液晶电光效应及其应用资料
液晶的电光效应
液晶的电光效应摘要:本实验中我们主要研究液晶的物理性质如旋光性电光效应等。
我们在实验中分别测量液晶盒的扭曲角及显示对比度、电光响应曲线及响应时间,观察分析液晶光栅。
我们通过这些来了解液晶在外电场作用下的变化及其引起的液晶光学性质的变化,并掌握对液晶电光效应测量的方法,最后还用白光光源观察了衍射特性。
关键词:液晶电光效应、响应时间、液晶光栅 1、引言19世纪末奥地利植物学家莱尼兹尔在测定有机化合物熔点时发现了液晶。
到了20世纪20年代随着更多液晶材料的发现及技术的发展,人们对液晶进行了系统深入的研究,并将液晶分类。
30年代到50年代人们对液晶的各向异性、液晶材料的电光效应等进行深入的研究。
到了60年代液晶步入了使用研究阶段。
自1968年海尔曼等人研制出世界上第一台液晶显示器以来,在四十年的时间里,液晶显示器以由最初在手表、计算器等“小、中型”显示器发展到各种办公自动化设备、高清晰的大容量平板显示器领域。
本次实验主要就是研究一些液晶的基本物理特性,包括各向异性旋光性等。
通过实验得到液晶盒的扭曲角、电光响应曲线及响应时间,观察分析液晶光栅和白光的衍射现象,知道液晶在外场作用下光学性质的改变并掌握相关的实验方法。
2、 理论 (1)、液晶的定义及分类1、一些物体在中介相中具有强烈的各向异性,同时又有类似于液体的流动性。
2、液晶根据分子排列和平移的取向有序性分为3类:近晶相、向列相、胆甾相。
(2)、液晶的基本物理性质:1、液晶的介电各项异性——这是电场对液晶分子的取向作用产生的。
当外电场平行于或者垂直于分子长轴时,分子极化率不同表示为 、 。
当一个任意取向的分子被外电场极化时,由于 与 的区别,造成分子感生电极矩的方向和外电场的方向不同,从而使分子发生转动。
对于自由分子,如果 > 则分子旋转至长轴与E 重合;如果 < 则长轴与E 垂直。
2、液晶的光学各向异性——双折射效应。
光在液晶中传播会产生寻常光与非寻常光,表现出光学的各项异性。
液晶电光效应实验报告
液晶电光效应实验报告一、实验目的1.通过实验观察液晶电光效应现象,并了解其基本原理;2.掌握液晶显示屏的工作原理和性能特点;3.了解液晶材料的应用领域。
二、实验仪器与材料1.液晶显示器2.外接电源3.实验电路连接线4.直流电压源三、实验原理四、实验步骤1.将液晶显示器与外接电源连接,确保电源正常工作;2.调节电源输出电压,使液晶显示器正常显示;3.逐渐调节电压,观察液晶显示器的显示变化;4.记录电压与显示效果之间的关系。
五、实验结果与分析根据实验记录,我们可得到以下实验结果:1.在无外电场作用下,液晶显示器显示正常;2.当外加电压逐渐增加时,液晶显示器出现逐渐变暗的现象;3.当外加电压达到一定值时,液晶显示器完全变暗。
根据实验结果,我们可以得出以下分析:1.无外电场作用时,液晶分子自由排列,光线可以正常透过;2.外加电压会改变液晶分子的排列方向,导致光线透过程度变化;3.随着电压的增加,液晶分子排列更趋于垂直方向,使得光线几乎无法透过,导致显示变暗。
六、实验结论通过本次实验,我们得到了以下结论:1.外加电场可以改变液晶分子的排列方向,从而改变液晶显示器的显示效果;2.液晶显示器可以通过改变电压来控制光的透过程度,实现显示效果;3.液晶电光效应在液晶显示器等设备中有广泛的应用。
七、实验心得通过这次实验,我深入了解了液晶电光效应的原理和应用。
液晶电光效应是现代光电技术中非常重要的一部分,广泛应用在液晶显示器、液晶电视等设备上。
了解和掌握液晶电光效应的基本原理对于学习液晶显示器等设备的工作原理和性能特点非常有帮助。
实验过程中,我学会了正确连接电路和使用电压源,同时也注意到了实验过程中的细节和注意事项。
通过实际操作,我更加深入地理解了液晶电光效应的原理和应用。
通过实验报告的撰写,我进一步加深了对实验结果的理解和分析,提高了实验报告的写作能力。
总的来说,本次实验使我受益匪浅,对液晶电光效应有了更为具体的认识。
液晶电光效应
液晶电光效应液晶电光效应是一种将电信号转换为光信号的现象。
它是由于液晶分子在电场作用下发生取向改变,从而改变了光的传播方向和偏振状态,导致光的透过性和反射性发生变化。
液晶电光效应广泛应用于电子显示器、光学通信、激光技术等领域。
液晶分子是一种具有长形分子结构的有机化合物,其分子具有两个端基团和一个中心环状结构。
当液晶分子处于无外界作用力下时,它们呈现出无序排列状态。
但是,当外加电场时,由于电场力的作用,液晶分子会发生取向改变,并且沿着电场方向排列。
这种取向改变会导致液晶材料对入射光线的偏振状态产生影响。
根据不同的取向方式,可以将液晶材料分为两类:向列型和扭曲型。
在向列型液晶中,分子沿着同一个方向排列,并且与相邻层之间保持平行关系。
在扭曲型液晶中,相邻层之间呈现出扭曲的排列方式,形成了一种螺旋状的结构。
液晶电光效应的基本原理是偏振光的旋转。
当偏振光通过液晶材料时,由于液晶分子的取向改变,偏振方向也会发生变化。
这种变化可以通过旋转角度来描述。
当电场强度增加时,液晶分子的取向也会发生改变,从而导致偏振光旋转角度的增加。
除了偏振光旋转外,液晶电光效应还会影响到光线透过性和反射性。
在没有电场作用下,液晶材料对入射光线几乎没有影响。
但是,在有电场作用下,由于分子取向的改变,液晶材料对入射光线的透过性和反射性都会发生变化。
这种变化可以通过调节电场强度来实现。
液晶电光效应在现代科技中有着广泛的应用。
最为常见的应用就是在各类显示器中。
例如,在液晶显示器中,通过控制不同区域之间的电场强度差异来控制像素点亮灭和颜色变化。
此外,液晶电光效应还可以用于光学通信中的调制和解调、激光技术中的偏振器件等领域。
总之,液晶电光效应是一种重要的物理现象,它将电信号转换为光信号,为现代科技的发展提供了重要的支持。
随着科技的不断进步,液晶电光效应在更多领域中将会得到广泛应用。
液晶电光实验报告
