角三角形的是( )
A.1:2:3
B.2:3:4
C.3:4:5
D.3:2:5
5、直角三角形中,两锐角的角平分线相交所成的角的度数为 .
6、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 .
7、长方体地面长为4,宽为3,高为12,那么长方体对角线的长是 .
8、在直角三角形ABC 中,∠ACB=90度,CD 是AB 边上中线,若CD=5cm,则AB=____ _
9、在直角三角形中,有一个锐角为52度,那么另一个锐角度数为 10、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________.
11、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________.
12、在直角三角形ABC 中,∠C=90°,∠BAC=30°,BC=10,则AB=________.
13、顶角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是________ 14、等腰三角形顶角为120°,底边上的高为3,则腰长为_________
15、三角形ABC 中,AB=AC=6,∠B=30°,则BC 边上的高AD=_______________ 二、选择题(每小题2分,共20分)
1、在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( )
A.2a
B.3a
C.4a
D.以上结果都不对
2.Rt △ABC 中,∠C=90°,∠B=54° ,则∠A=( ) A.66° B.36° C.56° D.46°
3.△ABC 中,∠A :∠B :∠C=1:2:3,则△ABC 是( )
A.等腰三角形
B.直角三角形
C.锐角三角形
D.钝角三角形 4.以下四组数中,不是勾股数的是( )
A.3,4,5
B.5,12,13
C.4,5,6
D.8,15,17 5.下列条件不能判定两个直角三角形全等的是( )
A.两条直角边对应相等
B.有两条边对应相等
C.一条边和一个锐角对应相等
D.两个锐角对应相等 6.三角形中,到三边距离相等的点是( )
A.三条边的垂直平分线的交点
B.三条高的交点
C.三条中线的交点
D.三条角平分线的交点 7.等腰三角形腰长为13,底边长为10,则它底边上的高为 ( ) A.12 B.7 C.5 D.6
8.如右图,Rt △ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线,AD=10,则点D 到AB 的距离是( )
A.8
B.5
C.6
D.4
9..如图,有一张直角三角形纸片,两直角边长AC =6 cm ,BC =8 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )
A.254 cm
B.223 cm
C.74 cm
D.53
cm
10. 如右图,将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB ′C ′, 若AC=3,则图中阴影部分的面积为( ). A .
33 B .36 C .3 D .2
3
三、解答题(1小题6分,2-3每小题7分,4-6每小题10分,共50分) 1、△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。
求证:AE=2CE 。
2、如图3,AD 是ΔABC 的中线,DE 求证:(1)AD 是∠BAC 的平分线 (2)AB=AC
3.若a 、b 、c 为△ABC 的三边长,且a 、b 、c 满足等式()013)12(52
2
=-+-+-c b a 。
△ABC 是直角三角形吗?请说明理由。
D
C B
A
4.某中学有一块三角形形状的花园ABC ,测量得到∠A=45°, BC=5m ,AC 上的高为4m ,求出这块花园的面积.
5.已知:如图,为了躲避海盗,一轮船一直由西向东航行,早上8点,在A 处测得小岛P 的方向是北偏东75°,以每小时15海里的速度继续向东航行,10点到达B 处,并测得小岛P 的方向是北偏东60°,若小岛周围25海里
6.如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的。