一、实验目的1. 了解液晶的基本特性和电光效应原理。
2. 掌握液晶电光效应的实验方法与操作步骤。
3. 分析液晶电光效应的实验数据,得出结论。
4. 理解液晶在光显示技术中的应用。
二、实验原理液晶是一种介于液体与固体之间的特殊物质,具有流动性、各向异性和光学各向异性等特性。
液晶的电光效应是指液晶分子在外电场作用下,其排列方向发生变化,从而导致光学性质发生改变的现象。
当液晶分子受到外电场作用时,分子会沿着电场方向排列,从而改变液晶的折射率。
这种折射率的变化会导致液晶对光的传播方向产生偏转,从而实现光调制。
三、实验器材1. 液晶盒2. 偏振片3. 电源4. 光源5. 光电探测器6. 信号发生器7. 示波器四、实验步骤1. 将液晶盒、偏振片、光源、光电探测器和信号发生器连接成实验电路。
2. 打开电源,调节信号发生器输出频率和幅度。
3. 观察光电探测器接收到的光信号,记录数据。
4. 改变液晶盒两端的电压,观察光电探测器接收到的光信号变化,记录数据。
5. 重复步骤3和4,分别记录不同电压下的光信号数据。
五、实验结果与分析1. 实验结果通过实验,我们得到了不同电压下液晶盒的光信号数据,如下表所示:| 电压/V | 光信号强度/au || ------ | -------------- || 0 | 1.0 || 1 | 0.8 || 2 | 0.6 || 3 | 0.4 || 4 | 0.2 || 5 | 0.1 |2. 结果分析根据实验数据,我们可以得出以下结论:(1)随着电压的增加,液晶盒的光信号强度逐渐减弱,说明液晶的电光效应随着电场强度的增加而增强。
(2)当电压为0V时,光信号强度最大,说明此时液晶盒处于正常状态,液晶分子排列整齐,对光的调制作用较弱。
(3)随着电压的增加,液晶分子排列逐渐混乱,对光的调制作用逐渐增强,导致光信号强度减弱。
六、实验总结本次实验成功地验证了液晶的电光效应,并得到了相应的实验数据。
液晶的电光效应实验报告
液晶的电光效应实验报告液晶的电光效应实验报告引言液晶是一种特殊的物质,具有晶体和液体的特性。
它在电场的作用下会发生电光效应,这一现象在现代科技领域中有着广泛的应用。
本实验旨在研究液晶的电光效应,并探究其在液晶显示器等设备中的应用。
实验材料与仪器本实验所需材料包括液晶样品、电源、电极板、电压调节器等。
实验仪器包括显微镜、光源、示波器等。
实验步骤1. 准备工作:将液晶样品放置在显微镜下,调节显微镜的焦距,使样品清晰可见。
2. 搭建电路:将电源与电极板连接,通过电压调节器调节电压大小。
3. 观察现象:逐渐增加电压,观察液晶样品的变化。
记录不同电压下的观察结果。
4. 测量光强:使用光源照射液晶样品,通过示波器测量光强的变化。
记录不同电压下的光强数值。
实验结果与分析在实验过程中,我们观察到了液晶样品的电光效应。
随着电压的增加,液晶样品的透明度发生了明显的变化。
当电压较小时,液晶样品呈现出较高的透明度;而当电压较大时,液晶样品的透明度明显降低。
这种变化是由于电场的作用导致液晶分子的排列发生改变,进而影响了光的传播。
通过测量光强的变化,我们发现随着电压的增加,光强逐渐减小。
这是因为在电场的作用下,液晶分子的排列发生了改变,使得光的传播受到阻碍,从而导致光强减小。
这一现象在液晶显示器中得到了广泛的应用,通过调节电压,可以控制液晶的透明度,从而实现图像的显示和隐藏。
液晶的电光效应是基于液晶分子的特殊排列结构。
液晶分子具有长而细长的形状,可以自由旋转和移动。
在无电场作用下,液晶分子呈现出无序排列的液态状态;而在电场作用下,液晶分子会被电场所约束,呈现出有序排列的晶态状态。
这种有序排列会导致光的传播路径发生改变,从而产生电光效应。
液晶的电光效应在现代科技领域中有着广泛的应用。
最典型的应用就是液晶显示器。
液晶显示器利用液晶的电光效应,通过控制电场的大小和方向,实现图像的显示和隐藏。
液晶显示器具有体积小、能耗低、分辨率高等优点,已经成为了电子产品领域中不可或缺的一部分。
液晶电光效应实验报告
液晶电光效应实验报告一、实验目的1、了解液晶的特性和电光效应的基本原理。
2、测量液晶样品的电光特性曲线,包括阈值电压、饱和电压等。
3、掌握液晶显示器件的工作原理和驱动方法。
二、实验原理液晶是一种介于液体和晶体之间的物质状态,具有独特的光学和电学性质。
在电场作用下,液晶分子的排列方向会发生改变,从而导致其光学性质的变化,这就是液晶的电光效应。
液晶电光效应分为扭曲向列型(TN 型)、超扭曲向列型(STN 型)和薄膜晶体管型(TFT 型)等。
本实验主要研究 TN 型液晶的电光效应。
TN 型液晶盒由两片涂有透明导电膜的玻璃基板组成,中间夹有一层厚度约为几微米的液晶层。
液晶分子在未加电场时,沿基板表面平行排列,且上下基板处的液晶分子排列方向相互扭曲 90°。
当在液晶盒两端施加电场时,液晶分子的排列方向会逐渐与电场方向一致,从而改变液晶的透光特性。
通过测量液晶盒在不同电压下的透光强度,可以得到液晶的电光特性曲线。
该曲线通常包括阈值电压、饱和电压和对比度等重要参数。
三、实验仪器1、液晶电光效应实验仪:包括电源、信号发生器、光功率计等。
2、液晶样品盒。
四、实验步骤1、打开实验仪器电源,预热一段时间,使仪器稳定工作。
2、将液晶样品盒插入实验仪的插槽中,确保接触良好。
3、调节信号发生器,输出一定频率和幅度的方波信号,加到液晶盒两端。
4、使用光功率计测量液晶盒在不同电压下的透光强度,并记录数据。
5、逐步改变电压,测量多个数据点,直到达到饱和状态。
6、绘制电光特性曲线,分析实验结果。
五、实验数据及处理实验中测量得到的电压和透光强度数据如下表所示:|电压(V)|透光强度(mW)||::|::|| 0 | 005 || 1 | 008 || 2 | 012 || 3 | 020 || 4 | 035 || 5 | 050 || 6 | 070 || 7 | 085 || 8 | 095 || 9 | 100 |以电压为横坐标,透光强度为纵坐标,绘制电光特性曲线,如下图所示:插入电光特性曲线图从曲线中可以看出,当电压低于阈值电压(约为 25V)时,透光强度变化较小;当电压超过阈值电压后,透光强度随电压的增加而迅速增大,直到达到饱和电压(约为 7V),此时透光强度基本不再变化。
液晶电光效应实验数据
液晶电光效应实验数据
液晶电光效应是一种电磁效应,指的是在电场的作用下,液晶分子排列方向发生变化,从而导致光的偏振方向发生变化的现象。
在本次实验中,我们研究了液晶电光效应,并
通过实验得到了相关的数据。
实验步骤:
1.准备实验器材:液晶屏、变压器、滤光片、强光源。
2.打开液晶屏,将背面的电缆连接上一个恒定的电压,以使液晶分子排列。
3.将滤光片放在液晶屏前方,通过调整滤光片的方向来调整入射光的偏振角度。
4.将强光源光线贴近液晶屏下方,通过变压器来调节电场强度,从而使液晶分子排列
方向发生变化。
5.通过调节滤光片的方向,观察实验结果,并确认偏振角度旋转量。
实验数据:
变压器电压(V) 光波通过次数偏振角度旋转量(°)
0 0 0
10 2 30
20 4 60
30 6 90
40 8 120
50 10 150
60 12 180
实验结果分析:
通过对实验数据的分析,我们可以得出以下结论:
当不存在电场时,液晶分子排列方向不发生变化,光线通过后,偏振角度旋转量为0°。
当电场强度达到一定值时,液晶分子排列方向完全被电场激励,导致所有光线的偏振角度旋转了180°,即再次回到原来的偏振方向。
因此,我们可以通过调整电场强度来控制液晶分子排列方向,从而影响其偏振效应。
这一特性在液晶显示选用中得到了广泛应用。
液晶电光效应的进一步研究将有助于提高液晶显示技术的性能和应用效果。
实验4.6液晶电光效应
液晶电光效应【实验简介】液晶是介于液体与晶体之间的一种物质状态,即具有液体的流动性,又具有晶体各向异性的特性。
当光通过液晶时,会产生像晶体那样的偏振面旋转及双折射等效应。
液晶分子是含有极性基团的棒状极性分子,在外电场作用下,偶极子会按电场方向取向,使分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶电光效应。
液晶电光效应的应用很广,利用液晶电光效应可以做成各种液晶显示器件、光导液晶光阀、光调制器、光路转换开关等,尤其是利用液晶电光效应制成的液晶显示器件,由于具有驱动压低(一般为几伏),功耗小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势,因此,研究液晶电光效应具有很重要的意义。
常用的液晶显示器件类型有:TFT型(有源矩阵液晶显示)、STN型(超扭曲液晶显示)、TN型(扭曲向列相液晶显示),其中TN型液晶显示器件原理比较简单,是TFT型、STN型液晶显示的基础,因此本实验研究TN型液晶材料,希望通过一些基本现象的观察和研究,对液晶有一个基本了解。
【实验目的】1.了解液晶的结构特点和物理性质。
2.了解液晶电光效应、液晶光开关的工作原理及简单液晶显示器件的显示原理。
3.通过液晶电光特性和时间响应特性曲线的观测,测量液晶的一些性能参数。
【预习思考题】1.扭曲向列相液晶具有那些物理特性,如何利用其电光效应制成液晶光开关?如何利用液晶光开关进行数字、图形显示?2.如何在示波器上显示驱动信号波形和时间响应曲线,如何测量响应曲线的上升时间和下降时间?【实验仪器】液晶盒及液晶驱动电源、二维可调半导体激光器、偏振片(两个)、光功率计、光电二极管探头、双踪示波器、白屏、光学实验导轨及元件底座、钢板尺【实验原理】1.液晶分类大多数液晶材料都是由有机化合物构成的。
这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为0.1nm量级,并按一定规律排列。
实验3 液晶的电光效应
• 液晶的分类
根据排列的方式不同,液晶一般被分为三大类:
图1 近晶相液晶 图2 向列相液晶 图3 胆甾相液晶 1、近晶相液晶(如图1):分子分层排列,每一层内的分子长轴相互平行且 垂直或倾斜于层面。 2、向列相液晶(如图2):分子的位置比较杂乱,不再分层排列,但各分子 的长轴方向仍大致相同,光学性质上有点像单轴晶体。 3、胆甾相液晶(如图3):分子也是分层排列,每一层内的分子长轴方向基 本相同并平行于分层面,但相邻的两个层中分子长轴的方向逐渐转过一个角度,总 体来看分子长轴方向呈现一种螺旋结构。
1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一 定的温度范围内观察到液晶。 1961年美国RCA公司的Heimeier发现了液 晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将 液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这 一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏), 功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件 的竞争中有独领风骚之势。
• 扭曲向列型液晶显示(TN-LCD)
结构
将液晶材料夹在两个玻璃基片之间, 并对四周进行密封(如上图)。将基片 的内表面进行适当的处理,紧靠玻璃基 片的液晶分子平行于基片并特定方向排 列。如果我们使上下两个基片的取向成 一定角度,则两个基片间的液晶分子就 会形成许多层。
• 扭曲向列型液晶显示(TN-LCD)
1. 工作原理
正显示和负显示
• 扭曲向列型液晶显示(TN-LCD)
2. TN-LCD的电光特性
阈值电压 饱和电压 陡度 陡-LCD)
3. TN-LCD的时间特性
• 扭曲向列型液晶显示(TN-LCD)
液晶电光特性及应用
液晶电光特性及应用液晶电光特性及应用液晶电光特性是指液晶在电场作用下的光学行为。
液晶的电光特性与其分子取向和分子结构有关。
液晶分子具有长的有机分子,它们通常由多个环状或直链结构组成。
液晶分子的长链结构,使它们可以被定向排列,形成特定的有序结构。
液晶分子的取向状态决定了液晶的光学特性。
如果液晶分子是正放置的,则它们对光的偏振状态具有选择性吸收性,这称为吸收性光学。
如果液晶分子是被定向的,则它们对偏振光的折射率是具有选择性的,此时就称为双折射光学。
双折射现象是液晶电光特性最为常见的现象。
当有电场存在时,液晶分子会向电场的方向旋转,因此使电场方向偏振的光线通过液晶中的双折射现象被分解成两种互相垂直和偏振的光线,它们在液晶中的速度和折射率不同并呈现不同的颜色。
这两个光线将在液晶后面通过旋转器合成一条线性偏振光,只有在电场作用下液晶分子的排列状况才以可控的方式改变。
液晶电光特性应用广泛。
其中最为常见的是液晶显示器。
液晶显示器是一种利用液晶电光特性制成的显示设备。
这种显示器能够有效地将输入的电脉冲信号转换成图像,并且该图像的质量更加清晰、亮度更加均匀。
它被广泛应用在电子设备领域,如手机、平板电脑、电视等。
液晶显示器由液晶电光晶体及其控制电路构成,控制电路会改变晶体的各项物理量,如电场、温度、压力等,从而达到对显示器的控制。
液晶电光特性还可以用于制造光调制器。
光调制器是一个电光传输设备,它能够通过电场变化控制入射光信号的光强和相位,从而实现信息传输。
这种设备广泛应用于通信领域,如光纤通信、激光雷达等。
液晶电光特性还可以被应用到液晶色浆中来调节其色差和响应速度,使其成为一种很好的电光材料。
综上所述,液晶电光特性具有非常重要的光学意义,并且被广泛应用于各种领域。
液晶显示器和光调制器是液晶电光应用中最典型和重要的例子。
未来,液晶电光技术将继续发展,并且进一步提高其应用的效率和可靠性。
液晶电光效应
液晶电光效应液晶电光效应是指液晶材料在电场作用下发生光学效应的现象。
液晶材料是一种特殊的有机化合物,具有特殊的结构和性质,可以通过调节电场来改变光的传播状态。
在液晶显示技术中,液晶电光效应起到了至关重要的作用。
液晶电光效应最早在1888年由奥地利物理学家弗雷德里希·雷茨勒(Friedrich Reinitzer)发现。
他观察到某些胆固醇类化合物在加热时会从固态变为液态,而在某个温度下又会形成胆固醇晶体。
这个晶体在熔化过程中会发生颜色的变化,这就是液晶电光效应的最早发现。
液晶电光效应的原理是基于液晶分子的有序排列和电场的作用。
液晶分子具有长形结构,可以在特定条件下排列成有序的结构,形成液晶相。
在无电场作用下,液晶分子的排列呈现为无序状态,光无法通过。
但是,当外加电场时,液晶分子会沿着电场方向重新排列,形成有序的结构,使光通过。
液晶电光效应的光学特性使其在各种显示设备中得到了广泛应用。
最常见的液晶显示器就是电视、计算机显示器和手机屏幕。
这些设备中的液晶分子通过调节电场的强弱来控制光的透过程度,从而实现图像的显示。
当电场强度较弱时,液晶分子呈现较为有序的状态,光透过的程度较大,显示器呈现出较亮的图像。
而当电场强度较强时,液晶分子呈现较为无序的状态,光透过的程度较小,显示器呈现出较暗的图像。
液晶电光效应的应用不仅局限于显示设备领域,还涉及到光学仪器、光学调制器等领域。
例如,在光学调制器中,液晶电光效应可以用来调节光的偏振方向。
通过调节电场的强弱,可以改变液晶分子的排列方式,进而改变光的偏振方向,实现光的调制。
液晶电光效应的研究和应用在科学和技术领域具有重要意义。
它不仅推动了液晶显示技术的发展,还为光学器件的设计和制造提供了新的思路和方法。
通过深入研究液晶电光效应的机理,科学家们可以进一步优化液晶材料的性能,提高液晶显示器的分辨率和色彩表现力。
液晶电光效应是液晶显示技术的基础原理之一,通过调节电场来改变液晶分子的排列状态,进而控制光的透过程度。
液晶电光效应实验(实验报告)
液晶电光效应实验(实验报告)
液晶电光效应实验
液晶电光效应是指在液晶分子结构扭曲时,液晶薄膜的透光度发生变化。
实验中,集成了一块液晶屏,将电压施加到液晶屏上,观察液晶屏对应位置的透光度变化,研究该变化规律,以深入加深对液晶电光效应的认识。
实验步骤如下:
1. 首先,将电路连接好,确保液晶屏上各电极连接无误,并检查电源是否已正常供电;
2. 将示波器的波形选择及参数确定好,接入电源,使示波器正常工作;
3. 称取一只仪器,将相应的液晶屏放在支架上,便于观察及调整;
4. 用外加电压试验液晶屏,每次增大一个单位,观察屏幕中每一点的透光度变化;
5.了解液晶屏的电光效应,在变化的电压影响下,调整透光度,并记录实验结果。
实验结果:
实验中,随着外加电压的不断增加,液晶屏中每一点的透光度也越来越低,最低的透光度约为17%左右,而外加电压可达最大值时,液晶屏的透光度大约为50%,可见外加电压对液晶屏的透光度有明显的影响。
实验结论:
根据实验结果可以清楚地看到,通过外加之电压可以有效地控制液晶屏的透光度,而随着外加电压的变化,液晶屏中每一点的透光度也会有相应的变化,从而实现视觉上的效果。
本次实验验证了液晶电光效应的存在,为进一步研究液晶电光效应提供了基础。
液晶电光效应实验报告
液晶电光效应实验报告一、实验目的1.了解液晶的基本原理和电光效应。
2.观察和测量液晶显示器在外加电场作用下的光学性质变化。
3.研究液晶显示器的工作原理。
二、实验仪器和材料1.液晶显示器2.外加电源3.直流稳压电源4.数显万用表5.电源线等三、实验原理液晶电光效应是指液晶因外加电场作用下发生的光学性质变化。
液晶的分子结构使其具有双折射效应,即当无电场作用时,液晶分子排列有序,折射率一致,透过的光线为线偏振光。
而当外加电场作用于液晶时,液晶分子排列发生变化,折射率不一致,透过的光线变为圆偏振光。
四、实验步骤1.将液晶显示器连接好外加电源和电源线,并接通电源使其工作。
2.调节电源输出电压,观察到显示器发出的图案。
3.利用数显万用表测量液晶显示器外加电压和电流。
4.记录显示器上显示的图案在不同电压下的变化情况。
五、实验结果与分析通过实验观察和测量,得到了液晶显示器在不同电压下显示的图案变化情况。
随着外加电压的增加,显示器上显示的图案也发生了变化。
在低电压下,显示器上的图案模糊不清,无法辨认;而在适当的电压范围内,图案变得清晰可辨,颜色也更加鲜艳。
但是当电压过高时,图案又变得模糊。
这种变化是由液晶电光效应引起的。
当电场强度较弱时,液晶分子大致保持有序排列,所以透过的光线呈线偏振光,显示的图案模糊。
当电场强度适中时,液晶分子会重新排列,折射率不一致,透过的光线变为圆偏振光,显示的图案变得清晰。
但是当电场强度过强时,液晶分子排列变得混乱,无法正确解码和显示,导致图案模糊。
六、实验结论通过本次实验,我们对液晶的基本原理和电光效应有了更深入的了解。
液晶显示器在外加电场作用下会发生光学性质的变化,从而实现图案的显示。
为了获得清晰可辨的图案,外加电压必须保持在适当的范围内,过高或者过低的电压都会导致图案模糊不清。
因此,在液晶显示器的使用过程中,要注意调节电压以获得最佳显示效果。
七、实验心得通过本次实验,我深入了解了液晶电光效应的原理和液晶显示器的工作原理。
液晶电光效应
液晶电光效应液晶电光效应是指液晶材料在电场作用下产生光学响应的现象。
液晶是一种具有特殊结构的有机化合物,其分子具有一定的长程有序性,可以形成液晶相。
液晶材料在电场作用下会发生分子重新排列的现象,从而改变光的传播方式,实现光的调控。
液晶电光效应的实现基于液晶分子的特殊结构。
液晶分子通常由长链状的有机分子组成,分子中的芳香环或其他特殊结构会导致分子呈现偶极矩性质。
在没有外加电场的情况下,液晶分子的排列方式呈现无序状态。
但当外加电场时,液晶分子会受到电场力的作用,发生重新排列,使得液晶分子整体呈现有序排列的相。
液晶电光效应的原理是基于液晶分子的排列方式改变了光的传播方式。
液晶分子的有序排列会导致其光学性质的各向异性。
液晶分子的各向异性意味着它们对不同方向的光具有不同的折射率。
当光通过液晶材料时,根据入射角度的不同,光线会在液晶分子中发生折射,从而改变光的传播方向。
液晶电光效应的应用非常广泛。
其中最常见的应用是液晶显示技术。
液晶显示屏通过控制外加电场的强度和方向,调节液晶分子的排列方式,从而改变光的传播路径,实现图像的显示。
液晶显示屏具有功耗低、对环境光适应性强等优点,因此被广泛应用于电视、电脑显示器、手机等各种电子设备中。
除了液晶显示技术,液晶电光效应还有其他一些应用。
例如,在光学器件中,可以利用液晶电光效应来实现光的调制和调控。
通过调节外加电场的强度和方向,可以改变液晶材料对光的折射率,从而实现光的调制。
这种原理被广泛应用于光通信领域,用于实现光的调制、光开关等功能。
液晶电光效应还可以应用于光学传感器领域。
通过利用液晶分子的排列方式受外加电场控制的特性,可以设计出具有高灵敏度和快速响应的光学传感器。
这种传感器可以用于测量光的强度、光的偏振状态等,广泛应用于光学测量、生物医学等领域。
总结起来,液晶电光效应是液晶材料在电场作用下产生光学响应的现象。
通过外加电场控制液晶分子的排列方式,可以改变光的传播路径和光的折射率,实现光的调控。
电光效应实验报告总结
电光效应是指液晶材料在电场作用下,其分子排列发生变化,导致光学性质发生改变的现象。
这一效应是液晶显示器等光学器件的核心原理。
为了深入了解电光效应的规律及其应用,我们进行了本次实验。
二、实验目的1. 研究液晶电光效应的基本规律;2. 掌握液晶电光效应实验方法及实验技巧;3. 了解液晶电光效应在光学器件中的应用。
三、实验原理液晶分子具有介于液体和固体之间的特性,在电场作用下,液晶分子的排列发生变化,从而改变其光学性质。
具体来说,电场作用下液晶分子的取向与电场方向平行,导致液晶材料的光学性质发生改变,如折射率、旋光率等。
四、实验方法与步骤1. 准备实验仪器:液晶样品、电源、电极板、电压调节器、显微镜、光源等;2. 将液晶样品放置在电极板之间,并连接好电路;3. 调节电压,观察液晶样品在电场作用下的光学性质变化;4. 使用显微镜观察液晶样品的分子排列变化;5. 记录实验数据,分析液晶电光效应的规律。
五、实验结果与分析1. 随着电压的增加,液晶样品的折射率逐渐增大,表现出正的折射率变化;2. 随着电压的增加,液晶样品的旋光率逐渐增大,表现出正的旋光率变化;3. 液晶样品的分子排列在电场作用下逐渐平行于电场方向。
实验结果表明,液晶电光效应与电场强度、液晶材料性质等因素密切相关。
通过调节电场强度,可以实现对液晶样品光学性质的控制,从而在光学器件中实现各种功能。
1. 液晶电光效应在光学器件中的应用:(1)液晶显示器:利用液晶电光效应实现图像显示;(2)光开关:利用液晶电光效应实现光信号的传输和切换;(3)光学调制器:利用液晶电光效应实现光信号的调制;(4)光学传感器:利用液晶电光效应实现光学信号的检测。
2. 影响液晶电光效应的因素:(1)液晶材料:不同液晶材料的电光效应特性不同;(2)电场强度:电场强度越大,液晶电光效应越明显;(3)温度:温度变化会影响液晶材料的电光效应;(4)电极板:电极板的设计和加工对液晶电光效应有重要影响。
液晶电光效应的实验研究
液晶电光效应的实验研究《液晶电光效应的实验研究》引言:液晶电光效应是指在外加电场的作用下,液晶分子的排列发生变化,从而使液晶显示器能够显示出不同的图像和信息。
本实验旨在研究液晶电光效应的原理、调节参数和实际应用。
一、实验目的:1. 理解液晶电光效应的原理;2. 掌握液晶显示器中电场强度对显示效果的影响;3. 了解液晶电光效应在液晶显示技术中的应用。
二、实验原理:液晶电光效应是液晶物质中分子排列发生变化的现象。
液晶显示器通常由两块平行的透明电极板夹持,中间注入液晶分子。
这些分子具有排列有序的倾向,当外加电场作用于液晶器件时,电场使液晶分子发生排列变化,从而改变了光的透过性能。
液晶分子排列的变化通常通过电场强度和电场方向控制。
当电场强度为零时,液晶分子沿着一定方向排列(称为“原初状态”),光线透过时不会发生偏转。
当有外加电场时,液晶分子发生倾斜排列,导致入射光被偏转,从而改变了光的透过性能。
三、实验步骤:1. 准备液晶显示器样品、电源和电动驱动设备;2. 将电源连接至液晶显示器,开启电源;3. 调节电动驱动设备的电场强度和电场方向;4. 观察液晶显示器的光透过性能;5. 记录观察结果,并分析不同电场强度和电场方向下的变化。
四、实验结果与讨论:通过实验观察,我们可以发现在不同电场强度和电场方向下,液晶显示器的光透过性能会发生变化。
当电场强度足够大时,液晶分子的排列会发生明显变化,使光透过性能发生偏转,从而产生不同的显示效果。
而当电源断开或电场强度为零时,液晶显示器会恢复到原初状态。
五、实验应用:液晶电光效应在液晶显示技术中有着广泛的应用,如电子手表、计算机显示器、手机屏幕等。
通过精确控制电场强度和电场方向,液晶显示器可以呈现出高质量、高清晰度的图像和信息,成为现代科技领域中不可或缺的重要元件。
结论:本实验通过对液晶电光效应的实验研究,我们了解了液晶显示器的工作原理以及电场强度和电场方向对液晶分子排列和光透过性能的调节。
液晶的电光特性实验报告
液晶的电光特性实验报告液晶的电光特性实验报告引言:液晶是一种特殊的物质,具有独特的电光特性。
本实验旨在通过实验观察和测量,了解液晶的电光特性,以及其在光学器件中的应用。
一、实验目的本实验的目的是通过实验观察和测量,了解液晶的电光特性,包括液晶的电光效应、液晶的偏振特性等,并探究其在光学器件中的应用。
二、实验原理1. 液晶的电光效应液晶的电光效应是指在电场的作用下,液晶分子会发生取向变化,从而改变其光学性质。
液晶分子具有长轴和短轴,在无电场作用下,液晶分子的长轴一般沿着某个特定方向取向。
当电场作用于液晶分子时,电场会改变液晶分子的取向,使其长轴发生旋转,从而改变液晶的光学性质。
2. 液晶的偏振特性液晶具有偏振特性,即只能通过特定方向的偏振光。
当入射光的偏振方向与液晶的取向方向一致时,光线可以透过液晶;而当偏振方向垂直于液晶的取向方向时,光线无法透过液晶。
三、实验步骤1. 准备实验所需材料和仪器,包括液晶样品、偏振片、电源等。
2. 将液晶样品放置在两片偏振片之间,确保两片偏振片的偏振方向垂直。
3. 调节电源的电压,观察液晶样品的变化。
记录不同电压下液晶样品的透光情况。
4. 调节两片偏振片的相对角度,观察液晶样品的变化。
记录不同角度下液晶样品的透光情况。
5. 根据实验结果,分析液晶的电光特性和偏振特性。
四、实验结果与分析根据实验观察和记录,我们发现在无电场作用下,两片偏振片之间的液晶样品几乎完全不透光。
当电场作用于液晶样品时,液晶样品开始透光,且透光强度随电压的增加而增加。
这说明液晶样品的电光效应是可控的,可以通过外加电场来改变液晶的光学性质。
此外,我们还观察到当两片偏振片的相对角度为90度时,液晶样品几乎完全不透光;而当两片偏振片的相对角度为0度或180度时,液晶样品透光最强。
这表明液晶样品的透光性与两片偏振片的相对角度密切相关,液晶具有偏振特性。
根据实验结果,我们可以得出结论:1. 液晶样品的透光性可以通过外加电场来改变,具有可控的电光效应。
液晶电光效应实验报告
液晶电光效应实验报告
实验目的,通过实验观察液晶电光效应,了解液晶在电场作用下的光学特性。
实验仪器和材料,液晶样品、直流电源、偏振片、玻璃片、导线等。
实验原理,液晶是一种特殊的有机分子材料,其分子结构呈长棒状,具有两个极性较强的端基,当液晶置于电场中时,液晶分子会发生定向排列,从而改变光的传播状态,这种现象称为液晶电光效应。
实验步骤:
1. 将液晶样品均匀涂抹在玻璃片上,并待干燥。
2. 用导线将直流电源与液晶样品连接。
3. 在液晶样品的上下方分别放置偏振片,并调整偏振片的方向。
4. 调节电源输出电压,观察液晶样品的光学变化。
实验结果:
当电场作用下,液晶分子发生定向排列,使得通过液晶样品的光线偏振状态发生改变,从而观察到了液晶电光效应。
当电压增大时,液晶分子排列更加有序,光学效应更加明显;当电压减小时,光学效应逐渐减弱。
实验分析:
液晶电光效应是由于电场作用下液晶分子排列状态的改变导致的光学现象。
这一效应不仅在液晶显示器等技术中有着重要应用,也为我们提供了一种研究材料光学特性的有效手段。
结论:
通过本次实验,我们成功观察到了液晶电光效应,并了解了液晶在电场作用下的光学特性。
液晶电光效应的实验,不仅加深了我们对液晶光学特性的理解,也为我们提供了一种简单直观的实验手段,为相关领域的研究和应用提供了重要参考。
参考文献,无。
作者,XXX。
日期,XXXX年XX月XX日。
液晶电光效应及其应用资料
液晶光电效应及应用摘要:文章介绍了液晶的基本原理,着重阐述了液晶光开关的工作原理及其性质,并根据其性质开展了一系列的实验,如测量液晶光开光的电光特性曲线及响应时间等。
关键词:液晶光开关时间响应视角特性一、引言液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。
液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。
液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。
二、实验原理1.液晶光开关的工作原理液晶作为一种显示器件,其种类很多,下面以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构如图1所示。
在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
如图1所示。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
液晶的光电效应
2
当一束单色光在各向异性晶体的界面折射时,一般可以产 生两束折射光,这种现象叫做双折射。晶体的双折射现象, 表示晶体在光学上是各向异性的,即它对不同方向的光振 动(即光矢量E的振动方向)表现出不同的性质。更具体 地说,对于振动方向互相垂直的两个线偏振光,在晶体中 有着不同的传播速度(或折射率),因而发生双折射现象。 在发生双折射的两束折射光中,有一束遵守折射定律,我 们称之为o光,即寻常光;另一束不遵守折射定律,称之 为e光,即非寻常光。在晶体内有一个特殊的方向,即当 光在晶体中沿着这个方向传播时不发生双折射,这个方向 就叫做晶体光轴。有些晶体只有一个光轴方向,称之为单 轴晶体。有些有两个光轴,称之为双轴晶体。 实验表明,有些物质本来是各向同性的,但在强电场作用 下,变成类似于单轴晶体那样的各向异性,还有一些单轴 晶体在强电场作用下变成双轴晶体。这些效应称为电光效 3 应。前者又称克尔效应,后者称泡克尔斯效应。
6
TN型液晶盒结构
7
当无外电场作用时,由于可见光波长远小于向列相液晶的 扭曲螺距,当线偏振光垂直入射时, 若偏振方向与液晶盒上表面分子取向相同,则线偏振光将 随液晶分子轴方向逐渐旋转90o,平行于液晶盒下表面分 子轴方向射出(见图a,其中液晶盒上下表面各附一片偏振 片,其偏振方向与液晶盒表面分子取向相同,因此光可通 过偏振片射出);若入射线偏振光偏振方向垂直于上表面 分子轴方向,出射时,线偏振光方向亦垂直于下表面液晶 分子轴; 当以其他线偏振光方向入射时,则根据平行分量和垂直分 量的相位差,以椭圆、圆或直线等某种偏振光形式射出。
11
感谢大家
12
液晶的光电效应 及其部分应用介绍
主讲: 主讲:朱志亮 光学工程
1
首先,先了解一下偏振光的干涉。两个振动方向互垂直 的线偏振光的叠加,即便它们具有相同的频率、固定的相 位差,也不能产生干涉,这事我们所熟悉的。但是如果让 这样两束光再通过一块偏振片,则它们在偏振片的透光轴 方向的振动分量就在同一方向上,两束光便可产生干涉。 如图: P,A代表两偏振片的透光轴方 向,A1是射向玻片W的线偏振光 的振幅,P与玻片光轴(O方向) 的的夹角为θ,可以推出上述 两束光的干涉强度为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液晶光电效应及应用摘要:文章介绍了液晶的基本原理,着重阐述了液晶光开关的工作原理及其性质,并根据其性质开展了一系列的实验,如测量液晶光开光的电光特性曲线及响应时间等。
关键词:液晶光开关时间响应视角特性一、引言液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。
液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。
液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。
二、实验原理1.液晶光开关的工作原理液晶作为一种显示器件,其种类很多,下面以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构如图1所示。
在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
如图1所示。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的吸引下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构,如图1右图所示。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
若P1和P2的透光轴相互平行,则构成常黑模式。
2.液晶光开关的电光特性和时间响应特性图2为光线垂直入射时本实验所用液晶相对透射率(以不加电场时的透射率为100%)与外加电压的关系。
由图2可见,对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。
可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。
阈值电压:透过率为90%时的供电电压;关断电压:透过率为10%时的供电电压。
另外,在给液晶板加上一个周期性的作用电压(如图3上图),液晶的透过率也就会随电压的改变而变化,就可以得到液晶的相应时间上升时间Δt1和下降时间Δt2。
如图3下图所示。
上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。
液晶的响应时间越短,显示动态图像的效果越好。
3.液晶光开关的视角特性液晶光开关的视角特性表示对比度与视角的关系。
对比度定义为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。
对比度与垂直与水平视角都有关。
而且,视角特性具有非对称性。
三、实验内容与步骤1.准备工作:(1)检查仪器初始状态:发射器光线必须垂直入射到接收器,当没有安装液晶板时,透过率显示为“999”的情况下,我们就认为光线垂直入射到了接收器上;安装上液晶板后,透过率显示为“600±100”的情况下,我们就认为光线垂直入射到了接收器上。
(2)将液晶板金手指1插入转盘上的插槽,液晶凸起面必须正对光源发射方向。
打开电源,点亮光源,让光源预热10 分钟左右。
(若光源未亮,检查模式转换开关。
只有当模式转换开关处于静态时,光源才会被点亮。
)(3)检查仪器初始状态:发射器光线必须垂直入射到接收器。
在静态模式、液晶转盘角度为0 度、供电电压为0V 条件下,透过率显示大于“250”时,按住透过率校准按键 3 秒以上,透过率可校准为100%。
(若供电电压不为0,或显示小于“250”,则该按键无效,不能校准透过率)若不为此状态,需增加光源预热时间,同时检查前面的操作是否有误,重新调整仪器光路,直到达到上述条件为止。
2.液晶光开关电光特性测量(1)将模式转换开关置于静态模式。
首先将透过率显示调到100%,然后再进行实验。
(2)调节“供电电压调节”按键,按表 1 的数据改变电压,使得电压值从0V 到6V 变化,记录相应电压下的透射率数值。
(3)将供电电压重新调回0V(此时若透过率不为100%,则需重新校准)。
(4)重复测量 3 次并计算相应电压下透射率的平均值,依据实验数据绘制电光特性曲线,可以得出阈值电压和关断电压。
3.液晶的时间响应的测量将模式转换开关置于静态模式,透过率显示调到100,然后将液晶供电电压调到2.00V,在液晶静态闪烁状态下,用存贮示波器观察此光开关时间响应特性曲线,可以根据此曲线得到液晶的上升时间和下降时间。
4.液晶光开关视角特性的测量(1)确认液晶板以水平方向插入插槽(2)将模式转换开关置于静态模式,在转角为0度,供电电压为0V,透过率显示大于“250”时,按住“透过率校准”按键3S以上,将透过率校准为100%。
(3)将供电电压置于0V,按照表中所列的角度调节液晶屏与入射激光的角度,记录下在每一角度时的光强透过率值Tmax。
(4)将液晶转盘保持在0度位置,调节供电电压为2V。
在该电压下,再次调节液晶屏角度,记录下在每一角度时的光强透过率值Tmax。
(5)切断电源,取下显示屏,将液晶板旋转90度,以垂直方向插入转盘。
6.打开电源,按照步骤2,3,4,可测得垂直方向时在不同供电电压,不同角度时的透过率值。
四、实验数据处理及结论1、液晶光开关电光特性测量电压/V 0 0.5 0.8 1 1.2 1.3 1.4 1.5透射率/%1 100 100 99 83 42 26 15 82 100 100 100 83 42 29 17 93 100 100 98 83 45 26 16 9平均100 100 99 83 43 27 16 8.7 电压/V 1.6 1.7 2 3 4 5 6透射率/%1 5 323 2 2 22 6 43 2 2 2 23 64 3 3 2 2 2平均 5.7 3.7 2.7 2.7 2 2 2 由水平方向电光特性曲线得水平方向阈值电压(透射率90%)为0.93V,关断电压(透射率10%)为1.45V。
电压/V 0 0.5 0.8 1 1.2 1.3 1.4 1.5透射率/%1 100 100 100 91 57 40 27 172 100 100 100 90 56 39 26 173 100 100 100 91 58 41 27 17平均100 100 100 90.7 57 40 26.7 17 电压/V 1.6 1.7 2 3 4 5 6透射率/%1 10 72 2 2 1 12 10 6 2 2 2 1 13 10 7 2 2 2 1 1平均10 6.7 2 2 2 1 1由垂直方向电光特性曲线得垂直方向阈值电压(透射率90%)为1.02V,关断电压(透射率10%)为1.60V。
2.液晶的时间响应的测量使用示波器直接读值的方法,两通道的上升时间和下降时间对同一液晶显示器为一固定值,只取一次数据,实验中示波器图形如下图所示:其中示波器×10mag为按进去的工作状态,故放大倍率为十倍,得到上升时间为20ms,下降时间为10ms。
3.液晶光开关视角特性的测量角度-85 -80 -75 -70 -65 -60 -55 -50 -45 Tmax(0V)0 0 0 0 0 0 0 0 6 Tmin(2V) 0 0 0 0 0 0 0 0 0 Tmax/Tmin - - - - - - - - - 角度-40 -35 -30 -25 -20 -15 -10 -5 0 Tmax(0V)23 61 91 99 101 96 98 100 100 Tmin(2V) 1 3 4 4 3 3 3 2 2 Tmax/Tmin 23 20.3 22.7 24.7 33.6 32 32.6 50 50 角度 5 10 15 20 25 30 35 40 45 Tmax(0V)99 98 98 103 105 107 108 101 81 Tmin(2V) 2 3 3 4 4 6 7 8 9 Tmax/Tmin 49.5 32.6 32.6 25.7 26.2 17.8 15.4 12.6 9 角度50 55 60 65 70 75 80 85Tmax(0V)32 26 24 20 10 6 4 1Tmin(2V) 4 5 5 5 3 2 1 0Tmax/Tmin 8 5.2 4.8 4 3.3333 3 4 -角度-85 -80 -75 -70 -65 -60 -55 -50 -45 Tmax(0V)0 0 0 0 0 0 0 0 7 Tmin(2V) 0 0 0 0 0 0 0 0 3 Tmax/Tmin - - - - - - - - 2.3 角度-40 -35 -30 -25 -20 -15 -10 -5 0 Tmax(0V)26 57 84 93 97 94 96 98 100 Tmin(2V) 11 21 23 18 12 8 5 2 2 Tmax/Tmin 2.3 2.7 3.6 5.1 8. 11.7 19.2 49 50 角度 5 10 15 20 25 30 35 40 45 Tmax(0V)97 94 93 95 91 90 81 77 47 Tmin(2V) 3 5 7 9 13 15 16 18 14 Tmax/Tmin 32.3 18.8 13.2 10.5 7 6 5. 4. 3.3 角度50 55 60 65 70 75 80 85Tmax(0V)27 25 19 11 4 4 1 0Tmin(2V) 8 9 7 4 2 2 1 0Tmax/Tmin 3.3 2.7 2.7 2.7 2 2 1 -由水平视角和垂直视角的图像分析液晶的视角特性,计算对比度。